
CISC 322
Software Architecture

Lecture 03:

Architecture Styles

Ahmed E. Hassan

Architectural Design

Topics in

Architectural Design

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Design

Material drawn from [Bass et al. 98, Shaw96, CORBA98,

CORBA96, IBM98, Gamma95, JavaIDL98]

[Slides by Spiros Mancoridis]

Software Architecture Topics

• Terminology and Motivation

• Abstraction

• Intuition About Architecture:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Hardware

– Network

– Building Architecture

Software Architecture Topics

• Architectural Styles of Software Systems:

– Repository

– Pipe and Filter

• Case Study of Compiler Architecture

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Case Study of Compiler Architecture

– Object-Oriented

– Implicit Invocation

– Layered

– Interpreter

– Process-Control

– Client/Server

Software Architecture Topics

• Technologies for Distributed Architectures:

– IBM’s MQSeries

– OMG’s CORBA

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

What is

Software Architecture?

• The software architecture of a program or

computing system is the structure (or

structures) of the system.

• The structures comprise:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• The structures comprise:

– Software components

– Externally visible properties of the components

– Relationships between the components

Externally Visible

Properties of Components

• Externally visible properties refers to those

assumptions other components can make of

a component, such as:

– Provided services

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Provided services

– Performance characteristics

– Fault handling

– Shared resource usage

– Et cetera

A Software Architecture

is an Abstraction

• An architecture is an abstraction of a system

that suppresses details of components that

do not affect how they:

– Use

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Use

– Are used by

– Relate to

– Interact with

other components.

Can a system have

more that one structure?

• Yes, no one structure holds the claim to
being the architecture.

• Below are some examples of structures:

– Module decomposition

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Module decomposition

– Inheritance hierarchy

– Call graph

– Objects and message passing at runtime

– Build dependencies

– Et cetera

Does Every System have an

Architecture?

• Yes.

• For small systems the architecture may be

trivial.

• For large systems it definitely exists in the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• For large systems it definitely exists in the

software product, but may not have been

documented.

Are box-and-line diagrams

descriptions of Software Architecture?
• No.

• A description of the behavior of each component

is part of the architecture.

• In box-and-line diagrams, readers imagine the

behavior of each component by interpreting the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

behavior of each component by interpreting the

labels of the boxes & lines.

• One must document the extent that a component’s

behavior influences how another component must

be written to interact with it.

Why is Software Architecture

Important?

• Communication among stakeholders:

– Customers, managers, designers, programmers.

• Documentation of early design decisions:

– Constraints on implementation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Constraints on implementation

– Organizational structure

– Guides evolutionary prototyping

• Transferable abstraction of a system to similar
systems (reuse):

– Program families share a common architecture

– Architecture can be the basis for training.

Architectural Structures

(Module Structure)
• Components: work assignments.

– Work assignments have products

associated with them:
• Interface specifications

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Interface specifications
• Code
• Test plans, etc.

• Relations: is-a-submodule-of
• Use: Allocating a project’s labor and other

resources during development and
maintenance.

Architectural Structures

(Conceptual or Logical Structure)

• Components: Abstractions of the system’s

functional requirements.

• Relations: shares-data-with

• Use: Understanding the interactions

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Use: Understanding the interactions

between units in the problem space.

Architectural Structures

(Process or Coordination Structure)

• Components: Processes or threads.

• Relations:
– Synchronizes-with
– Can’t-run-without

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Can’t-run-without
– Can’t-run-with
– Preempts, et cetera

• Use: Modeling dynamic aspects of a

running system.

Architectural Structures

(Physical Structure)

• Components: Hardware (computers,

networks, etc.)

• Relations: communicates-with

• Use: Create models to reason about

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Use: Create models to reason about

performance, availability, security, etc.

Architectural Structures

(Uses Structure)

• Components: procedures or modules

• Relations: assumes-the-correct-presence-of

• Use: To model system extendibility and

incremental system building (e.g., Makefile

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

incremental system building (e.g., Makefile

dependencies).

Architectural Structures

(Calls Structure)

• Components: Procedures

• Relations: calls

• Uses: To model trace of execution in a

program.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

program.

Architectural Structures

(Data Flow Structure)

• Components: Programs or modules

• Relations: transmits-data-to

• Use: To model data transmission which can

aid requirements traceability.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

aid requirements traceability.

Architectural Structures

(Class Structure)

• Components: classes and interfaces

• Relations: inherits-from, implements

• Use: To model collections of similar

behavior and parameterizes differences.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

behavior and parameterizes differences.

The Importance of Structures

• Structures are important because they “boil

away” details about the software that are

independent of the concern reflected by the

abstraction.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

abstraction.

• Each structure provides a useful perspective

of the system.

• Sometimes the term view is used instead of

structure.

Abstraction

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Abstraction

• One characterization of progress in software

development has been the regular increase

in levels of abstraction:

– I.e., the size of a software designer’s building

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– I.e., the size of a software designer’s building

blocks.

Abstraction (Cont’d)

• Early 1950s: Software was written in

machine language:

– programmers placed instructions and data

individually and explicitly in the computer’s

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

individually and explicitly in the computer’s

memory

– insertion of a new instruction in a program

might require hand checking the entire program

to update references to data and instructions

Assemblers

• Some machine code programming problems
were solved by adding a level of abstraction
between the program and the machine:

– Symbolic Assemblers:

• Names used for operation codes and memory

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Names used for operation codes and memory
addresses.

• Memory layout and update of references are
automated.

– Macro Processors:

• Allow a single symbol to stand for a commonly used
sequence of instructions.

Programming Languages

• Late 1950s: The emerging of the first high-

level programming languages. Well

understood patterns are created from

notations that are more like mathematics

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

notations that are more like mathematics

than machine code.

– evaluation of arithmetic expressions

– procedure invocation

– loops and conditionals

Programming Languages

(Cont’d)

• FORTRAN becomes the first widely used

programming language.

• Algol and its successors followed with

higher-levels of abstraction for representing

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

higher-levels of abstraction for representing

data (types).

Abstract Data Types

• Late 1960s and 1970s: Programmers

shared an intuition that good data structure

design will ease the development of a

program.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

program.

• This intuition was converted into theories of

modularization and information hiding.

– Data and related code are encapsulated into

modules.

– Interfaces to modules are made explicit.

Abstract Data Types (Cont’d)

• Programming Languages:

– Modula

– Ada

– Euclid

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Euclid

• Module Interconnection Languages:

– MIL75

– Intercol

Software Architecture

• As the size and complexity of software

systems increases, the design problem goes

beyond algorithms and data structures.

• Designing and specifying the overall system

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Designing and specifying the overall system

structure (Software Architecture) emerges

as a new kind of problem.

Software Architecture Issues

• Organization and global control structure.

• Protocols of communication,

synchronization, and data access.

• Assignment of functionality to design

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Assignment of functionality to design

elements.

• Physical distribution of data and processes.

• Selection among design alternatives.

State of Practice

• There is not currently a well-defined
terminology or notation to characterize
architectural structures.

• However, good software engineers make

common use of architectural principles

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

common use of architectural principles

when designing software.

• These principles represent rules of thumb or

patterns that have emerged informally over

time. Others are more carefully

documented as industry standards.

Descriptions of Architectures

• “Camelot is based on the client-server

model and uses remote procedure calls both

locally and remotely to provide

communication among applications and

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

communication among applications and

servers.”

Descriptions of Architectures

(Cont’d)

• “Abstraction layering and system

decomposition provide the appearance of

system uniformity to clients, yet allow Helix

to accommodate a diversity of autonomous

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

to accommodate a diversity of autonomous

devices. The architecture encourages a

client-server model for the structuring of

applications.”

Descriptions of Architectures

(Cont’d)

• “We have chosen a distributed, object-

oriented approach to managing

information.”

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Descriptions of Architectures

(Cont’d)

• “The easiest way to make a canonical sequential

compiler into a concurrent compiler is to pipeline

the execution of the compiler phases over a

number of processors. A more effective way is to

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

split the source code into many segments, which

are concurrently processed through the various

phases of compilation (by multiple compiler

processes) before a final, merging pass

recombines the object code into a single

program.”

Some Standard Architectures

• ISO/OSI Reference Model is a layered

network architecture.

• X Window System is a distributed

windowed user interface architecture based

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

windowed user interface architecture based

on event triggering and callbacks.

• NIST/ECMA Reference Model is a

generic software engineering environment

architecture based on layered

communication substrates.

Intuition About Architecture

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Intuition About Architecture

• It is interesting that we have so few named

software architectures. This is not because

there are so few architectures, but so many.

• Next we look at several architectural

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Next we look at several architectural

disciplines in order to develop an intuition

about software architecture:

– Hardware Architecture

– Network Architecture

– Building Architecture

Hardware Architecture

• RISC machines emphasize the instruction

set as an important feature.

• Pipelined and multi-processor machines

emphasize the configuration of architectural

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

emphasize the configuration of architectural

pieces of the hardware.

Differences and Similarities

Between SW & HW Architectures

• Differences:

– Relatively (to software) small number of design

elements.

– Scale is achieved by replication of design

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Scale is achieved by replication of design

elements.

• Similarities:

– We often configure software architectures in

ways analogous to hardware architectures.

(e.g., we create multi-process software and use

pipelined processing).

Network Architecture

• Networked architectures abstract the design

elements of a network into nodes and

connections.

• Topology is the most emphasized aspect:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Topology is the most emphasized aspect:

– Star networks

– Ring networks

– Manhattan Street networks

• Unlike software architectures, in network

architectures only few topologies are of

interest.

Building Architecture

• Multiple Views: skeleton frames, detailed

views of electrical wiring, etc.

• Architectural Styles: Classical,

Romanesque, Colonial, and so on.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Romanesque, Colonial, and so on.

• Materials: One does not build a skyscraper

using wooden posts and beams.

Architectural Styles

of Software Systems

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Architectural Styles of

Software Systems

• An Architectural Style defines a family of

systems in terms of a pattern of structural

organization. It determines:

– the vocabulary of components and connectors

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– the vocabulary of components and connectors

that can be used in instances of that style

– a set of constraints on how they can be

combined. For example, one might constrain:

• the topology of the descriptions (e.g., no cycles).

• execution semantics (e.g., processes execute in

parallel).

Determining an

Architectural Style

• We can understand what a style is by
answering the following questions:
– What is the structural pattern?

(i.e., components, connectors, constraints)

– What is the underlying computational model?

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– What is the underlying computational model?

– What are the essential invariants of the style?

– What are some common examples of its use?

– What are the advantages and disadvantages of
using that style?

– What are some of the common specializations
of that style?

Describing an Architectural Style

• The architecture of a specific system is a

collection of:

– computational components

– description of the interactions between these

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– description of the interactions between these

components (connectors)

Describing an

Architectural Style (Cont’d)

• Software architectures are represented as
graphs where nodes represent components:

• procedures
• modules
• processes

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• processes
• tools
• databases

• and edges represent connectors:
• procedure calls
• event broadcasts
• database queries
• pipes

Repository Style

• Suitable for applications in which the

central issue is establishing, augmenting,

and maintaining a complex central body of

information.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

information.

• Typically the information must be

manipulated in a variety of ways. Often

long-term persistence is required.

Repository Style (Cont’d)

• Components:

– A central data structure representing the current

state of the system.

– A collection of independent components that

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– A collection of independent components that

operate on the central data structure.

• Connectors:

– Typically procedure calls or direct memory

accesses.

Repository Style (Cont’d)

Memory Access

Computation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Shared Data

Memory

Repository Style Specializations

• Changes to the data structure trigger

computations.

• Data structure in memory (persistent

option).

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

option).

• Data structure on disk.

• Concurrent computations and data accesses.

Repository Style Examples

• Information Systems

• Programming Environments

• Graphical Editors

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• AI Knowledge Bases

• Reverse Engineering Systems

Repository Style Advantages

• Efficient way to store large amounts of

data.

• Sharing model is published as the

repository schema.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

repository schema.

• Centralized management:

– backup

– security

– concurrency control

Repository Style Disadvantages

• Must agree on a data model a priori.

• Difficult to distribute data.

• Data evolution is expensive.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter

Architectural Style

• Suitable for applications that require a

defined series of independent computations

to be performed on data.

• A component reads streams of data as input

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• A component reads streams of data as input

and produces streams of data as output.

Pipe and Filter

Architectural Style (Cont’d)

• Components: called filters, apply local

transformations to their input streams and

often do their computing incrementally so

that output begins before all input is

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

that output begins before all input is

consumed.

• Connectors: called pipes, serve as conduits

for the streams, transmitting outputs of one

filter to inputs of another filter.

Pipe and Filter

Architectural Style (Cont’d)

filter

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

pipes

Pipe and Filter Invariants

• Filters do not share state with other filters.

• Filters do not know the identity of their

upstream or downstream filters.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Pipe and Filter Specializations

• Pipelines: Restricts topologies to linear

sequences of filters.

• Batch Sequential: A degenerate case of a

pipeline architecture where each filter

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

pipeline architecture where each filter

processes all of its input data before

producing any output.

Pipe and Filter Examples

• Unix Shell Scripts: Provides a notation for

connecting Unix processes via pipes.

– cat file | grep Erroll | wc -l

• Traditional Compilers: Compilation

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Traditional Compilers: Compilation

phases are pipelined, though the phases are

not always incremental. The phases in the

pipeline include:

– lexical analysis + parsing + semantic analysis

+ code generation

Pipe and Filter Advantages

• Easy to understand the overall

input/output behavior of a system as a

simple composition of the behaviors of the

individual filters.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

individual filters.

• They support reuse, since any two filters

can be hooked together, provided they agree

on the data that is being transmitted

between them.

Pipe and Filter

Advantages (Cont’d)

• Systems can be easily maintained and

enhanced, since new filters can be added to

existing systems and old filters can be

replaced by improved ones.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

replaced by improved ones.

• They permit certain kinds of specialized

analysis, such as throughput and deadlock

analysis.

• The naturally support concurrent

execution.

Pipe and Filter Disadvantages

• Not good choice for interactive systems,

because of their transformational character.

• Excessive parsing and unparsing leads to

loss of performance and increased

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

loss of performance and increased

complexity in writing the filters

themselves.

Case Study:

Architecture of a Compiler

• The architecture of a system can change in

response to improvements in technology.

• This can be seen in the way we think about

compilers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

compilers.

Early Compiler Architectures

• In the 1970s, compilation was regarded as a

sequential (batch sequential or pipeline)

process:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Lex Syn Sem Opt CGen
text code

Early Compiler Architectures

• Most compilers create a separate symbol

table during lexical analysis and used or

updated it during subsequent passes.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Symbol Table

Lex Syn Sem Opt CGen
text code

Modern Compiler Architectures

• Later, in the mid 1980s, increasing attention

turned to the intermediate representation of

the program during compilation.

Symbol Table

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Symbol Table

Lex Sem CGen
codetext

Attributed

Parse Tree

OptSyn

Hybrid Compiler Architectures

• The new view accommodates various tools

(e.g., syntax-directed editors) that operate

on the internal representation rather than the

textual form of a program.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

textual form of a program.

• Architectural shift to a repository style,

with elements of the pipeline style, since

the order of execution of the processes is

still predetermined.

Hybrid Compiler Architectures

Lex Syn Sem Opt Cgen

Attributed

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Edit Flow

Attributed

Parse Tree

Symbol Table

Object-Oriented Style

• Suitable for applications in which a central

issue is identifying and protecting related

bodies of information (data).

• Data representations and their associated

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Data representations and their associated

operations are encapsulated in an abstract

data type.

• Components: are objects.

• Connectors: are function and procedure

invocations (methods).

Object-Oriented Style (Cont’d)

obj

obj obj

object

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

obj

obj
obj

obj

obj

obj

Object-Oriented Invariants

• Objects are responsible for preserving the

integrity (e.g., some invariant) of the data

representation.

• The data representation is hidden from

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• The data representation is hidden from

other objects.

Object-Oriented Specializations

• Distributed Objects

• Objects with Multiple Interfaces

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object-Oriented Advantages

• Because an object hides its data

representation from its clients, it is possible

to change the implementation without

affecting those clients.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

affecting those clients.

• Can design systems as collections of

autonomous interacting agents.

Object-Oriented Disadvantages

• In order for one object to interact with
another object (via a method invocation) the
first object must know the identity of the
second object.

– Contrast with Pipe and Filter Style.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Contrast with Pipe and Filter Style.

– When the identity of an object changes, it is
necessary to modify all objects that invoke it.

• Objects cause side effect problems:

– E.g., A and B both use object C, then B’s effects
on C look like unexpected side effects to A.

Implicit Invocation Style

• Suitable for applications that involve

loosely-coupled collection of components,

each of which carries out some operation

and may in the process enable other

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

and may in the process enable other

operations.

• Particularly useful for applications that must

be reconfigured “on the fly”:

– Changing a service provider.

– Enabling or disabling capabilities.

Implicit Invocation Style (Cont’d)

• Instead of invoking a procedure directly ...

– A component can announce (or broadcast) one

or more events.

– Other components in the system can register an

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Other components in the system can register an

interest in an event by associating a procedure

with the event.

– When an event is announced, the broadcasting

system (connector) itself invokes all of the

procedures that have been registered for the

event.

Implicit Invocation Style (Cont’d)

• An event announcement “implicitly” causes

the invocation of procedures in other

modules.

procedure procedure procedure

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

procedure procedure procedure

Broadcasting System

Implicit Invocation Invariants

• Announcers of events do not know which

components will be affected by those

events.

• Components cannot make assumptions

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Components cannot make assumptions

about the order of processing.

• Components cannot make assumptions

about what processing will occur as a result

of their events (perhaps no component will

respond).

Implicit Invocation

Specializations

• Often connectors in an implicit invocation

system include the traditional procedure

call in addition to the bindings between

event announcements and procedure calls.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

event announcements and procedure calls.

Implicit Invocation Examples

• Used in programming environments to

integrate tools:

– Debugger stops at a breakpoint and makes that

announcement.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

announcement.

– Editor responds to the announcement by

scrolling to the appropriate source line of the

program and highlighting that line.

Implicit Invocation

Examples (Cont’d)

• Used to enforce integrity constraints in

database management systems (called

triggers).

• Used in user interfaces to separate the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Used in user interfaces to separate the

presentation of data from the applications

that manage that data.

Implicit Invocation Advantages

• Provides strong support for reuse since any

component can be introduced into a system

simply by registering it for the events of

that system.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

that system.

• Eases system evolution since components

may be replaced by other components

without affecting the interfaces of other

components in the system.

Implicit Invocation

Disadvantages

• When a component announces an event:

– it has no idea what other components will

respond to it,

– it cannot rely on the order in which the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– it cannot rely on the order in which the

responses are invoked

– it cannot know when responses are finished

Layered Style

• Suitable for applications that involve

distinct classes of services that can be

organized hierarchically.

• Each layer provides service to the layer

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Each layer provides service to the layer

above it and serves as a client to the layer

below it.

• Only carefully selected procedures from the

inner layers are made available (exported)

to their adjacent outer layer.

Layered Style (Cont’d)

• Components: are typically collections of

procedures.

• Connectors: are typically procedure calls

under restricted visibility.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

under restricted visibility.

Layered Style (Cont’d)

Basic Utilities

Useful System

sets of
procedures

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

procedure
calls

Core Layer

Layered Style Specializations

• Often exceptions are made to permit non-

adjacent layers to communicate directly.

– This is usually done for efficiency reasons.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Layered Style Examples

• Layered Communication Protocols:

– Each layer provides a substrate for

communication at some level of abstraction.

– Lower levels define lower levels of interaction,

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Lower levels define lower levels of interaction,

the lowest level being hardware connections

(physical layer).

• Operating Systems

– Unix

Unix Layered Architecture

System Call Interface to Kernel

Socket
Plain
File Cooked

Block
Raw
Block

Raw
TTY

Cooked
TTY

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Hardware

Protocols

Network
Interface

File
System

Block Device Driver

Block
Interface

Block
Interface

TTY
Interface

Line
Disc.

Character Device Driver

Layered Style Advantages

• Design: based on increasing levels of

abstraction.

• Enhancement: Changes to the function of

one layer affects at most two other layers.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

one layer affects at most two other layers.

• Reuse: Different implementations (with

identical interfaces) of the same layer can

be used interchangeably.

Layered Style Disadvantages

• Not all systems are easily structured in a

layered fashion.

• Performance requirements may force the

coupling of high-level functions to their

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

coupling of high-level functions to their

lower-level implementations.

Interpreter Style

• Suitable for applications in which the most

appropriate language or machine for

executing the solution is not directly

available.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

available.

Interpreter Style (Cont’d)

• Components: include one state machine

for the execution engine and three

memories:

– current state of the execution engine

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– current state of the execution engine

– program being interpreted

– current state of the program being interpreted

• Connectors:

– procedure calls

– direct memory accesses.

Interpreter Style (Cont’d)

Current State
of

Program Being

Interpreted

Program
Being

Interpreted

inputs

Memory

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Computation
State Machine

Interpreted

Execution
Engine

Current
State of
Execution
Engine

outputs
selected
instruction

Selected
data (fetch)

store

Interpreter Style Examples

• Programming Language Compilers:

– Java

– Smalltalk

• Rule Based Systems:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Rule Based Systems:

– Prolog

– Coral

• Scripting Languages:

– Awk

– Perl

Interpreter Style Advantages

• Simulation of non-implemented hardware.

• Facilitates portability of application or

languages across a variety of platforms.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Java Architecture

Java
Source

Code

Bytecode

Verifier

Class

Loader

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Java

Bytecode

Java

Compiler

INTERNET

Interpreter

Run-time

Environment

Hardware

Interpreter Style Disadvantages

• Extra level of indirection slows down

execution.

• Java has an option to compile code.

– JIT (Just In Time) compiler.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– JIT (Just In Time) compiler.

Process-Control Style

• Suitable for applications whose purpose is

to maintain specified properties of the

outputs of the process at (sufficiently near)

given reference values.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

given reference values.

• Components:

– Process Definition includes mechanisms for

manipulating some process variables.

– Control Algorithm for deciding how to

manipulate process variables.

Process-Control Style (Cont’d)

• Connectors: are the data flow relations for:

– Process Variables:

• Controlled variable whose value the system is

intended to control.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Input variable that measures an input to the process.

• Manipulated variable whose value can be changed

by the controller.

– Set Point is the desired value for a controlled

variable.

– Sensors to obtain values of process variables

pertinent to control.

Feed-Back Control System

• The controlled variable is measured and the

result is used to manipulate one or more of

the process variables.

input variables

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Process
Controller

set point

controlled
variable

input variables

changes to
manipulated
variables

sensor for
controlled variable

Open-Loop Control System

• Information about process variables is not

used to adjust the system.

input
variables controlled

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

set point
Controller

Process

variables

changes to
manipulated
variables

controlled
variable

Process Control Examples

• Real-Time System Software to Control:
– Automobile Anti-Lock Brakes
– Nuclear Power Plants
– Automobile Cruise-Control

wheel

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

desired
speed

pulses from wheel

Controller

active/inactive
variables

Engine

throttle
setting

wheel
rotation

Client-Server Style

• Suitable for applications that involve
distributed data and processing across a
range of components.

• Components:

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Components:
– Servers: Stand-alone components that provide

specific services such as printing, data
management, etc.

– Clients: Components that call on the services
provided by servers.

• Connector: The network, which allows
clients to access remote servers.

Client-Server Style

Client 1 Client 2 Client N...

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

File Server Database Server Object Server

Network

Client-Server Style Examples

• File Servers:

– Primitive form of data service.

– Useful for sharing files across a network.

– The client passes requests for files over the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– The client passes requests for files over the

network to the file server.

Client-Server Style

Examples (Cont’d)

• Database Servers:

– More efficient use of distributing power than

file servers.

– Client passes SQL requests as messages to the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– Client passes SQL requests as messages to the

DB server; results are returned over the

network to the client.

– Query processing done by the server.

– No need for large data transfers.

– Transaction DB servers also available.

Client-Server Style

Examples (Cont’d)

• Object Servers:

– Objects work together across machine and

network boundaries.

– ORBs allow objects to communicate with each

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– ORBs allow objects to communicate with each

other across the network.

– IDLs define interfaces of objects that

communicate via the ORB.

– ORBs are the evolution of the RPC.

RPCs Versus ORBs

call foocall foo

Client

Code Data

Server Client Server
Object X Object Y

call foo
on

Object Y

call foo
on

Object X Code

Data

Code

Data

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Object Request BrokerRPC Mechanism

1) Remote Procedure Call (RPC)

execute foo

Object YObject X

2) Object Request Broker

Client-Server Advantages

• Straightforward distribution of data.

• Transparency of location.

• Mix and match heterogeneous platforms,

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Easy to add new servers or upgrade existing

servers.

Client-Server Disadvantages

• Performance of the system depends on the

performance of the network.

• Tricky to design and implement C/S

systems.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

systems.

• Unless there is a central register of names

and services, it may be hard to find out what

services are available.

Technologies for Distributed

Architectures

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

IBM’s MQSeries

• MQSeries provides application-

programming services that enable programs

to communicate with each other in a

distributed fashion using messages and

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

distributed fashion using messages and

queues.

• This kind of communication is called

asynchronous messaging.

IBM’s MQSeries (Cont’d)

• The MQSeries software enables

applications to exchange information across

more than 25 different operating system

platforms.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

platforms.

• This flexibility allows MQSeries

applications to run on hardware ranging

from modest desktops to high-end

mainframe computers.

MQSeries Components

• Queue Managers manage one or more

queues and ensure that messages are put on

the correct queue or that they are routed to

another (remote) queue manager.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

another (remote) queue manager.

• Applications must make a successful

connection to a queue manager before they

can put or get messages to or from a queue.

MQSeries Applications

• An application can only connect to one

queue manager at a time.

• Before an application can use a queue, it

must open a queue for putting, getting, or

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

must open a queue for putting, getting, or

both putting and getting messages.

MQSeries Queued Messages

• A queued message consists of two parts:

– The first part includes application-specific data

contained in a buffer.

– The second part includes control information,

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– The second part includes control information,

such as a message type, destination, and various

other options.

Programs Communicating via a

Queue on the Same Workstation

Queue Manager

A B
put get

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Queue

A B

Programs Communicating via a

Queue on the Same Workstation

• Figure illustrates two programs A and B
that are communicating through a managed
message queue.

• In this example, A, B, and the queue
manager are all executing on the same

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

manager are all executing on the same
workstation.

• The communication between the programs
is conducted through a queue onto which
program A puts messages and from which
program B gets messages.

Programs Communicating via a

Queue on Different Workstations

A
put

Queue Manager

Transmission Queue

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Queue Manager

Queue

get
B

Channel

Programs Communicating via a

Queue on Different Workstations

• Figure illustrates two programs A and B

that are communicating through a managed

message queue.

• A,B are executing on different workstations.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• A,B are executing on different workstations.

• Program A puts a message onto the queue,

specifying not a local queue but a local

definition of a remote queue.

Programs Communicating via a

Queue on Different Workstations

• The local queue definition identifies a non-

local queue that is managed by another

queue manager.

• The queue manager, to which program A is

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• The queue manager, to which program A is

connected to, puts the message on a special

queue called a transmission queue.

• The message is then automatically sent

along a defined channel that connects the

two queue managers.

Programs Communicating via a

Queue on Different Workstations

• If for some reason the channel is not active

(possibly due to a network failure) the

message remains on the transmission queue.

• The message will be sent automatically

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• The message will be sent automatically

when the channel is available again.

Programs Communicating via a

Queue on Different Workstations

• The destination queue manager puts the

message on the queue that is specified by

program A.

• Once a message is placed on the destination

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Once a message is placed on the destination

queue, the queue manager can invoke

program B automatically and B can then get

the queued message.

Using MQSeries to Create a Server

that Handles a Single Service S1

Client
Request Queue

Manager

Q

Trigger

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

S1

Request
Manager
(QM)

R

Data
(Response)

Scaling-Up to Multiple Queues

and Services
Q1

Queue

Client

Requests

Q2
S1

Trigger

Data

(Response)
Trigger

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Trigger

S2
Queue

Manager

(QM)
Data

(Response)

Requests

R

S3

Q3

(Response)

OMG’s CORBA

• The Common Object Request Broker

Architecture (CORBA) is a standard

distributed object architecture developed by

the Object Management Group (OMG)

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

the Object Management Group (OMG)

consortium.

CORBA Objects

• CORBA objects can:

– be located anywhere on the network,

– interoperate with objects on other platforms,

– be written in a variety of programming

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– be written in a variety of programming

languages:
• Java

• C++

• C

• Smalltalk

• COBOL

• Ada.

CORBA Messages

• Distributed objects in a CORBA system

communicate by sending messages to each

other.

• These messages, however, are not queued,

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• These messages, however, are not queued,

as is the case with MQSeries.

CORBA Method Request

Client

Object Reference

Server

Servant

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Stubs

ORB

Skeletons

ORB
Network Message

(TCP/IP, SPX/ISX, ...)

Method Requests

CORBA Method Request (Cont’d)

• The Figure shows how a message from a

client object is sent to a server object.

• In order for a client to access a remote

server object, it must first obtain a handle

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

server object, it must first obtain a handle

(object reference) to that object.

• If the server object is remote, the handle

points to a stub function, which uses the

Object Request Broker (ORB) service to

forward invocations to the server object.

CORBA Stubs

• After the stub establishes a connection to

the server, it sends the following to the

destination object:

– an object reference,

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

– an object reference,

– an encoded representation of the method,

– parameters to the skeleton code linked.

CORBA Skeletons

• The skeleton code transforms the call and

parameters into the required

implementation-specific format before

calling the object.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

calling the object.

CORBA Platform Independence

• The client is unaware of the CORBA

object’s location, implementation details,

and which ORB is used to access the object.

• The connections between distributed objects

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• The connections between distributed objects

are managed through a name server.

CORBA IDL and IIOP

• The client may only invoke methods that

are specified in the CORBA object’s

interface.

• Object interfaces are defined using OMG’s

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Object interfaces are defined using OMG’s

Interface Definition Language (IDL).

• Different ORBs communicate via the

Internet InterORB Protocol (IIOP).

Server Objects in CORBA

• The server side ORB receives the request

over a network connection and then

determines which of the objects on its

machine is the target.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

machine is the target.

• When the ORB locates the object, it must

prepare it to receive the request. E.g.,

– Start a server process that contains the object.

– Retrieve the object from persistent storage.

Hiding Services Behind an

Object Adapter

S1 S2 S3 S4

Adapter

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Adapter

(CORBA OBJECT)

ORB

Object Adapters in CORBA

• The Figure shows how an adapter can act as

a proxy between a set of services and the

ORB.

• Clients will access each service through the

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

• Clients will access each service through the

adapter that is responsible for that service.

• The adapter will be responsible for finding

the appropriate filters to handle each client

request.

Object Adapters in CORBA (Cont’d)

• These filters may be:

– on the same machine as the adapter,

– or may be on another machine, in which case

the adapter must delegate the client request to

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

the adapter must delegate the client request to

another adapter.

References

• [Bass et al 98] Bass, L., Clements, P., Kazman R., Software Architecture in
Practice. SEI Series in Software Engineering, Addison-Wesley, 1998

• [CORBA98] CORBA. 1998. OMG’s CORBA Web Page. In:
http://www.corba.org

• [Gamma95] Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1995. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Inc., Reading, Massachusetts.

© SERGSoftware Design (Software Architecture)Software Design (Software Architecture)

Inc., Reading, Massachusetts.

• [IBM98] MQSeries Whitepaper. In:
http://www.software.ibm.com/ts/mqseries/library/whitepapers/mqover

• [JavaIDL98] Lewis, G., Barber, S., Seigel, E. 1998. Programming with Java
IDL: Developing Web Applications with Java and CORBA. Wiley Computer
Publishing, New York.

• [CORBA96] Seigel, J. 1996. CORBA Fundamentals and Programming.
John Wiley and Sons Publishing, New York.

• [Shaw96] Shaw, M., Garlan, D. 1996. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall.

