Automated Reverse Engineering of UML Sequence Diagrams
for Dynamic Web Applications

Manar H. Alalfi

James R. Cordy

Thomas R. Dean

School of Computing, Queen’s University, Kingston, Canada
{alalfi, cordy, dean} @cs.queensu.ca

Abstract

This paper presents an approach and tool to automat-
ically instrument dynamic web applications using source
transformation technology, and to reverse engineer a UML
2.1 sequence diagram from the execution traces generated
by the resulting instrumentation. The result can be directly
imported and visualized in a UML toolset such as Ratio-
nal Software Architect. Our approach dynamically filters
traces to reduce redundant information that may compli-
cate program understanding. While our current implemen-
tation works on PHP-based applications, the framework is
easily extended to other scripting languages in plug-and-
play fashion. In addition to supporting web application un-
derstanding, our tool is being used to recover traces from
dynamic web applications in support of web application se-
curity analysis and testing. We demonstrate our method on
the analysis of the popular internet bulletin board system
PhpBB 2.0.

1 Introduction

Program comprehension, analysis and evolution is often
based on reverse engineering of the structure and behav-
ior of software to visual models such as UML diagrams,
and much recent research has been focussed on recover-
ing and presenting the structure of programs as UML class
diagrams. However, the recovery of dynamic behavior,
and particularly interaction behavior, to models such as se-
quence diagrams presents many challenges that have yet to
be addressed.

The problem of recovering execution traces to sequence
diagrams for object oriented systems, written in languages
such as C++ or Java, has already been extensively stud-
ied. Hamou-Lhadj and Lethbridge [14], and Briand et al.
[4] provide surveys of tools that have been applied in the
domain of object oriented languages that deal with inter-
action behaviors, and Merdes and Dorsch [20] have pre-
sented the major challenges in building a scalable and ef-
ficient tool to understand the interaction behavior of such

software. These surveys raise four main issues: First, how
do methods model the execution traces? Second, how do
they solve the execution trace explosion problem? Third, is
the method able to represent technical details such as loops
and conditions in the sequence diagrams? And fourth, how
do the methods represent the final diagram for visualization
purposes?

Reverse engineering of sequence diagrams from web ap-
plications implemented using scripting languages such as
PHP faces all of these problems, and presents a number of
additional challenges that are not addressed by these object-
oriented analysis methods:

o Identification of the interaction elements. In general,
web applications are not built based on object oriented
concepts, so it can be difficult to identify the applica-
tion entities in the source code.

e Identification of loops and conditions. Web applica-
tions often have multiple entry points, and exhibit be-
havior that is difficult to detect until run time. This
behavior usually depends on user inputs that can not
be inferred by static analysis.

e Recognition of similar execution trace patterns from
static or run time information.

e Representation of the complete set of behavioral
changes from state to state in sequence diagram termi-
nology. Web applications often have several compo-
nents that may be affected by a single page execution,
such as the database and session and cookie variables.

e Analysis of multilingual documents.

In this work we present an approach and a tool that faces
these additional challenges, automatically generating inter-
action sequence diagrams from dynamic web applications.
Our method is not a perfect solution for all of these issues,
but is an improvement to the extent that it delivers accurate
results and supports the process of web application compre-
hension, analysis and evolution.

1.1 'Web Application Testing

PHP2XMI is an essential part of a framework aimed at
testing the conformance of dynamic web applications with
role-based access control security policies. A role-based ac-
cess control (RBAC) security model is recovered from the
dynamic web application using a combination of static and
dynamic analysis techniques. The static analysis is used to
recover application entities and the relations between them
as a UML-based ER model [2]. The dynamic analysis, im-
plemented using PHP2XMI, recovers the permissions asso-
ciated with each user role and expresses them as a behav-
ioral model expressed as a UML sequence diagram. Visu-
alizing execution traces as a sequence diagram facilitates
the process of understanding the interaction behavior of the
system, and helps us deduce the permissions for each user
role. The XMI 2.1 textual representation of the sequence
model is analyzed and combined with the XMI 2.1 repre-
sentation of the ER model to construct a UML-based RBAC
model, which can be converted into a formal model to be
checked for access control vulnerabilities using a standard
model checker [1].

This paper explains how PHP2XMI is used to recover
role permissions at the level of page access, and we are
currently also evaluating it at the entity level. The behav-
ioral model recovery technique implemented in PHP2XMI
can be used to test for other web application security vul-
nerabilities, such as SQL injection and cross site scripting,
by tracking SQL sources and their relation to user inputs
captured as Http variables. For security analysis we want
to preserve all the possible paths the user may follow to
reach target pages. Hence, the model behind the execution
traces is a complete graph. A filtering process is used to
ensure that each observed path is stored just once in the
database. While our current version of the tool does not
model loops explicitly, our filtering does not prevent the
handling of cycles and they can be easily detected by an-
alyzing the database and representing them using the ap-
propriate UML 2.1 meta-model elements.

The rest of this paper is structured as follows. Section 2
presents the details of our approach, and Section 3 presents
an example that demonstrates our method on a real system.
Section 4 relates our efforts to previous work. Finally, Sec-
tion 5 outlines our conclusions and plans for future work.

2 PHP2XMI

PHP2XMI is a new reverse engineering tool aimed at re-
covering UML 2.1 sequence diagrams from PHP-based dy-
namic web applications. The approach used in PHP2XMI
involves three steps, as shown in Figure 1:

1. Parsing and Dynamic Instrumentation: The core of
our method, which automatically inserts probes into

Instrumented PHP
Application

Dynamic PHP

Test cases
Web Application

Al S

Instrumenting

Function Librar
Transformauon Filtering
- Trace to Xl XMi2.1
— race to X\ Sequence
SQL Trace Transformation :> l\jllode\ UML 2.1
Database Setuence

T\L Diagram

Rational
Software >
Architect

Figure 1. PHP2XMI tool Architecture

the source code to collect dynamic information such
as page URLSs, http variables, sessions and cookies.

2. Filtering and Storing: During interactive browser ses-
sions, execution traces generated by the probes are fil-
tered to ignore redundant information and stored in an
SQL database for further analysis.

3. Database Analysis and Model Generation: The execu-
tion traces stored in the database are transformed into
UML2.1 sequence meta-model elements.

In the following subsections we present the details of
each of these main steps.

2.1 Parsing and Dynamic Instrumenta-
tion

Static analysis alone is not sufficient for architectural re-
covery of heterogeneous and highly dynamic software such
as web applications, and therefore it must be complemented
by dynamic analysis [23]. Instrumentation is one of the
techniques used to observe and extract dynamic informa-
tion from systems during execution [16]. Instrumentation
does not modify the system structure and behavior. It may
add new variables, insert new code, invoke the original pro-
gram methods, or replace part of the code by an invocation
of a new method that substitutes for the omitted code while
performing additional tasks related to the instrumentation
process. However, the functionality of the original program
should not be affected by instrumentation, and the instru-
mented program must deliver the same results as the orig-
inal uninstrumented version. The only side effect caused
by instrumentation is the additional overhead of recompil-
ing the source code, executing the instrumentation code and
generating the execution traces.

In our method we use a source transformation technique
to add source code instrumentation to dynamic web applica-
tions. For this purpose we use TXL [7], a programming lan-
guage for manipulating and experimenting with program-
ming language notations and features. TXL is a powerful

TXL Program
PHP Grammar
Instrumenting
Other Scripting Tran;jglrerr;anon
Language Insti ted
nstrumente
Dynamic Web Grammars Dynamic Web
Application Server Application Server
Pages + Pages

TXL Processor

0~ |-

Figure 2. TXL transformation technique in PHP2XMI

source transformation system that has been used in indus-
trial applications involving millions of lines of source code.
The TXL transformation process consists of three parts: a
context-free ”base” grammar for the language to be manipu-
lated, a set of context-free grammatical ”overrides” (exten-
sions or modifications) to the base grammar, and a rooted
set of source transformation rules to implement transforma-
tion of the extensions to the base language. The TXL pro-
cesser parses the source program into a parse tree, then re-
cursively applies the set of transformation rules, beginning
with a main rule, until there are no remaining matches in
the parse tree. The transformation is completed by unpars-
ing the transformed tree to the new target source program.

The source transformation approach brings two benefits
to the instrumentation process. First, the process can be
adapted in a plug and play fashion to deal with any scripting
language as a source for instrumentation. This can be done
by writing a set of context-free grammatical overrides to the
base grammar (in our case at present PHP versions 3,4,5) to
add the grammars of the additional languages, along with
additional transformation rules to take into account the code
of the newly added scripting languages.

Second, source transformation easily adapts to docu-
ments that include a mixture of languages and technologies,
usually by applying island grammars [25], for example in
the approach used by Synytskyy et al. [24] to handle mixed-
language web pages. Island grammars divide the input into
interesting input forms, called “islands”, and uninteresting
sequences of other input items, called “water”. In our case,
the islands are the PHP script statements that we want to
instrument, and the water is the surrounding static HTML
code and text. The main benefit of island grammars is that
interesting parts can be identified without performing a de-
tailed parse of the entire input [21]. In addition, no pre-
processing is needed to unify the source code of the web
application as in the approach used by WANDA [3].

The instrumentation process begins with the main rule,
shown in Figure 3, by parsing each web application server
page into a parse tree based on the context-free grammar
definitions in the grammar file php.grm. TXL begins
by applying the main rule to this tree, and then recur-
sively applies the transformation rules until the entire set

include "php.grm"

function main
replace [program]
P [program]
by
P [instrumentPage]
[instrumentcookie]
[instrumentHttpVar]
end function

Figure 3. The main TXL transformation rule

The main rule simply matches the entire input PHP server page source
document and applies the transformation subrules instrumentPage,
instrumentCookie and instrumentHttpVar globally to it.

rule instrumentHttpVar
replace [Expr]

E [Expr]

construct NewE [Expr]

E [Conv_func_GET]
[Conv_func_POST]
[Conv_func_COOKIE]
[Conv_func_SESSION]

where not

NewE [= E]

by

NewE

end rule

Figure 4. The instrumentHttpVar transform. rule

The instrumentHttpVar rule finds every PHP expression ([Expr])
and applies four transformation subrules to recognize and instrument in-
stances of HTTP variables for GET, POST, cookies and sessions respec-
tively.

of pages is instrumented. The main transformation rules
we used for instrumentation are: instrumentPage,
which inserts a call to a PHP function that is responsi-
ble for tracing page URLs along and their parameters,
filtering them and inserting them into an SQL database,
instrumentcookie, which inserts a call to a PHP
function that captures cookie information and inserts it
into the database, and instrumentHttpVar (Figure 4),
which inserts a call to a PHP function that captures infor-
mation about HTTP variables and inserts it into the SQL
database. As an example to demonstrate the transformation
process, we discuss here the details involved in instrument-
ing HTTP variables.

The rule instrumentHttpVar (Figure 4) begins by
searching for HTTP variables in its pattern by finding all
instances of the grammatical type [Expr] (expression) from
the PHP grammar, and applying a set of transformation sub-
rules, each of which matches a specific HTTP variable. Ex-
pressions that are not references to HTTP variables are sim-
ply left unchanged since no subrule matches them.

For example, the Conv_func_GET subrule (Figure 5)
matches any expression of the form $HTTP_GET_VARS
[list of parameters] and replaces it with a call to
the instrumenting function HipVar_track (Param,

rule Conv_Tunc_GET
replace [Expr]
E [ReferenceVariable]
deconstruct E
"$HTTP_GET_VARS
"[Param [Expr] "]
by
HttpVar_track(Param,
$HTTP_GET_VARS"[Param™], "GET")
end rule

Figure 5. The Conv_func_GET TXL transform. rule

The Conv_func_GET rule transforms each HTTP_GET_VARS expression
to a call to the instrumenting function Ht t pVar_track which tracks the
GET parameters in the database and returns the original result.

$HTTP_GET_VARS [Param], ’'GET’) At run time
the HrtpVar_track () function inserts into the database the
parameter names and values and identifies them as GET
parameters, returning the value of the HTTP variable to
the caller as originally expected without instrumentation.
The transformation is supported by a small library of such
instrumenting functions that interact with the database.
The three other subrules referenced in Figure 4 do similar
transformations on references to HTTP variables associated
with POST, cookies, and sessions.

Figure 2.2 shows the result of transforming the main
PHP server page of the PhpBB 2.0 web application. Sec-
tions shown in boldface are instrumentation function calls
automatically added by our source transformation.

2.2 Filtering and Storing

Once the dynamic web application has been instru-
mented, execution traces are collected as the application is
executed in a web browser. The instrumentation function
calls inserted by the source transformations dynamically
populate a database with the collected trace information. In
our security work, we are primarily interested in collecting
unique traces based on user roles. Thus at present we are au-
tomatically collecting traces and analyzing them one role at
atime. Web crawling tools that mimic user interactions with
web applications, such as clicking links, filling in forms and
pressing buttons [11, 26] are used to automate collecting
traces, while the application roles themselves are recovered
manually by studying the software documentation. Roles
can be identified from the HTTP session variable and by re-
covering the way the web application classifies users into
roles. (Complete automation of this part is currently a work
in progress.)

A user in a specific role can visit a web page more than
once, following either the same path or different paths. Cap-
turing each visit and storing it in the database leads to a
huge amount of redundant information that can complicate
the analysis process. To address this issue, we dynamically
optimize the recovered traces by filtering such that we store
only unique traces. We recognize unique traces as those that
lead to the generation of a new client page, or that generate

<?php
{

ob_start ();

include_once ('sensfunc.php');
}
define ('IN_PHPBB', true);
$phpbb_root_path = './';
include ($phpbb_root_path . 'extension.inc');
include (Sphpbb_root path . 'common.' . $phpEx)
Suserdata = session_pagestart (Suser_ip, PAGE_INDEX);
init_userprefs (Suserdata);

Sviewcat = (! empty ($HTTP_GET VARS [POST CAT URL])) 2

HttpVar_ track (POST_CAT URL, $HTTP_GET VARS [POST CAT URL],GET) : -1;
if (isset ($HTTPiGET7VARS ['mark']) || isset ($HTTP7POST7VARS ['mark']))
{

Smark read = (isset (SHTTP_POST_VARS ['mark'])) ?

HttpVar_track ('mark',6 $HTTP POST_VARS ['mark'], POST) :
HttpVar_track ('mark',6 $HTTP_GET VARS ['mark'], GET);

}

else

{

$mark_read = '';

if ($mark read == 'forums')
{
if (Suserdata ['session_logged in'l])
{
setcookie ($board_config ['cookie_name'] . '_f all', time (), O,
Sboard_config ['cookie path'], $board config['cookie domain'],
Sboard_config['cookie_ secure']);
cookie_track(Sboard_config[‘cookie_name‘].'_f_all', time (), O,
$board config ['cookie_path'], $board config['cookie domain'],

$board config['cookie_ secure']);

Stemplate -> pparse ('body');

include ($phpbb_root_path . 'includes/page_tail.'
ob_flush ();

?>

. $phpEx) ;

Figure 6. Result of instrumenting the main index.php
server page of PhpBB 2.0

Sections in boldface have been added by our instrumenting transformation.

a previously visited client page using a different path.

New and previously visited client pages are recognized
by tracking server pages executed due to user visits. Each
server page can generate one or more client pages depend-
ing on the parameters passed to the page. We consider that
a same client page is regenerated if the server page is re-
executed without any parameters, or with the same param-
eters. In such cases we do not insert the new page into the
database unless a different path is followed in its genera-
tion. Our database is constructed to reject any insertion that
violates these conditions. This approach also detects loops
in traces, including revisits to pages from themselves.

2.3 Database Analysis and Model Gener-
ation

In this phase a sequence diagram is built as a UML 2.1
sequence model based on the execution traces stored in the
database. We implement a PHP program to transform the
execution traces in the database to the sequence diagram
elements shown in Figure 7, in the form specified by the
Object Management Group (OMG) [22].

Many web applications, including the example presented
in this paper, are not built with object-oriented concepts in
mind. Therefore, the interaction elements in our method
are the browser session, the generated pages, and the page
transitions including their parameters. The instrumentation

fragment: (reciving)
MessageOccurrenceSpecification
Interaction

|| JInteraction1

Lifeline

——+— [7 anonymousUser:AnonymousU...| | ‘ anrum Fnrggz‘ ‘ Etngl(Topic |

1: ViewForum()
| ' \
| 1.1: VIEW’TDDIC ‘
|
I

M essage

fragment: (sending)
MessageOccurrenceSpecification fragment’ Nragment:
BehaviorExecutior ificati ionOccurr

Figure 7. UML sequence diagram meta-model elements

process generates a record of fine-grained information in-
cluding such details as http variables, cookies, and sessions.
This information is too large to be included in its entirety
in the generated sequence diagram, so we have chosen to
include only those parameters that are passed in page tran-
sitions and shown in the URL address bar.

Execution trace elements, which constitute a database
row for a user in a specific role, represent a page ID, a
page URL, page parameters, and a page access time. User
roles and page URLs for a specific page ID are mapped
into sequence diagram lifelines. The transitions between
pages and the set of parameters that accompany these tran-
sitions are mapped into sequence diagram messages. Page
access times in the database are used to determine the order
of page transmissions and in the sequence diagram appear
as two sets of MessageOccurrenceSpecification
events, one for sending the message and the other for
receiving it. The message receipt event begins the
BehaviorExecutionSpecification fragment (the
rectangle bar in the figure), and the message send-
ing event, ExecutionOccurrenceSpecification,
ends the same BehaviorExecutionSpecification
fragment in that lifeline.

3 An Example Application

We have applied PHP2XMI to the analysis of the pop-
ular internet bulletin board system PhpBB 2.0. Using the
method described in the previous section, PHP2XMI was
able to automatically recover sequence diagrams from user
interaction with this application. We automatically executed
an instrumented version of the software by writing scripts to
drive the web browser the same way the people do. The web
test scripts is written using Watir, a library that lets you in-
terface Ruby to Microsoft Internet Explorer (IE)[26]. In this
example we did not attempt to collect all possible execution
traces for a specific user role, as that would generate a result
much too large to fit in this paper. We collected 15 separate
execution records, which generated the database shown in
Figure 9. From this database PHP2XMI automatically gen-
erated a UML sequence diagram model that we imported
and visualized using Rational Software Architect (RSA) [8]
(Figure 10).

Figure 8 shows a sample of the execution traces collected
by PHP2XMI for a browser session with PhpBB 2.0. The
sample represents the scenario of an anonymous user vis-
iting a forum main page and exploring one of the active
forums, then trying to do a reply on one of its topics, which
requires registered user permission. The user then logs in
as an Administrator, replies to the post and switches to the
Administrator panel.

Each server page is represented by one or more unique
Page IDs based on whether the page receives param-
eters when executed. For example, the server page
posting.php has four entries in the table, each with a
different Page ID. This is done to reflect the fact that
the server page posting.php, in this particular exam-
ple, generates four different client pages based on the pa-
rameters it receives. As another example, the server page
login.php has four entries. Two of them receive dif-
ferent parameters, and thus PHP2XMI gives them differ-
ent Page IDs. On the other hand, the other two entries
do not receive any parameters, but are from different paths.
PHP2XMI inserts both these visits, but gives them the same
page ID,in order preserve all the paths that may lead to a
specific page. In all cases, filtering insures that the Pages ta-
ble does not include any duplicate rows with the same com-
bination of Page Name, Page Parameter and Prev.
Page ID. Figure 9 shows a view of the join of three tables
of the collected database, illustrating the fine-grained infor-
mation collected by PHP2XMI, including page information,
HTTP variables, cookies, and sessions.

In order to map page transitions from rows of Fig-
ure 8 to sequence diagram elements of Figure 7, a life-
line is assigned to the interactive browser session and
to each server page. For instance, the Page Name of
the second row in Figure 8 is mapped into an UML
2.1 element of type uml:Lifeline. The covered
by property of this lifeline lists the xmi:id’s of
the set of MessageOccurrenceSpecification and
BehaviorExecutionSpecification events that
this lifeline is engaged in, and that to represent the event
of sending and receiving the first message between the two
lifelines, index.php and viewforum.php. This mes-
sage is represented using an UML 2.1 element of type
uml :message, and its name is the composition of the
server page name and the parameter it receives. Finally,
UML 2.1 elements of type uml : class represent each life-
line and the set of messages it receives as a class with a set
of operations.

Figure 10 shows a visualization for a part of the gener-
ated model using Rational Software Architect. Once im-
ported into RSA, the diagram can be explored and con-
nected to other UML models to develop a unified under-
standing of the entire web application.

Page Prev. | Page
ID Page Name Page parameters Page ID | Type | Page Acc_TS
1 http:///phpBB2/index.php 0 PHP [1211134854
2 http:///phpBB2/viewforum.php | ?f=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 1 PHP [1211134870
3 http:///phpBB2/viewtopic.php ?t=5 2 PHP 1211134894
4 http:///phpBB2/posting.php ?mode=reply&t=5 3 PHP [1211134902
5 http:///phpBB2/login.php ?redirect=posting.php&mode=reply&t=5 4 PHP 1211134903
6 http:///phpBB2/login.php 5 PHP 1211134918
7 http:///phpBB2/posting.php ?mode=reply&t=58&sid=668ea9c6f9d3530aa85152da6fc3d7c6 6 PHP [1211134918
8 http:///phpBB2/posting.php ?mode=topicreview&t=5 6 PHP [1211134919
9 http:///phpBB2/posting.php 8 PHP [1211134957
10 http:///phpBB2/viewtopic.php ?p=11 9 PHP [1211134961
11 |http:///phpBB2/admin/index.php |?sid=668ea9c6f9d3530aa85152da6fc3d7c6 10 PHP 1211134989
12 |http:///phpBB2/login.php ?redirect=admin/index.php&admin=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 11 PHP 11211134990
6 http:///phpBB2/login.php 12 PHP 1211135018
13 |http:///phpBB2/admin/index.php ?admin=1&sid=668ea9c6f9d3530aa85152da6fc3d7c6 6 PHP 1211135018
14 http:///phpBB2/admin/index.php | ?pane=right&sid=668eadc6f9d3530aa85152da6fc3d7c6 13 PHP 11211135018
15 http:///phpBB2/admin/index.php ?pane=left&sid=668eadc6f9d3530aa85152da6fc3d7c6 13 PHP [1211135018
Figure 8. Sample of a database view of generated execution traces
Page PageAcc. | Prev. Http Http_ | Http_Var Cookies
D Page_name PageParm Time Stamp Page ID | Var_Name Var_Value Var_type Time_Stamp Cookies Name Cookies v expire Time
L http:///phpBB2/index.php 1211134854 0 NULL NULL NULL NULL phpbb2mysal_data a:2:{s:11:"autologinid"; 6:"userid"ji-1;} | 1242670855
2 http:///phpBB2/viewforum.php ?f=1&sid=668eadc6f9d3530aa85152dabfc3d7c6 1211134870 |1 f 1 GET 1211134871 \NULL NULL NULL
3 http:///phpBB2/viewtopic.php =5 1211134894 2 t 5 GET 1211134895 \NULL NULL NULL
4 http:///phpBB2/posting.php mode=reply&t=5 1211134902 3 mode reply GET 1211134903 NULL NULL NULL
4 http:///phpBB2/posting.php ?mode=reply&t=5 1211134902 3 t 5 GET 1211134903 \NULL NULL NULL
5 http:///phpBB2/login.php ?redirect=posting.php&mode=reply&t=5 1211134903 4 NULL NULL NULL NULL NULL NULL NULL
6 http:///phpBB2/login.php 1211134918 |5 username admin POST 1211134918 phpbb2mysql_data |a:2:{s:11:" inid";s:0:"";s:6:"userid";i-1;} | 1242670918

Figure 9. Fine grained information collected by PHP2XMI

4 Related Work

In CPP2XMI [17], Korshunova et al. describe a reverse
engineering tool to extract class, sequence, and activity di-
agrams from C++ source to XMI 1.1 format. The authors
use Columbus/CAN [13] as a fact extractor, which parses
the C++ code and generates output in XMI. The authors
then analyze the XMI file to extract the information needed
for each diagram, using Dot [18] to visualize the output.

Briand et al. [5] propose a method to reverse engineer
sequence diagrams from C++ applications, using Perl to
implement the automatic instrumentation and Java to trans-
form traces into sequence diagrams. They propose two
meta-models, one to represent the recovered traces and the
other to represent sequence diagrams, transforming one to
the other based on OCL constraints. While they recover the
technical details such as conditions and loops, they do not
address visualization of the resulting sequence diagrams.

Jiang et al. [15] propose a method to reverse engineer
a sequence diagram in UML 2.0 format from the runtime
communication between sample applications and an APIL
Their method works by monitoring API usage in the sample
applications, then filtering the generated execution traces
and merging them into a state machine. The analysis of the
state machine leads to the recognition of common, optional
and alternative parts. A combined sequence diagram is then
built and illustrated as a UML 2.0 sequence diagram.

Our approach is different from the above methods in
its ability to handle applications with multilingual source
code documents, such as web applications. Unlike the Ko-
rshunova et al. and Briand et al. methods, PHP2XMI auto-
matically generates XMI 2.1 sequence diagram files which
can be visualized directly in any UML 2.1 toolset. While
both methods use filtration, ours is focussed on minimizing
the database to optimize extraction of sequence diagrams,
whereas CPP2XMI gathers a much richer initial XMI rep-
resentation and then filters to extract sequence elements af-
terwards.

WANDA (Web ApplicatioNs Dynamic Analyzer) [3] has
been evaluated on a PHP web application. In WANDA exe-
cution traces are not filtered, which leads to a huge amount
of redundant information stored in its database, and conse-
quently tends to yield cluttered diagrams that are difficult
to comprehend. Di Lucca and Di Penta [9] propose an ap-
proach to filter the execution traces generated by WANDA
by using the WARE tool [19] to identify groups of equiva-
lent Built Client Pages (i.e., client pages dynamically built
by server pages which share common features). A filtra-
tion of the execution traces collected by WANDA is then
performed based on page clustering.

PHP2XMI differs from WANDA in using source trans-
formation technology for the parsing and the instrumenta-
tion phases, which aids in eliminating the overhead caused

= C ion1::Ir ion1 ‘

rowser
X

‘ Hindex ‘ = viewforum ‘

H = :posting ‘

= viewtopic ‘ ‘ =/Admin_ndex

Session

1.1; viewforum(?f=1 |

141: viewtopic(?t=5

sid= 668e39c6f9d35b03385152d66f(:3d +
}

=

1.1.1.1.1: login(7red|r ct=posting.php ,

1.1.1]1.1.1: login()

) I
1.1.1.1: pLstlngUmode rep)J t=5)

ode=reply , t=5)

|
|
|
|
|
| |
|

1. .1.1.1.2.1: posting(?mode=topicreview , t=5)

111112 po#nng ?mode=reply , t35, sid= 668ea904f9d35303385152d46fc3d7c6)

o —]

1.1.1.1.1.2.2: posting() ‘
= ‘

1.1.1.1.0.2.3: viewtopic(?pfﬂ)

1
1.1.1,1.1.2.3.1: index(?sig=668ea9c6f9d3530aa85152dabfc3d7c6)

4

1.1.1.1‘.1.2.3.1.1. login(?red| rect-admm/mde# php , admin=1, sid‘=66896906f9d353an 5152da6fc3d7c6)
1.1.1.1.12.3.1.1.1: login()

1.1.1.1.1.2.3.1.1.2: index(?admjn=1, sid=668ea9c6f9d3530aa85152dabf¢3d7c6)

‘1.1.1.1.1.2.3.1.1%.1.|ndex (?pane= rl%ht sid= 9c6f9dB530aa85152dabfc3d7c
‘]
1.1.1.1.1.2.3.1.1.2.2. index(7panﬁ-3=|eft , sid=€ 9c6f9d3530aa85152dabfc3c

‘ ‘ P}

Figure 10. An example of a generated sequence diagram

by any preprocessing needed to deal with multilingual doc-
uments. The filtration proposed by Di Lucca and Di Penta
is based on the static analysis provided by WARE, which
may preserve the web application pages but not all the pos-
sible paths that the application may allow its users. For this
reason their method is not sufficient for security analysis
purposes, whereas PHP2XMTI’s filtering is tailored to the
task. WANDA’s unfiltered model can also have scalability
problems, whereas PHP2XMI’s dynamic filtering bounds
the number of lifelines and messages in the model to the
number of server pages and paths between them. The out-
put format generated by PHP2XMI is the XMI 2.1 standard
for model interchange between the UML tools, whereas
WANDA uses a custom local format.

5 Conclusion and Future Work

We have presented an automated approach and practical
tool to instrument dynamic web applications using source
transformation technology to recover a dynamic behavior
model from observed interaction. The tool is able to au-
tomatically reverse engineer UML 2.1 sequence diagrams
from PHP-based web applications. The result can be im-
ported and visualized in any UML 2.1 toolset. The approach
we use filters execution traces directly on insertion into the
database, automatically eliminating redundant information
that may complicate the understanding process.

Currently the interaction elements in the resulting se-
quence diagram are the user and the dynamic pages of a
browser session, represented as lifelines, and the dynamic
transitions between the pages along with their parameters,

represented as messages. In future work we plan to raise the
sequence diagram to the entity level from the page level.
While our current implementation ignores any redundant
traces, loops and conditions in web applications can be eas-
ily detected and explicitly modeled.

At present we don’t try to enumerate all the possible
executions for each role, but we intend to do so in future
using an instrumentation coverage technique to ensure the
accuracy and completeness of the generated sequence dia-
gram. We are also planning the integration of sequence di-
agrams from different sessions to generate a one complete
sequence diagram for the entire web application. Finally,
we are working on generalizing PHP2XMI for use in test-
ing other web application vulnerabilities.

Acknowledgments

This work is supported by the Natural Sciences and En-
gineering Research Council of Canada.

References

[1] M. H. Alalfi, J. R. Cordy, and T. R. Dean. A Verifi-
cation Framework for Access Control in Dynamic Web
Applications, ICSE 2009, Vancouver, Canada, May 16-
24(Submitted).

[2] M. H. Alalfi, J. R. Cordy, and T. R. Dean. SQL2XMI: Re-
verse Engineering of UML-ER Diagrams from Relational
Database Schemas. In WCRE 2008, Antwerp, Belgium, Oc-
tober 15-18, pages 187-191.

[3] G. Antoniol, M. Di Penta, and M. Zazzara. Understand-
ing Web Applications through Dynamic Analysis. In IWPC,
pages 120-131, 2004.

[4] L. C. Briand, Y. Labiche, and J. Leduc. Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed
Java Software. IEEE Trans. Software Eng., 32(9):642-663,
2006.

[5] L. C. Briand, Y. Labiche, and Y. Miao. Towards the Reverse
Engineering of UML Sequence Diagrams. In WCRE, pages
57-66, 2003.

[6] J. Conallen. Modeling Web Application Architectures with
UML. Communications of the ACM, 42(10):63-71, 1999.

[7] J. R. Cordy. The TXL source transformation language. Sci.
Comput. Program., 61(3):190-210, 2006.

[8] I. Corporation. Rational Software Architect Version
7.0, http://www-306.ibm.com/software/awdtools/architect/
swarchitect/.

[9] G. A.Di Lucca and M. Di Penta. Integrating Static and Dy-
namic Analysis to improve the Comprehension of Existing
Web Applications. In WSE, pages 87-94, 2005.

[10] G. A.Di Lucca, M. Di Penta, A. R. Fasolino, and P. Tramon-
tana. Supporting Web Application Evolution by Dynamic
Analysis. In IWPSE, pages 175-186, 2005.

[11] C. Engineering. Canoo WebTest, http://webtest.canoo.com.

[12] P. Falcarin and M. Torchiano. A dynamic analysis tool for
extracting UML 2 sequence diagrams. In /ICSOFT (1), pages
171-176, 2006.

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

(21]

(22]

(23]

(24]

(25]

(26]

FrontEndART Software Ltd. Columbus/CAN 3.5,
http://www.frontendart. com/products_col.php.

A. Hamou-Lhadj and T. C. Lethbridge. A survey of trace
exploration tools and techniques. In CASCON, pages 42—
55, 2004.

J. Jiang, J. Koskinen, A. Ruokonen, and T. Systéd. Construct-
ing Usage Scenarios for API Redocumentation. In ICPC,
pages 259-264, 2007.

R. Kazman, L. O’Brien, and C. Verhoef. Architecture re-
construction guidelines. Technical Report CMU/SEI-2002-
TR-034, Carnegie Mellon University, 2003.

E. Korshunova, M. Petkovic, M. G. J. van den Brand, and
M. R. Mousavi. CPP2XMI: Reverse Engineering of UML
Class, Sequence, and Activity Diagrams from C++ Source
Code. In WCRE, pages 297-298, 2006.

E. Koutsofios and S. North. Drawing graphs with dot.
Technical report, AT&T Bell Laboratories, Murray Hill, NJ,
USA, September 1991.

G. A. D. Lucca, A. R. Fasolino, and P. Tramontana. Re-
verse engineering Web applications: the WARE approach.
Journal of Software Maintenance, 16(1-2):71-101, 2004.
M. Merdes and D. Dorsch. Experiences with the develop-
ment of a reverse engineering tool for UML sequence dia-
grams: a case study in modern Java development. In PPPJ,
pages 125-134. ACM, 2006.

L. Moonen. Lightweight Impact Analysis using Island
Grammars. In IWPC, pages 219-228, 2002.

Object Management Group (OMG). OMG Unified Mod-
eling Language (OMG UML), Superstructure, V2.1.2,
http:/fwww.omg.org/docs/formal/07-11-01.pdf. Technical
report, 2007.

A. Seesing and A. Orso. InsECTJ: a generic instrumenta-
tion framework for collecting dynamic information within
Eclipse. In ETX, pages 4549, 2005.

N. Synytskyy, J. R. Cordy, and T. R. Dean. Robust multi-
lingual parsing using island grammars. In CASCON, pages
266-278, 2003.

A. van Deursen and T. Kuipers. Building Documentation
Generators. In ICSM, pages 4049, 1999.

WatirCraft. WATIR, http://wtr.rubyforge.org.

