Near-miss Model Clone Detection for Simulink Models

Manar H. Alalfi

James R. Cordy Thomas R. Dean

Matthew Stephan Andrew Stevenson

School of Computing, Queen’s University, Kingston, Canada
{alalfi, cordy, dean, stephan, andrews}@cs.queensu.ca

Abstract—This paper describes our plan to adapt mature
code-based clone detection techniques to the efficient identifi-
cation of near-miss clones in models. Our goal is to leverage
successful source text-based clone detection techniques by
transforming graph-based models to normalized text form in
order to capture semantically meaningful near-miss results that
can help in further model analysis tasks. In this position paper
we present a first example, adapting the NiCad code clone
detector to identifying near-miss Simulink model clones at the
“system” granularity. In current work we are extending this
technique to the Simulink (entire) “model” and (more refined)
“block” granularities as well.

Keywords-software models; clone detection; Simulink
I. INTRODUCTION

Model clone detection refers to the process of identify-
ing similar or identical fragments in higher-level software
models based on some measure of similarity. While its
counterpart, code clone detection, is a mature and established
area of research [1], model clone detection is relatively new
and has not been investigated as thoroughly. This is an issue
for two reasons: first, model driven development is rapidly
becoming a dominant method of new software development,
and second, the potential impact of identifying redundancy
at higher levels is greater than at lower levels.

Not surprisingly, approaches to model clone detection to
this point have primarily utilized graph-based techniques [2,
3, 4]. That is, they represent the models as nodes and
edges and use variations of subgraph matching techniques to
find clones. While natural and efficient for exact matching
in visual models, these methods have had less success in
near-miss clone detection [4]. In this paper, we propose
a method for leveraging existing near-miss textual code
analysis techniques, such as the NiCad code clone detector
and the LDA topic model [5], in order to detect near-miss
model clones based on the hybrid syntactic approach of
NiCad.

The anticipated contributions of our approach are:

« Efficient detection of not only type 1 (exact) and type

2 (renamed) clones, but also type 3 (near-miss) model
clones. Existing approaches handle types 1 and 2, but
have difficulty with near-miss.

o We plan for at least three different levels of syntactic
granularity: Simulink (entire) “model”, (sub-) “system”
and (detailed) “block”. Existing approaches concentrate
on the block level of granularity.

e Our approach returns (near-miss) syntactic and se-
mantic clones. Existing approaches use subgraph or

®—>{213'R“muk »(1)
Fn Tfmaxk

Torque
Conversion

Tfmaxs

Ratio of static
to kinetic

Figure 1. A type 1 (exact) model clone - the Friction Mode subsystem,
which occurs in both the Sldemo_Clutch and the Sldemo_Clutch_if example
models. NiCad similarity 100%

o — —
o9, ﬂ Tul G —»
Tt 1) Friction < (1)
‘ 1 A
‘C 1 ; unlock Torgue 2 okay
Tfmaxs Max

Friction
Toraue

Figure 2. A type 2 (renamed) model clone - the Required Friction for
Lockup subsystem (Left) and the Break Apart Detection subsystem (Right),
both in the Sldemo_Clutch_if example model. NiCad similarity 85%

semantic matching [6] rather than syntactic structure.

In this paper we demonstrate our early results with examples
of type 1, 2 and 3 clone identification in Simulink example
models at the subsystem level of syntactic granularity.

II. APPROACH

We extended NiCad [7], a clone detection tool based
on parsing, normalizing, and text-comparing syntactic frag-
ments, to model clone detection. NiCad is explicitly de-
signed to allow for unexpected differences in near-miss
clones up to a given difference threshold. It is based on
a plugin architecture that allows for new languages and
normalizations, which we used to extend it to Simulink
model clone detection.

A. Clone Types

Code clone detection techniques can be categorized ac-
cording to the types of clones they can identify [1]. Because
our approach is an adaptation of one of the code cloning
techniques, we adopt the same categorization for model
clones. In our first experiment we have identified three types
of model clones at the Simulink subsystem level:

1) Type 1 (exact) model clones: ldentical model frag-
ments except for variations in layout and formatting. Fig-
ure 1 shows an example in which two different models,
Sldemo_Clutch and Sldemo_Clutch_if, include the identical
subsystem Friction Mode.

2) Type 2 (renamed) model clones: Structurally identical
model fragments except for variations in labels, values,
types, layout and formatting. Figure 2 shows an example
type 2 clone of two different subsystems (Required Friction

2-D T(u)
G o——»u

speed

map

throttle

Throtile Estimation

D 41, 2T

throttle ‘-—_—‘——'@
speed
map

Speed Estimation

Figure 3. A type 3 (near-miss) model clone - the Throttle.throttle_estimate subsystem (Left) and Speed.speed_estimate subsystem (Right) of the

sldemo_fuelsys model. NiCad similarity 66%

= 1
G . 8.7696 8.5104:2' " - P+
fb_correction 1-0:7408% fi_fuel_rate 0.2592z-1
i _fuel_| ¥ rig
1-0.7408z°1 D)
(2 P fuel_rate * fuel_rate
ff_fuel_rate fb_correction

Figure 4. A type 3 (near-miss) model clone - the Low mode subsystem (Left) and Rich mode subsystem (Right) of the sldemo_fuelsys example model.

NiCad similarity 82%

for Lockup and Break Apart Detection) in the Sldemo_Clutch
example model.

3) Type 3 (near-miss) model clones: Model fragments
with further modifications, such as changes in location with
respect to other model fragments and small additions or
removals of blocks or lines in addition to variations in
labels, values, types, layout and formatting. Figure 3 shows
a type 3 clone between the Throttle.throttle_estimate and
the Speed.speed_ estimate subsystems of the sidemo_fuelsys
example model. A new block and line have been added as
well as naming and attribute changes to other blocks and
lines. Figure 4 shows a second type 3 example in which
the structure of the subsystem has been modified to move a
block to another location in relation to other blocks.

B. Clone Granularities

We have identified three levels of granularity for Simulink
models:

1) Model Granularity: Entire Simulink models as clones.
Simulink models consist of (sub-) systems, which them-
selves are built up from blocks and lines. At this level of
granularity we can evaluate similarity of whole models such
as sldemo_clutch and sldemo_clutch_if. We are currently
developing a NiCad plugin for this granularity.

2) System Granularity: On the Simulink “system” (sub-
system) level, we have identified clones in two dimensions
in the example models:

o Exact subsystem clones across two different models,
for example the Friction Model subsystem in both the
sldemo_clutch sldemo_clutch_if models (Figure 1).

o Near-miss subsystem clones within a single model, for
example the Required Friction for Lockup and Break
Apart Detection subsystems of the Sldemo_Clutch_if
example model (Figure 2).

3) Block Granularity: Blocks are the most fine-grained
elements of Simulink models. However, blocks can also
contain subsystems, which represent a group of blocks and
lines that work together to provide a specific functionality.
A NiCad plugin for this granularity is under development.

III. RELATED WORK

Deissenboeck et al. [2], Pham et al. [4], and Peterson [3]
all employ graph-based techniques for model clone de-
tection. We discuss how they can be contrasted with our
approach in [8]. Al-Batran et al. [6] identify a number of
semantics-preserving transformations that allow for detec-
tion of semantically equivalent clones. We may be able to
incorporate their work into our approach.

IV. CONCLUSION AND FUTURE WORK

We have presented some initial results on adapting a
text-based code clone detection technique to identify model
clones at the Simulink “system” granularity. We are currently
adapting the technique to identify clones at the model and
block levels as well. We plan to enhance our method with
LDA topic models in order to add semantic comparison. We
also plan to run an experiment to compare existing model
clone detectors to our new method, as outlined in [8].

ACKNOWLEDGEMENTS

This work is supported in part by NSERC, as part of the
NECSIS Automotive Partnership with General Motors, IBM
Canada and Malina Software Corp.

REFERENCES

[1] C. Roy, J. Cordy, and R. Koschke, “Comparison and evaluation of code
clone detection techniques and tools: A qualitative approach,” Science
of Computer Programming, vol. 74, no. 7, pp. 470-495, 2009.

[2] F. Deissenboeck, B. Hummel, E. Jurgens, B. Schatz, S. Wagner,
J. Girard, and S. Teuchert, “Clone detection in automotive model-based
development,” in /CSE, 2009, pp. 603-612.

[3] H. Petersen, “Clone detection in Matlab Simulink models,” Master’s
thesis, Tech. Univ. of Denmark, 2012, iMM-M.Sc.-2012-02.

[4] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and T. Nguyen,
“Complete and accurate clone detection in graph-based models,” in
ICSE, 2009, pp. 276-286.

[5] D. M. Blei, A. Y. Ng, and M. L. Jordan, “Latent dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993-1022, 2003.

[6] B. Al-Batran, B. Schitz, and B. Hummel, “Semantic clone detection
for model-based development of embedded systems,” Model Driven
Engineering Languages and Systems, pp. 258-272, 2011.

[7]1 C. Roy and J. Cordy, “NICAD: Accurate detection of near-miss inten-
tional clones using flexible pretty-printing and code normalization,” in
ICPC, 2008, pp. 172-181.

[8] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy, “Comparison of
model clone detection approaches,” in IWSC, 2012, (to appear).

