
Journal of Object Technology
Published by AITO — Association Internationale pour les Technologies Objets

http://www.jot.fm/

Formal Verification Techniques for
Model Transformations: A
Tridimensional Classification

Moussa Amrania Benoît Combemaleb Levi Lúcioc

Gehan M. K. Selimd Jürgen Dingeld Yves Le Traona

Hans Vangheluweec James R. Cordyd

a. University of Luxembourg (Luxembourg)

b. University of Rennes 1 / Inria (France)

c. McGill University (Canada)

d. Queen’s University (Canada)

e. University of Antwerp (Belgium)

Abstract In Model Driven Engineering (Mde), models are first-class
citizens, and model transformation is Mde’s "heart and soul". Since model
transformations are executed for a family of (conforming) models, their
validity becomes a crucial issue.

This paper proposes to explore the question of the formal verification
of model transformation properties through a tridimensional approach:
the transformation involved, the properties of interest addressed, and the
formal verification techniques used to establish the properties.

This work is intended for a double audience. For newcomers, it provides
a tutorial introduction to the field of formal verification of model trans-
formations. For readers more familiar with formal methods and model
transformations, it proposes a literature review (although not systematic)
of the contributions of the field.

Overall, this work allows to better understand the evolution, trends and
current practice in the domain of model transformation verification. This
work opens an interesting research line for building an engineering of model
transformation verification guided by the notion of model transformation
intent.

Keywords Model-Driven Engineering, Model Transformation, Model Trans-
formation Intent, Formal Verification, Transformation Languages, Classifi-
cation, Survey, Property of Interest

Moussa Amrani, Benoît Combemale, Levi Lúcio, Gehan M. K. Selim, Jürgen Dingel, Yves Le
Traon, Hans Vangheluwe, James R. Cordy. Formal Verification Techniques for Model
Transformations: A Tridimensional Classification. Licensed under Attribution 4.0 International (CC BY
4.0). In Journal of Object Technology, vol. 14, no. 3, 2015, pages 3:1–43.
doi:10.5381/jot.2015.14.1.a3

http://www.jot.fm/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5381/jot.2015.14.1.a3
http://dx.doi.org/10.5381/jot.2015.14.1.a3


2 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

1 Introduction

Model-Driven Engineering (Mde) promotes models as first class citizens of the software
development process. Models are manipulated through model transformations (Mts),
which is considered to be the "heart and soul" of Mde [104]. Naturally, dedicated
languages based on different paradigms emerged during the last decade to express
Mts. Since they are executed on a family of (conforming) models, the validity of such
model transformations becomes a crucial issue.

From the Mde point of view, a transformation has a dual nature [22]: seen as a
transformation model, a transformation can denote a computation, whose expression
relies on a particular model of computation (MoC) embedded in a transformation
language; and seen as a model transformation, emphasis focuses on the particular
artefacts manipulated by a transformation (namely, metamodels for its specification and
models for its execution). The computational nature will require that the underlying
language guarantees desirable properties, like termination and determinism, needed for
the purpose of the transformations, independently of what a particular transformation
expresses. On the other hand, manipulating models implies that specific properties of
interest will be directly related to the involved models as well as the intrinsic intent
behind the transformation: e.g., one may be interested in always producing conforming
models by construction, or ensuring that target models still conserve their semantics.

This paper proposes a tridimensional classification of the contributions found in
the literature (cf. Figure 1). This classification encompasses all artefacts needed when
formally verifying model transformations: the transformation, the property kinds one
needs to verify to ensure correctness, and the formal verification technique used to
prove those properties. By locating each contribution in this tridimensional space, it
becomes possible to reason about the evolution and trends in the domain: for instance,
it enables the identification of areas that are over- or under-represented (the properties
that interest the community the most, or the verification techniques that are used the
less). Validated on a significant corpus of publications, this classification provides an
interesting “snapshot” of the current state of the art in the area of Mt verification.

The paper focuses on formal Verification & Validation (V&V), understood as
the activity of deploying mathematical methods in order to prove the correctness
of model transformations in an exhaustive, static way. Other non exhaustive, or
dynamic techniques are purposely discarded from this paper’s scope to narrow down
the tridimensional space into a meaningful set of properties/tools (cf. e.g. a survey
for testing in [103]).

This paper extends a preliminary study that appeared more than two years ago
in [4] with the following points:

• a precise description of the characteristics of formal V&V techniques allowed a
justification of the techniques that we excluded from our classification;

• an in-depth discussion of the existing classifications of the literature showed
their inedaquacy regarding the activity of formal verification: they do not allow
a proper extraction of the properties of interest one need to prove to ensure
transformation correctness;

• an analysis of these classifications weaknesses motivated the introduction of a
novel concept for model transformation, the intent, acting as a glue between all
dimensions;

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 3

Transformation

Verification
Technique

Property (kinds)

Figure 1 – Taxonomy overview: the tri-dimensional approach.

• an outlook on the relations between the classification dimensions in the light of
this new concept;

• and most importantly, the integration of many contributions that were initially
missing in [4] due to space limitations, or that appeared since the first paper
was published.

Our study illustrates the dynamism of the field, and the richness of the combina-
tions between these dimensions for solving the multiple challenges related to model
transformation correctness. We therefore expect a minimal knowledge in Mde and
formal verification: we do not provide introductory material of these fields; instead, we
contextualise from each field basic elements necessary to understand our classification.

Our main contribution is the tridimensional classification, validated by its ap-
plication to over a hundred references. As a consequence, we seek for coverage of
each dimension that we try to illustrate with at least one contribution. This paper is
neither a systematic literature survey (Slr, as understood by Kitchenbaum [60,61])
for the reasons we mentioned earlier, nor a study aiming at completeness, since the
field evolves fast (as illustrated by the fact that the number of contributions doubled
since our original version [4]) and we only wanted to illustrate the diversity and
richness of our classification. However, this paper can serve the needs of two different
audiences as a side-effect of its main purpose: for newcommers, it provides a tutorial
introduction to the field of formal verification of model transformations, by precisely
identifying the main notions at play, and proposing an analysis grid for understanding
its many variation points; it nevertheless does not replace good introductory material
for each specific dimension. For readers more familiar with formal methods and model
transformations, it proposes a survey of the field, although not a Slr, spotting the
current strengths and weaknesses of existing approaches, and proposing a critique of
some of the concepts at play in Mde in the light of the formal verification perspective.

The paper’s outline follows the constituting dimensions of the classification: the
transformation involved (cf. Section 2); the property kinds addressed (cf. Section
3); and the verification technique used (cf. Section 4). These dimensions are closely
orthogonal but clearly interdependent: Section 5 discusses their pairwise relations.
Section 6 discusses the related work dedicated to classifications of model transformation
verification and Section 7 summarises and presents future work directions.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


4 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

ex
ec

ut
es

co
nf

or
m

s 
to

refers to refers to

reads outputs

co
nf

or
m

s 
to

co
nf

or
m

s 
to

co
nf

or
m

s 
to

co
nf

or
m

s 
to

conform
s to

Source
Meta-model

Target
Meta-model

Transformation
Specification

Transformation
Execution

Input
Model(s)

Output
Model(s)

Meta-meta-
model

Transformation
Language

Figure 2 – Model Transformation: the big picture (adapted from [110])

2 Dimension 1: Transformations

Figure 2 presents the general idea of model transformation. A model, conforming to
a source metamodel, is transformed into another model, itself conform to a target
metamodel, by the execution of a transformation specification. The transformation
specification is defined at the level of metamodels whereas its execution operates
on the model level. Since in Mde models are the primary artefact, both source
and target metamodels (as well as the transformation specification) are themselves
models, conforming to their respective metamodels: for metamodels, this is the
classical notion of meta-metamodel ; for transformations, a transformation language
(Tl) (or metamodel) allows a sound specification of transformations. Notice here that
a transformation can also act on several source and/or target models.

This Section starts by discussing the existing definitions for the concept of trans-
formation; then reviews the main classifications for transformation languages. We
then revisit these classifications in the light of formal verification: why is it hard to
extract the properties one is interested in from the existing classifications?

2.1 Definition

In [4], we have discussed some of the main definitions proposed in the literature for
the concept of model transformation. We then reached a broader definition:

A transformation is an the automatic manipulation, conform to a
description, of (an) input model(s) to produce (an) output model(s)
according to a specific intention [4, 71].

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 5

This definition clearly embeds the dual nature of model transformation, distinguishing
its specification from its execution (cf. Fig. 2), and places the transformation’s
intention at its core. When clear from the context, we abuse the word’s meaning and
sometimes refer to a transformation specification (instead of our definition’s primary
meaning of an execution) to avoid repetitions.

2.2 Languages

When specifying a transformation, a transformation designer expresses a computation
using the constructions of a Transformation Language (Tl) syntax that manipulates
the concepts of both the source and the target metamodels. Over the years, many
languages, as well as many transformation frameworks emerged, with various model
transformation purposes and targets. We quickly review the categorisation by [35] on
the computing paradigms for model transformations:

Programming-Based This category encompasses several ones proposed originally
in [35], in which practices already well-known in general-purpose programming
languages are applied, or adapted, for transformation specification: popular
techniques are visitor-based (used e.g. in Jamda [18]), template-based (used e.g.
in AndroMda [17] or MetaEdit+ [59]), or even the direct manipulation through
dedicated Apis (e.g. Java). These techniques are particularly well-suited for
model-to-text manipulations.

Operational This category, also known as meta-programming [32], shares com-
mon features with the previous one, but usually offers more dedicated support
for handling model manipulation. This approach consists of enriching meta-
metamodelling formalisms (e.g., the Omg Mof) with so-called action languages
that are generally object-oriented (two notable examples are Kermeta [78] and
Epsilon [62]).

Declarative This category relies on rewriting techniques, and contrasts with the
previous ones in the declarative computation paradigm (designers specify what
the transformation does instead of how it is performed) and in their syntax,
usually visual. This category is usually split into two different trends: relational
Tls define transformations in terms of mathematical relations among source and
target metamodel elements using constraints; and Graph-Based Transformations
(Gbts) represent models and transformations as graphs and graph transfor-
mations respectively [101]. The natural visual syntax attached to graphs can
be further customised [38,111] to reflect more adequately the symbols used in
particular domains.

This categorisation is not complete: hybrid approaches are common in model transfor-
mation languages, especially for declarative Tls: the visual representation adequately
represents the manipulation of core concepts (like deletion/creation of class instances
or association links), whereas the textual sentences typically define update expressions
of values taken by class attributes. Each representation works at a different level, thus
helping to take advantage of both worlds.

From a formal verification viewpoint, what is crucial for all Tls is the formal
specification of their semantics. Being built upon traditional operational languages,
the two first categories directly benefit from the existing formal semantics foundations
available for imperative or object-oriented programming languages [119], and can

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


6 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

therefore readapt new advances in formal verification. Declarative Tls also have a clear
formal background: logics and constraint programming are the natural semantic targets
for relational declarative approaches; whereas the category theory is the underlying
formalism for Gbts [101].

The computational paradigm of a Tl naturally influences both the kind of properties
one needs to prove (e.g., determinism for operational approaches is never an issue
whereas for declarative Tls, it can be crucial) and the kind of formal verification
techniques available (e.g., exhaustive exploration of a transformation’s state space
can naturally be computed for declarative approaches, whereas it usually requires a
dedicated machinery for operational ones).

2.3 Classification

From a verification viewpoint, it is important to classify model transformations in
order to precisely identify which properties have to be checked to guarantee correctness.
We review the existing classifications available from the literature and show their
limitations on a simple conceptual example.

Two contributions addressed the model transformation classification issue: Czar-
necki and Helsen [35] proposed a hierarchical classification of model transformations
specification features, whereas Mens and Van Gorp [76] focused more on providing a
multidimensional taxonomy characterising model transformation form.

2.3.1 Model Transformation Features

A first level of classification consists of highlighting the building blocks of a transforma-
tion, i.e. which features compose a model transformation. We summarise the features
proposed by [35] relevant for the purpose of model transformation formalisation and
verification:

Transformation Units are the basic building blocks used to specify how computa-
tions are performed during the transformation;

Scheduling specify how transformation units are combined to perform the com-
putation: either implicitly, in which case the transformation designer has no
direct control; or explicitly, using a large set of possibilities ranging from par-
tially user-controlled schedulers to explicitly modelled Dsls for schedule flow
specification.

2.3.2 Model Transformation Form

A second level of classification consists of focusing on the form of a transformation,
i.e. in which ways a transformation is related to its metamodels for its specification,
and to its models for its execution. This classification covers formalisms and tools
underlying model transformations, but we summarise here the aspects of Mens and
Van Gorp’s multi-dimensional taxonomy [76] relevant to our purpose:

Heterogeneity between the source and target metamodel: if they are the same, the
transformation is endogeneous and expresses a rephrasing intention; otherwise,
it is exogeneous and conveys a translation intention.

Abstraction Level related to the detail level involved into models: if the target
metamodel adds or reduces the detail level, the transformation is vertical ;
otherwise, if the abstraction level remains unchanged, it is horizontal.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 7

Transformation Arity regarding the number of input (respectively, output) models
the transformation executes on.

Input Model Conservation related to the treatment of the input model: if the
transformation directly alters the input model, it is destructive, or in-place; if
another independent model is outputted, it is conservative, or out-place.

2.4 Discussion: Extracting Properties of Interest

Model transformations differ in the way they are expressed, i.e. in the chosen transfor-
mation language they are specified, but also in what they are to accomplish, i.e. their
intent. Therefore, the properties of interest for transformations are naturally related
to both dimensions.

Unfortunately, the previous classifications do not help for our purpose of facilitating
the extraction of the relevant properties to be checked to ensure the correctness of
a transformation. Let us see how Mens and Van Gorp’s classification operates on
a simple example: consider a Domain-Specific Model (Dsm) for which one needs to
define its semantics through a transformation. Two classical approaches exist for that
purpose [32]:

Translational This approach expresses the semantics of a Dsm in terms of another
target metamodel serving as a semantic domain [51]: in this case, Mens and Van
Gorp’s classification qualifies this transformation as out-place, exogeneous and
vertical (with arity 1:1).

Operational This approach expresses the semantics of a Dsm directly on the input
model, by showing its evolution over time: this transformation is classified as
in-place, endogeneous and horizontal (also with arity 1:1).

Although both transformations cover the same intent, i.e. providing a semantics,
their expression differs radically, as witnessed by the previous classification producing
opposite characterisations. However, one would expect to have to prove, for the same
transformation intent, the same kind of properties (e.g. proving the correctness)
but expressed differently w.r.t. the transformation’s expression: in the first case, the
semantic correctness can only be assessed through properties relating both metamodels;
whereas in the second case, behavioural properties (also called "dynamic", generally
expressed through temporal logic formulæ) will be checked on the transformation’s
execution.

Consequently, beyond already existing syntactic classification, i.e. describing the
transformations’ expression, it is crucial to have at disposal a semantic classification,
i.e. describing transformations’ intention, in order to relate transformations’ meaning
with related properties of interest. For our example, whatever form the transformation
holds, it expresses in both cases a Dsl semantics specification that necessitates to
prove its correctness. This work is partially addressed in [3, 71], where a catalogue of
the most common intents in Mde are mapped to their characteristic properties that
one needs to prove to ensure the correctness of a transformation complying to these
intents.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


8 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

ex
ec

ut
es

co
nf

or
m

s 
to

refers to refers to

reads outputs

co
nf

or
m

s 
to

co
nf

or
m

s 
to

has semantic 
domain

has semantic 
domain Source

Meta-model
Target

Meta-model
Transformation
Specification

Transformation
Execution

Input
Model(s)

Output
Model(s)

Transformation
Language

Figure 3 – Property Kinds: the red, central box represents the language-related property
kind, which focuses on the transformation as a computation (cf. Section 3.1); the
transformation-related property kind is split in Section 3.2 into two subkinds, namely
properties spanning over models and metamodels without concern of the specific in-
ternal steps of the transformations, as depicted by the greyed boxed at each extremity
(cf. Section 3.2.1), and properties relating the input and the output models (cf. Section
3.2.2), either at a syntactic or at a semantic level, as depicted by the red, dotted box
(which includes the semantic domain attached to each metamodel).

3 Dimension 2: Properties

Expressed in a particular Tl, model transformation specifications relate source and
target metamodel(s) and execute on models. Considering only conforming models
for transformations to be valid is not enough: due to the large number of models
transformations can be applied on, one has to ensure their validity by carefully
analysing their properties to provide modelers a high degree of trustability when they
use automated transformations to perform their daily tasks.

This Section explores properties one may be interested in for delivering proper and
valid transformations. Given the large variety of model transformation intents, it was
not possible to delve into a detailed classification of properties of interest. Rather, we
identify two classes of properties that follow the dual nature of transformations [22]:
language-related properties, described in Section 3.1, relate to the computational
nature of transformations and target properties of Tls; whereas transformation-
related properties, described in Section 3.2, deal with the modelling nature where
where models plays a prominent role, thus concerning primarily (meta-)models at each
side of the transformation process. Figure 3 shows at which level each kind of property
acts.

3.1 Transformation Models: Language-Related Property

From a computational perspective, a transformation specification conforms to a
transformation language, which can possess properties of its own suitable either at
execution time (referring to the transformation execution) or at design time (addressing
the relation between the transformation specification and its language), as described
in the central red box of Figure 3.

At execution time, two properties are crucial and qualify the model transformation
execution: termination, which guarantees the existence of target model(s); and deter-
minism, which ensures uniqueness. At design time, typing ensures the well-formedness

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 9

of transformation specification regarding its defining language, which can be seen as
the Tl’s static semantics.

Because they hold at the Tl’s level, these properties directly impact the execution
and design of all transformations. Therefore, formally proving them cannot be done
by relying on one particular transformation’s specifics. Tls adopt one of the following
strategies for proving execution time properties hold: either the Tl is kept as general
(and powerful) as possible, making these properties undecidable, but the transformation
framework provides capabilities for checking sufficient conditions ensuring them to
hold on a particular transformation; or these properties are ensured by construction
by the Tl, generally by sacrificing its expressive power.

3.1.1 Termination

Termination directly refers to Turing’s halting problem, which is known to be un-
decidable for sufficiently expressive, i.e. Turing-complete, Tls: Gbts have already
been proven to not terminate in the general case [89]; whereas Mpls often use loops
and (potentially recursive) operation calls, making them able of simulating Turing
machines.

3.1.1.1 Termination Criteria

A large amount of literature for Gbt already exists. In [41], Ehrig et al. introduce
layers with injective matches in the rewriting rules that separate deletion from non-
deletion steps. In [115], Varró et al. reduce a transformation to a Petri Net, where
exhaustion of tokens within the net’s places ensures termination, because the system
cannot proceed any more. In [20], Bruggink addressed a more general approach by
detecting in the rewriting rules infinite creating chains that are at the source of infinite
rewritings. In [65], Küster proposes termination criteria with the same basic idea, but
on graph transformations with control conditions. Pattern-based transformations [37]
are a new approach for specifying model-to-model bidirectional transformations in a
declarative, relational style (cf. Section 2.2), having Triple Graph Grammars (Tggs)
as a formal background. The language makes use of patterns to describe allowed
and forbidden relations between two models. Patterns are compiled into Tgg rules
to perform forward and backward transformations that can later be executed with
classical Gbt engines (e.g., Fujaba [83]). In [37], de Lara and Guerra proved that
this compilation scheme is sound, terminating and confluent; the result has been later
extended in [46] to handle attribute conditions.

Termination criteria for Mpls directly benefit from the vast and active literature on
imperative and object-oriented programming languages. These criteria usually rely on
abstract interpretations built on top of low-level programming artefacts (like pointers,
variables and call stacks). For example, Spoto et al. detect the finiteness of variable
pointers length in [105]; and Berdine et al. use separation logics for detecting effective
progress within loops in [12]. Since these techniques are always over-approximations
of the Tl’s semantics, they are sound but not complete, and can potentially raise false
positives.

3.1.1.2 Expressiveness Reduction

Reducing expressiveness regarding termination generally means avoiding constructs
that may be the source of (unbounded) recursion. For example, DslTrans [9] uses
layered transformation rules and an in-place style: rules within a layer are executed
until they cannot match anymore, which occurs because models contain a finite amount

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


10 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

of nodes that are deleted in the process, preventing recursions and forbidding loops
syntactically.

3.1.2 Determinism

Determinism ensures that transformations always produce the same result. Generally,
this property is only considered up to the interactions with the environment or the
users. Considering this, Mpls are considered deterministic since they directly describe
the sequence of computations required for the transformation.

3.1.2.1 Determinism Criteria

Determinism directly refers to the notion of confluence (often called the Church-Rosser,
or diamond, property) for Gbtls, which has also been proved as undecidable [90].
Confluence and termination are linked by Newman’s lemma [82], stating that confluence
coincides with local confluence if the system terminates. This offers a practical method
to prove it by using the so-called critical pairs. The Gbt community is very active
in this domain and already published several results. In [52], Heckel et al. formally
proved the (local) confluence for Typed Attributed Graph Grammars, and Küster
in [65] for graph transformations with control conditions. In [66], Lambers et al.
improved the efficiency of critical pairs detection algorithms for transformations with
injective matches, but without addressing pairs of deleting rules. More recently,
Biermann extended the result to Emf (Eclipse Modelling Framework), thus preserving
containment semantics within the transformations in [15]. In another area, GrØnmo
et al. addresses the conformance issue for aspects in [45], i.e. ensuring that whatever
order aspects are woven, it always leads to the same result. The compilation of
pattern-based transformations into Tgg rules are proven confluent in [37].

3.1.2.2 Expressiveness Reduction

Reducing expressiveness regarding confluence means either suppressing the possibility
of applying multiple rules over the same model, or providing a way to control it. In
DslTrans for example [9], the Tl controls non-determinism occuring within one layer
by amalgamating the results before executing the next layer. This ensures confluence
at each layer’s execution, and thus for a transformation.

3.1.3 Transformation well-formedness

A crucial challenge for transformation specification is the detection of syntactic errors
early in the specification process, to inform designers as early as possible and avoid
unnecessary execution that will irremediably fail. This property primarily targets
visual modelling languages, since textual modelling already benefits from experience
gathered for building Ides for Gpls, where a type system (usually static) reports
errors by tagging the concerned lines. All syntactic errors cannot be detected, but a
framework possessing this feature will considerably ease the designers’ work.

To achieve this goal, tools must rely on an explicit modelling of transformations
[22]. Kühne et al. studied in [64] the available alternatives for this task and their
implications: either using a dedicated metamodel as a basis for deriving a specialised
transformation language, or directly using the original metamodel and then modulating
the conformance predicates accordingly, for deriving such a language. Studying
the second alternative, they proposed the Ram process (Relaxation, Augmentation,
Modification) that allows the semi-automatic generation of transformation specification
languages. On the other hand, Levendovszky et al. explored in [69] the other alternative

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 11

by proposing an approach based on Domain-Specific Design Patterns together with
a relaxed conformance relation to allow the use of model fragments instead of plain
regular models.

A more traditional way of ensuring the well-formedness of transformation rules is to
apply traditional static analysis on the transformation specification. Metaprogrammed
languages directly benefit from techniques already available for programming languages
(like dead code detection, call graph construction, etc.) Several contributions already
addressed the case of Gbts: Wimmer et al. [118] proposed a taxonomy of rule-based
transformation errors targeting various properties (such as rule redundancy, left-hand
side pattern adaptation, etc.) that cover both intra- and inter-rules errors; and Planas
et al. [88] proposed to compute rule weak executability (i.e. whether a rule can be
safely fired without breaking input/output models’ integrity) and rule set covering
(i.e. whether a set of rules cover all elements of the source/target metamodels) on Atl
transformations.

3.2 Model Transformations: Transformation-Related Property

From a modelling perspective, a transformation refers to input/output models for which
dedicated properties need to be ensured for the transformation to behave correctly.

This Section provides a comprehensive overview of properties of interest separated
into two concerns: properties involving transformations’ source or target models in
Section 3.2.1; and properties relating (meta-)models at each side of the transformations
in Section 3.2.2.

3.2.1 Properties overs models and their metamodels

A first concern of property verification addresses the input or output model(s) a
transformation refers to, as depicted by the grey boxes at each extremity of Figure
3. The conformance property is historically one of the first addressed formally,
because it is generally required by transformations to work properly (cf. Section 2.1).
Transformations admitting several models as source and/or target require other kinds
of properties, either required for transformations or simply desirable.

3.2.1.1 Conformance & Model Typing

Conformance ensures that a model is valid w.r.t. its metamodel, and is required for a
transformation to run properly (usually, a transformation is supposed to be executed
solely on conforming input models): this property is represented in Figure 3 by the
vertical arrows labelled conforms to between model(s) and metamodel(s).

Usually, structural conformance, involving only the model, is distinguished from
constrained conformance, which is an extended property that includes structural
constraints not expressible with the metamodelling language, otherwise referred to as
metamodels’ static semantics or well-formedness rules (see e.g. [19]). Nowadays, this
property is well understood and automatically checked within modeling frameworks.
However, proving that transformation’s output(s) always conforms to target meta-
model(s) is not trivial, especially when using Turing-complete frameworks. Most of
the time, an existing procedure for checking conformance is programatically executed
after the transformation terminates.

It is nevertheless possible to prove this property in specific contexts. For instance,
Baar and Marković [7] proved that Uml class diagrams containing Ocl constraints
are correctly refactored: the refactored diagrams are still valid diagrams, and the

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


12 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

Ocl constraints are modified according to the refactorings such that they are still
valid sentences. Similarly, Schätz [102] proved the conformance of output ECore
models using a relational formal specification of metamodels and models; the proof is
discharged in most cases automatically by the Isabelle/Hol theorem-prover.

Model Typing [99, 106] extends the notion of type beyond classes, by defining
a subtyping relation on models. Transformation languages capable of manipulating
model types offer better reusability for modelers, because instead of depending on
low-level types, transformations become parametrised by whole models and apply to
any sub-model. Model Typing has been recently extended by Guy [48,49] to define
a model-oriented type system aimed at overcoming the issues of the conformance
relation when reusing the same transformations over similar metamodels.

3.2.1.2 N-Ary Transformations Properties

Unsurprisingly, transformations operating on several models at the same time, e.g.
model composition, merging, or weaving, require dedicated properties to be checked.
These properties are difficult to precisely represent on Figure 3 since they may involve
the different models (input and/or output) as well as the respective metamodels.

Concerning merging, Chechik et al. follow an interesting research line in [29]: they
enunciate several properties merge operators should possess: completeness means
no information is lost during the merge; non-redundancy ensures that the merge
does not duplicate redundant information spread over source models; minimality
ensures that the merge produces models with information solely originating from
sources; totality ensures that the merge can actually be computed on any pair of
models; idempotency, which ensures that a model merged with itself produces an
identical model. These properties are not always desirable at the same time: for
example, completeness and minimality become irrelevant for merging involving conflict
resolution. Beyond merging, they can potentially characterise other transformations,
not necessarily involving several source models.

Concerning aspect weaving, Katz identifies in [58] temporal logics to characterise
properties of aspects: an aspect is spectative if it only changes variable within this
aspect without modifying other system variables or the control flow; it is regulative if it
affects the control flow, either by restricting or delaying an operation; it is invasive if it
changes system variables. Static analysis techniques enriched with dataflow information
or richer type systems are generally used to detect these properties. Despite their
textual programming orientation, these properties should apply equally in Mde. In [77],
Molderez et al. present delMDSoC, a language for Multi-Dimensional Separation
of Concerns implemented in Agg [111]. Ultimately, this framework will allow the
detection of conflicts between aspects by model-checking, typically when multiple
advices must be executed on the same joinpoints.

An interesting topic for Gbts emerged lately concerning the synchronisation of
models that cannot be considered as a view of each other (i.e. one model cannot
be extracted from the other using usual queries). Hermann et al. [53] proved the
correctness and completeness of a synchronisation framework designed for Triple Graph
Grammars; the same paper offers a comprehensive overview of the domain.

3.2.2 Properties relating input and output models

A second concern for property verification targets the many types of relations that can
be established between the input model(s) and the output model(s). We distinguish
two application levels, as depicted in Figure 3 by the red, dotted box: syntactic

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 13

properties relate the constitutive elements of models (e.g. for Mof, it would be
objects, attributes and so on) whereas semantic properties require the often implicit
semantics of the metamodels involved, meaning that the relations rather take place
between the constitutive elements of the semantic domains.

3.2.2.1 Syntactic Properties

A model transformation consists in general of a computation that applies repeatedly
a set of rewriting rules to a model, where the model represents the structure of a
sentence in a given formal language, defined by a metamodel. Because transformation
execution is in general a complex computation, the production of a given output model
cannot in general be inferred by just looking at the individual transformation rules. It
thus becomes important to make sure that certain elements, or structures, of the input
model will be transformed into other elements, or structures, of the output model. By
abstracting these structural relations between input and output models and expressing
them at the level of the graphs defining those model’s languages (or metamodels), it is
possible to express relations between all input models of a transformation and their
expected outputs.

We call this type of properties syntactic relations, because they relate the shape of
a (set of) input model(s) with the shape of a (set of) output model(s). Given that the
models we are transforming do not in general include an explicit description of their
own semantics, these structural relations regard the actual meaning (formally called
semantics) of those models in an implicit fashion (cf. semantic domains in Figure 3).

In [1] Akehurst and Kent formally introduce a set of structural relations between the
metamodels of the abstract syntax, concrete syntax and semantics domain of a fragment
of the UML. In order to achieve this they create an intermediate structure that relates
the elements of both metamodels as well as the elements of the intermediate structure
itself. Despite the fact that they only apply it to an academic example, the proposed
technique appears to be sufficiently well founded be applied in the general case where
one would wish to express structural relations between two metamodels. Narayanan
and Karsai also define in [79, 81] a language for defining structural correspondence
between metamodels that takes into consideration the attributes of an entity in the
metamodel. In particular they apply their approach to verifying the transformation of
UML activity diagrams into the CSP (Communicating Sequential Process) formalism.
In the same paper they point out the fact that the formalism used to define model
transformations in Triple Graph Grammars (Tggs) [6] could also be used to encode
structural relation properties between two metamodels. Lúcio and Barroca formally
define in [70] a property language to express structural relations between two language’s
metamodels and propose a symbolic technique to verify those relations hold, given
an input and an output metamodels, and a transformation. Orejas and Wirsing [85]
proposed an algrebraic framework for representing pattern-based transformations [46],
for which they provide a theoretical framework for proving the consistency of a
transformation specification with a verification specification, also expressed using
patterns. The approach is currently under implementation in Maude [31].

3.2.2.2 Semantic Properties

Beyond structural relationships between source and target models, it may be interesting
to relate their meaning. Semantic properties are more difficult to define and prove:
although they are defined using elements of the transformation specification and
(meta-)models it refers to, they apply on their semantic domains, which requires to

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


14 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

dispose of at least a partial explicit representation of the models’ semantics, or a way
of computing it. In Figure 3, we have introduced a symbolic representation of the
semantic domain of each model(s) involved in the transformation.

Semantic Preservation Preserving the semantics of models while transforming
them can be achieved in many ways. However, since in this case, the transformation
may be exogenous, one needs to precisely state when the semantics is considered
“equivalent”.

Bisimilarity, a stronger variant of system similarity, states that two systems are
able to simulate each other from an observational viewpoint. Proving such a semantic
relations requires to establish a relation between the transition systems capturing the
execution of both input and output models. When possible, this proof is conducted
inductively to ensure that it holds on any input model, or it is specialised for specific
inputs.

Narayanan et al in [80] show how to verify that a transformation outputs a
statechart bisimilar to an input statechart. Combemale et al. [32] formally prove
the weak simulation of xSpem models transformed into Petri Nets, in the context of
the definition of translational semantics of Domain-Specific Languages, thus enabling
trustable verification of properties on the target domain. Similarly, Blech, Glesner
and Leitner [16] proved the bisimulation between StateChart models and Java-like
generated code. Rahim and Whittle proved in [93] a simplified form of what they called
semantic conformance, i.e. the fact that a code generator (from Uml State Machines
to Java) preserves the semantics of the original metamodel. Semantic considerations
are injected as annotations into the generated Java code that is later automatically
model-checked by Java PathFinder [117]. This approach has two major drawbacks:
one has to inspect the generated code to insert the annotations, and the semantic
conformance only covers the properties specified by these annotations.

Another way of capturing the semantic preservation consists of expressing the
correctness through an external language over the input and the output models.
In [114] Varró and Pataricza use Ctl (Computation Tree Logic) [30] as a language to
state properties on each side of the transformation. They then prove that the Ctl
formulæstill hold when transforming StateCharts into Petri Nets. Both metamodels
have a close state-based semantics, but in the general case, it seems more difficult to
state how formulæat each side are considered equivalent, especially if the languages at
each side are different.

Behaviour Refinement Instead of proving preservation, one may be interested in
refinement, meaning that every behaviour of the input model is allowed by the output
(although the output may present more behaviours). Heckel and Thöne [96] propose
a notion of behaviour refinement of Gbt models. These models are in fact model
transformations specified over source and target metamodels that allow expressing
system configurations. The authors provide the formal description of a relation between
the labelled transition systems generated two graph-transformation based models such
that one is a refinement of the other.

Safety (Temporal) Properties & Invariants The fact that two systems are able
to simulate each other pertains to the observational behavior of those systems. One may
wish to enforce a relation between the actual states of the behavioral input and output
models. Several contributions addressed in the recent years the formal verification
of temporal properties. The idea consists in representing metamodels, models and
transformations in an external formal framework already equipped with verification

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 15

capabilities, generally delegated to a dedicated tool. Among others, Abstract State
Machines provide Ctl model- checking by using another mapping into the Spin model-
checker (used in the Asmeta framework [44]), and Maude has been the verification
target for several works, providing reachability analysis, theorem-proving by mapping
Maude specification into Isabelle/Hol, and Ltl model-checking: the approach was
used for verifying visual Dsls whose behavioural semantics is expressed using Gbt in
single/double pushout styles [98,100], and by Barbosa et al. [8] for proving a relatively
simple form of semantic preservation on Java imperative programs by comparing the
resulting semantic domains (note that this last work uses a three-lines Java example
whose scalability is questionable since none of the challenging Java construction —
conditional and loop statements, but also casting and method calls — are handled).
Rangel et al. [95] proposed a framework for preserving the behaviour of refactorings
in a Gbt framework using borrowed contexts that works both at the rule and the
transformation levels.

An interesting subset of safety properties are invariants expressed over the set of
reachable states of a system. The idea is that certain conditions can never be violated
during execution. In this sense, Becker et al are able to prove in [11] that safety
properties (expressed as invariants) are preserved during the evolution of a model
representing the optimal positioning of a set of public transportation shuttles running
on common tracks. Given the evolution of the model is achieved by transformation,
the safety properties will enforce that the shuttles do not collide each other during
operation. Padberg et al introduce in [86] a morphism that allows preserving invariants
of an Algebraic Petri Net when the net is structurally modified. Although this work
was not explicitly created for the purpose of model transformation verification, it could
be used to generate a set of model transformations that would preserve invariants in
Algebraic Petri Nets by construction. Cabot et al. [23] proposed a technique for proving
transformation correctness based on the extraction of behavioural invariants from the
transformation rule specification (the technique is applied to Triple Graph Grammars
and Qvt). They also propose a catalogue of specialised invariant-based properties
characterising both languages, applied at two levels (individual rules and whole
transformation) that they can extract and verify. Similarly, Ledang and Dubois [68]
formalised the semantics of Gbt in Atl in B and proved rule consistency ( i.e. whether
they are contradictory) and the correctness of Gbt by formally proving user-defined
invariants.

Consistency of Bidirectional Transformations Bidirectional transformations
(often coined as “Bx”, echoing the well-known workshop and community working on
this topic [21]) consist of coupled transformations that keep two (or more) models
consistent: when one model is changed, transformations are triggered to reflect the
changes within the other; alternatively, when both models are changed, the transfor-
mations try to reconcile the models. Bidirectional transformations are useful in many
contexts, including cooperative editing, co-evolution, view /update synchronisation
(e.g. a change in a Graphical User Interface modifies the underlying system), reverse
engineering and so on: Czarnecki et al. [36] and Stevens [108] propose an interesting
survey of Bx transformation characteristics, usage scenarios, challenges and research
directions, practices and tools. Decomposing bidirectional transformations as a pair
of transformations is not sufficient, since new challenges arise when considering the
models involved as closely related: one of the key properties consists of ensuring the
consistency between models. Lämmel [72] addresses consistency through different
kinds of model reconciliation (degenerated, symmetric and asymmetric) that depend

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


16 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

on the final use. Stevens [109] extensively studied the case of bidirectional transforma-
tions for the Omg Qvt standard. She defines model consistency through a relation
that two directional transformations should enforce in a coherent way, meaning that
both transformations should be correct, i.e. the transformation actually enforce the
relation, hippocratic, i.e. if models are already in relation, there is no modification),
but also undoable, i.e. reverting one model should correctly revert the other. The
author also proved that transformation coherence is preserved by composition. Triple
Graph Grammars are a good candidate for bidirectional transformations based on
Gbts. Ehrig, Ehrig, Ermel et al. [40] formalised Triple Graph Grammars in terms of
category theory, and defined sufficient conditions for a transformation to be reversible
while preserving graph information. König and Schürr [63] on the one hand, and
Hildebrandt et al. [54] on the other hand, proposed a survey and a comparative study
of the theoretical results and the tool support available for Triple Graph Grammars:
they emphasise the necessity of correctness (i.e. models in a triple should be a valid
member of the Grammar) and the completeness (i.e. any input model extensible to
a consistent triple must be extended for both transformations) for certain classes of
Triple Graph Grammars, in order to carry useful information for the user about the
manipulated models (i.e. a transformation failing within a tool satisfying completeness
says that the model is invalid).

Structural Semantics Properties Models may have a structural semantics, rather
than a behavioral semantics. This is the case of UML class diagrams, which semantics
is given by the instanceOf relation. In this case, although the behavioral properties
mentioned above do not apply, relations between the structural semantics of input and
output models may still be established. Massoni et al [75] and Baar and Marković [7,74]
present a set of refactoring transformations that preserve the instantiation semantics
of UML class diagrams.

3.3 Summary

Table 1 classifies the literature contributions we reviewed according to the property
classes they are targeting, based on the dual nature of model transformations. This
research emphasised two levels property classes are operating at: at the level of
transformation languages, the property classes correspond to those of any computa-
tional language; at the level of model transformations, we distinguished two classes:
properties between models (input or output) and their metamodels do not involve
the transformation beyond the pair of models studied; whereas properties relating the
input and output model(s) consider the transformation either at a syntactic or at a
semantic level.

Not suprisingly, termination and determinism are broadly explored for graph-based
approaches, since they are recurrent issues for this kind of model transformation
frameworks.

The way we presented our model transformation classes also reflect the relative
difficulty to establish the correspondant correctness proofs: the first class only requires
a lightweight possibility for ensuring correctness, since no specific transformation
details are involved; the second class includes more details depending on the level it
operates at. Obviously, since properties are expressed over the artefacts referred to
by the transformation specification, semantic properties require a detour through the
semantic domain that is not always explicitly represented, which makes them harder

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 17

Language-Related Transformation-Related

Termination
[41] [115] [20]

[65] [105] [12] [9]
Input/Output

[29] [58] [7]

[102] [77] [19]

[99] [49] [53]

Determinism
[65] [9] [66]

[15] [45]

Syntactic

Props.
[1] [81] [6] [70] [85]

Typing
[64] [69]

[118] [88]

Semantic

Props.

[80] [114] [11] [86]

[95] [75] [96] [16]

[93] [96] [7] [74]

[23] [68] [36] [72]

[109] [40] [63] [54]

Table 1 – Classification of Contributions according to Property Kinds

to cover, and therefore less explored. They also reuse existing techniques already
explored for general purpose programming languages.

4 Dimension 3: Formal Verification (Fv) Techniques

We propose to discuss Fv techniques according to two criteria: whether a technique is
specific to a particular transformation or holds for any transformation written in a
given Tl; and whether a technique is specific to a particular input or holds for any
conforming input model of a transformation. Our classification for Fv techniques
follows the three different types obtained by combination of these criteria.

This Section starts by reminding what we exactly mean by formal verification,
then continues by discussing examples of each type of verification technique from the
literature.

4.1 Formal Verification in a Nutshell

In this Section, we explain what we mean by Formal Verification in the context of
model transformation, by dressing a parallel with the formal verification of programs
as perceived in the Computer-Aided Verification community. This Section is directly
inspired from [2, 34]. We first explain the Fv problem, then identify several character-
istics that distinguish Fv from other validation techniques, and finally describe issues
and challenges.

4.1.1 The Formal Verification Problem

The Verification problem is a decision problem, i.e. whose answer is either yes or no,
that is generally undecidable: it consists of answering non-trivial (and thus, interesting)
properties about the possible executions of a computation. The execution of a program,
or a transformation, or any piece of software or hardware material, is influenced by
several internal or external factors (e.g., the human interactions, or the captors and

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


18 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

t

x(t)

Figure 4 – The Formal Verification Problem (borrowed from [34]) — Trajectories represent
possible executions of the system; red zones represent erroneous states. It consists
of mathematically proving that no trajectory crosses the red zones (left). To prove
that, an abstraction (the green light area on the right), easier to compute than the
set of trajectories, overapproximates the trajectories in a sound, exhaustive way. The
problem is reduced to prove that the green area does not intersect the red zones.

sensors interacting with the physical world). The so-called concrete syntax captures
the values of all possible variables involved in an execution, and can be represented as
a variable vector x(t) evolving over time, like a trajectory in physics. In this context,
a property of interest designates a set of variable values that characterise erroneous,
or undesired, states that the execution should go through.

In Figure 4 (left), these trajectories are described by the numerous lines whereas
the erroneous states are represented by the red zones. The verification problem then
consists in mathematically proving that the program executions (i.e. the concrete
semantics) never reaches these forbidden zones. Unfortunately, this concrete semantics
is more a mathematical object than an actual computation: it is often infinite, even
for very simple programs, and thus nearly impossible to compute explicitly. The
verification problem is undecidable, meaning that it is not always possible to answer
this kind of questions completely automatically (i.e. without any human intervention,
using finite computer resources, and without any uncertainty).

4.1.2 Characteristics of Fv Techniques

Fv techniques have several characteristics that make them reliable, but often difficult to
employ on real-life software. An Fv analysis is offline (or static), meaning that applying
such techniques do not require actually executing the analysed program (implying that
the analysed program is treated as an input of the analysis rather than instrumenting it
to extract relevant data for its correctness); it is exhaustive (or full-covering), meaning
that the analysis covers all possible execution paths without exception and entirely,
which ensure the absence of errors under all possible circumstances; and sound (or
correctly abstracting), meaning that if the analysis concludes to the absence of errors,
it implies there is actually no errors for the range of properties checked.

To achieve exhaustivity and soundness, Fv techniques operate by abstraction:
since computing the concrete semantics is not feasible in practice, property checking is
performed on an over-approximation of the concrete semantics called abstract semantics.
One needs to prove that the abstract semantics is indeed an over-approximation,
otherwise, the resulting analysis is not sound: some behaviours, not covered by the
abstraction, can be erroneous but will not be detected because they are not covered by
the abstraction. Figure 4 (right) depicts a possible sound abstraction in light green.

In practice, because of the undecidability, tools have to balance the different
parameters to propose tractable analysis. A first possibility is to relax the answer
expected for the decision problem while preserving soundness to obtain a semi-decidable

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 19

decision algorithm: if no errors are detected, then the system is safe for the set of
properties checked; otherwise, the analysis could loop forever and there is no certainty.
This possibility is interesting, but has the serious drawback to not allow detecting
errors that permit their fixing. Another possibility to overcome undecidability is to
require human assistance: this is often the case for theorem-provers like Coq [13]
or Isabelle/Hol [84]: the user guides the proof towards the goal when automated
procedures fail. One would want to sacrifice even more important criteria, like
exhaustivity: the bounded model-checking technique, used e.g. in Alloy [56], assumes
the so-called small scope hypothesis (stating that if there is an error, it is likely to
appear very early in the execution) to accelerate decision procedures, at the expense
of potentially missing late errors.

4.1.3 Issues & Challenges

Fv techniques face several well-known issues that hinder their use and their results.
The explosion problem results from the exhaustivity requirement: when not efficiently
balanced, the execution representation becomes so large that it makes the analysis
itself impossible. Because of the over-approximation requirement, false alarms can
appear: by representing more behaviours than actually needed, an analysis can detect
an erroneous behaviour that does not correspond to an actual execution of the system,
but that is induced by the abstraction itself. Backward traceability is one of the most
crucial problem Fv is facing, and more accurately in the context of transformations:
when a property is violated, Fv techniques usually produce counterexamples in terms
of the abstract semantics that need to be related to the concrete one in order to
interpret the results more appropriately in the formalism the program was written
in. However, abstractions are often difficult to reverse, so that programmers have to
explicitly understand the abstract semantics to correct the discovered errors.

These issues are intrinsically connected to the nature of Fv and its associated
requirements, meaning that they are raised for any analysed artefact including model
transformation. In order to enable a wider adoption of these techniques in Mde, it is
crucial to address two important challenges:

• A first challenge is the adaptation of Fv techniques, and more generally any
analysis approach, to the higher abstraction level of Mde artefacts (namely,
models and transformations) that should be taken into account in order to
better correspond to the richer data structures and computations manipulated
by modelers and transformation designers.

• The second challenge is the extreme versatility of Mde: while traditional Fv
techniques assume that the full definition of the execution is already available,
Mde proceeds in a more agile way that calls for many development rounds, each
of them being potentially submitted to analysis. For example, generating the
code corresponding to a model is done iteratively, while it often requires that
the full final code becomes available before checking that the transformation
implementing the code generation is a correct refinement.

4.2 Formal Verification Types

In this Section, we discuss Fv techniques proposed in the literature to prove Mt
properties implemented in various Tls. Table 2 captures our classification of Mt
verification techniques, which fall into one of three major types: Type I Fv techniques

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


20 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

guarantee certain properties for all transformations of a Tl, i.e. they are transformation
independent and input independent. Techniques of Type II prove properties for a
specific transformation when executed on any input model, i.e. they are transformation
dependent and input independent. Techniques of Type III prove properties for a specific
transformation when executed on one instance model, i.e. they are transformation
dependent and input dependent. When a Fv technique is transformation independent,
it implies that no assumption is made on the specific source model: this explains why,
in Table 2, the case representing Fv techniques that are transformation-independent
and input-dependent is empty.

Although applicable to any transformation, Type I verification techniques are
the most challenging to implement since they require expertise and knowledge in
formal methods. Type III verification techniques are the easiest to implement and are
considered "light-weight" techniques since they do not verify the transformation per
se; they verify one transformation execution. Across all the three types of verification
techniques, the approaches used often take the form of model checking, formal proofs
or static analysis.

Different properties discussed in Section 3 were verified in the literature using
different techniques from the three types. Some properties (e.g. termination) were
proved only once by construction of the model transformation or the Tl. Proving
such properties required less automation and more hand-written mathematical proofs,
although some studies used theorem provers to partially automate the verification
process. Type I verification techniques were used to prove such properties. Other
properties (e.g. model typing and relations between input/output models) were
proved repeatedly for different transformations and for different inputs. Proving such
properties required more automated and efficient verification techniques from Type II
and Type III techniques.

4.2.1 Type I: Transformation-Independent and Input-Independent

Properties that hold independently of the transformations expressed in a particular Tl
are normally proved once and for all. Performing tool-assisted proofs is cumbersome: it
requires to reflect the semantics of the underlying Tl directly in the Fv tool, which is a
heavy task. For example, formally proving termination for Gbt with a theorem-prover
requires to express the semantics of pattern-matching in the theorem-prover’s language.
Therefore, these kinds of proofs are usually presented mathematically. Barroca et
al. [9] prove termination and confluence of DslTrans inductively, following the layered
syntactic construction of the language’s transformations. Ehrig et al. [41] address
termination of Gbts inductively, by proving termination of deleting and non-deleting
layers separetely. In [65], Küster proposes sufficient conditions for termination and
confluence of Gbt with control conditions, by formalising the potential sources of
problems within the theory of graph rewriting.

Another proof strategy consists of taking advantage of existing machinery in
a particular formalism. For example, several techniques for proving termination
exist for Petri Nets. The challenge is then to provide a correct translation from the
metamodeling framework and the Tl within the Petri Nets technical space. Varró et
al. [115] proves termination by translating Gbt rules into Petri Nets and abstracting
from the instance models (i.e. the technique becomes input-independent); the proof
then uses the Petri Nets algebraic structure to identify a sufficient criterion for
termination. Padberg et al. prove in [86] that safety properties, expressed through
invariants over Algebraic Petri Nets, transfer to refined Nets if specific modifications

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 21

of the Nets are followed, thus guaranteeing the preservation of these safety properties.
Massoni et al. [75] checks the validity of refactoring rules over Uml class diagrams
by translating everything in Alloy to discover inconsistencies in the rules, taking
advantage of the instance semantics of Alloy.

Another interesting line of research consists of expressing Mde artefacts in the
context of type theory. Taking advantage of the Curry-Howard correspondence (or
isomorphism), this theory sees programs (or transformations) as proofs that the modeler
and the transformation designer have to discharge; the system then automatically
generates a correct-by-construction executable specification. At least two different
logics are becoming popular: the Calculus of Inductive Constructions, inspired from
typed lambda calculi, at the basis of Coq [13], and the Constructive Type Theory at
the foundation of NuPrl [33]. These formalisms have been used in the context of Mde
to extract certified transformations: Calegari et al. [25] used Coq for handling Atl
transformations, whereas Poernomo [91, 92] used directly NuPrl to formalise Mof.
Unfortunately, both contributions are only demonstrated on the famous Class Diagram
to Relational Databases classical example. The effort of such a formal specification
in logics that are not directly intuitive for Mde engineers seems to hinder its wide
applicability.

4.2.2 Type II: Transformation-Dependent and Input-Independent

For this type of verification, classical tool-assisted techniques are generally used:
model-checking, static analysis, theorem-proving and abstract interpretation. We
briefly recall their characteristics before reviewing the respective contributions.

4.2.2.1 Characteristics

From Section 4.1.2, the verification problem has three components: an abstract
semantics that approximates the “real” concrete semantics; a specification of the (set
of) properties of interest; and a way to check the latter against the former. Assuming
the abstraction correctly defined, classical verification tools aim at automating the
checking process, given the other components. They vary however with respect to three
elements: which form (sometimes implicit) possess the abstraction, and consequently,
which role has the user building it; and which flexibility regarding the range of
properties the technique is able to handle. Since only practical considerations are
important here, rather than the theoretical considerations, we briefly review each Fv
technique in light of these variations points [34].

Static Analysis consists in a predefined approximation, generally automatically pre-
computed over the analysed entity. Sometimes, the user can parametrise the
analysis in order to focus on specific properties. This technique is nowadays well
mastered, and accompanies very often development tools for providing assistance
and computing relevant information from a program to help developers better
understand their programs and correct simple mistakes. Different forms of static
analysis have been popularised during the last decades.

Some techniques are very old, because they were studied for optimising compi-
lation of programs (e.g., live variables or dead code detection, for optimising
registry allocation and code generation). Other techniques emerged with new
programming paradigms like object orientation (e.g., inheritance hierarchy for
tracking fields/methods redefinition and overloading; graph calls for better un-
derstanding objects interactions, escape and shape analysis for improving data
representation).

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


22 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

Model-Checking consists in approximating programs into finite dynamic structures
(most of the time, labelled transition systems), and providing a formal logic
for expressing properties of interest independently from the program. Finite
structures obviously result from the fact that some details are lost during the
process: for example, for detecting deadlocks, it is often enough to forget about
the actual values of variables and focus solely on the interactions executed in
parallel.

The user has to provide the finite representation; the model-checker basically
automates the checking. Most of the time however, this finite representation is
automatically extracted from the program itself, using static analysis techniques,
which relieves the user from this burden. A model-checker usually provides a
violation trace if the property does not hold: this trace indicates a scenario
leading to a violation, which helps the user figuring out what went wrong and
where. However, due to the usual semantic gap between program languages and
model-checker representations, it is often a real challenge to trace violation paths
back to the original program.

Theorem-Proving consists of specifying a program by means of inductive properties
satisfying verification conditions. Basically, properties of interest have the form
of predicates whose truth is checked against the inductive properties representing
the program.

The user has to provide such a specification; the theorem-prover basically auto-
mates the proof burden, i.e. the fact that these properties are indeed inductive.
However, due to the undecidability issue, the theorem prover sometimes needs
guidance to fully discharge the proof. The specification can be partially discov-
ered directly from the program by using static analysis techniques.

Abstract Interpretation somehow generalises the previous approaches by allowing
any kind of approximation to be defined. The user then has then to prove that
the proposed approximation is sound, and the abstract interpreter automates
the verification process for the properties. By using predefined abstract domains,
the approximation can eventually be automatically computed, but this restricts
the range of properties the abstract interpreter is capable of checking.

As previously stated, we did not found any contributions making use of abstract
interpretation as a Fv technique.

4.2.2.2 Techniques

Static Analysis Becker et al. [11] proposed a static analysis technique to check
whether a model transformation (formalized as graph rewriting) preserved constraints
expressed as (conditional) forbidden patterns in the output model. The study proved
that the structural adaptation does not transform a safe system state to an unsafe
one by verifying that the backward application of each rule to each forbidden pat-
tern cannot result in a safe state. Vieira and Ramalho [116] built a Java Api for
automatic inspection of Atl transformations: by calling appropriate methods in the
Api, transformation designers could retrieve the relations and dependencies of any
artefact involved in a transformation (e.g., which rules are impacted by the firing
of another one). Planas et al. [88] proposed to compute rule weak executability (i.e.
whether a rule can be safely fired without breaking input/output models’ integrity)

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 23

and rule set covering (i.e. whether a set of rules cover all elements of the source/target
metamodels) by static analysis on an Atl specification.

Model-Checking Rensink et al. compared in [97] two approaches for the model-
checking of Gbts. The first approach used the CheckVml Tool to transform a Gbt
system to a Promela model, further verified using Spin. The second approach used
the Groove Tool to simulate Gbt rules and build a state space of graphs for model-
checking. The second approach was found more suited for dynamic and symmetric
problems. Lucio et al. [70] implemented a model-checker for the DslTrans Tool that
builds a state space for a transformation where each state is a possible combination
of the transformation rules of a given layer, combined with all states of the previous
ones. The generated state space is then used to prove if properties hold for all input
models of the transformation. Varró and Pataricza [114] used model checking to
prove that dynamic consistency properties were preserved in a model transformation
from statecharts to Petri Nets. Rahim and Whittle [93] used the Java PathFinder
model-checker [117] to check the semantic conformance of the Java code produced
by two industrial code generators (Rhapsody and Visual Paradigm) with respect to
the semantics of Uml State Machines: they annotated the output Java program with
property specifications that the model-checker can then handle automatically.

Theorem Proving Asztalos et al. [73] proposed deduction rules that can be applied
to model transformation rules (formalized as graph rewriting) to prove or disprove a
property. The deduction rules were implemented as a verification framework in Vmts
(Visual Modeling and Transformation System) and was used to verify a refactoring
transformation on business process models. Paige et al. [87] compared two approaches
for the verification of model conformance checking and multi-view consistency checking
(Mvcc): with Pvs, a popular theorem prover based on set theory; and with Eiffel, an
object-oriented language. Nevertheless, performing Mvcc checking requires actually
executing the generated Eiffel code. Giese et al. [55] proposed formalizing Model-
to-Code transformations using Tggs in Fujaba, further verified within Isabelle/Hol.
Again with Isabelle/Hol, Blech, Glesner and Leitner [16] proved that a code-generation
transformation preserves the bisimulation between StateChart models and Java-like
code. Isabelle/Hol was also used by Schätz [102] to prove the conformance of output
models. Marković and Baar [7, 74] proved that a Java implementation of some of
their refactoring rules for Uml class diagrams containing Ocl constraints preserve the
instantiation semantic of class diagrams (although the reimplementation in Java of the
refactoring rules can be seen as a non-direct proof of the rules’ Ocl implementation).
Lano and Kolahdouz-Rahimi [67] used the B Method to prove several properties over
Uml-Rsds (syntactic correctness, uniqueness, and transformation confluence), from
which trustable Java code is generated automatically. B was also used by Ledang and
Dubois [68] to prove that user-defined invariants hold over Gbts. Barbosa et al. [8]
used the Maude’s Interactive Theorem Prover to prove a relatively simple form of
semantic preservation.

4.2.3 Type III: Transformation-Dependent and Input-Dependent

The following techniques are close to testing, since they hold for one particular model.
However, these techniques still cover all possible execution paths and can be exploited
offline.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


24 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

4.2.3.1 Using Traceability Links

To prove that a specific transformation preserved certain properties for a specific
input model, some studies proved that input-output relationships are maintained for a
transformation instance. Narayanan and Karsai used Great for both structural and
semantic relationships between source and target models. In [79,81], they generate
crosslinks between source and target models to check structural correspondence between
source and target models. In [80], they check state reachability in a transformation
between StateCharts to Extended Hybrid Automata, by checking the existence of
a bisimulation with the help of crosslinks between source and corresponding target
models.

4.2.3.2 Using Petri Net Analysis

Lara and Vangheluwe [39] formalized the operational semantics of a visual Tl using
graph rewriting. The transformations and the manipulated models were transformed
into Petri Nets to benefit from existing Fv techniques. The study further proposed
extending graph rewriting rules with timing information and transforming them into
timed Petri Nets for formal verification.

4.2.3.3 Using Constraint Solvers

Anastasakis et al. [5] used Alloy for simulation and assertion checking. Source and
target metamodels, as well as transformations, are represented as Alloy models.
The Alloy Analyzer then generates possible instances of the source metamodel and
the transformation; the Analyzer is then used to check if the corresponding target
model satisfies assertions. If no instance is found, it reveals inconsistencies in the
transformation specification. Cabot et al. [23] used Csp solvers to prove that invariants
automatically extracted from Qvt and Triple Graph Grammars rules hold, by reusing
an existing transformation from Uml [24].

4.2.3.4 Using Contracts

Design by Contracts is a well-known technique that consists of defining precise and
verifiable interface specifications for software components (e.g. in object-oriented
Gpls, these components could be classes, operations, or bigger combinations) through
invariants and pre-/post- conditions [14]. Strictly speaking, design by contracts is not
a Fv technique because it requires executing the transformation to discover contract
violations. However, we mention it because contracts can be formally exploited in two
ways: translating the contracts into a theorem-prover or a model-checker, assuming
that there is a way of resolving contracts underspecifications, typically by human
assistance (cf. e.g. the case of globally asynchronous, locally synchronous systems
relying on Promela and the Scade Verifier [50]); or proving that an implementation
respects the contract specification (cf. Eiffel itself [14] or the GnatProve Project for
Ada [112]). However, this still need more investigations in order to apply to current
metaprogrammed transformation languages.

Cariou and his colleagues [27, 28] studied the use of Ocl for the specification
of contracts for model transformations: they associate preconditions over the input
model for being eligible to transformation, postconditions on the output model for
being considered as a valid result, and other constraints expressed over the pair of
input/output models that track how model elements evolve during transformations.
They also applied their technique for the specification of Dsl semantics (following the

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 25

Transformation

Independent Dependent
In
p
u
t Independent

Type I:

[9] [86] [75] [107] [41]

[115] [65] [25] [91] [92]

Type II:

[97] [70] [11] [73] [87]

[55] [68] [114] [96] [93]

[116] [16] [7] [74] [8]

Dependent

Type III:

[80] [39] [81] [5]

[23] [28] [27]

Table 2 – Classification of Contributions according to Formal Verification techniques.

operational approach, cf. Section 2.4) and have demonstrated the feasibility of the
approach on Uml state machine executions [27]. Based on Ocl, the authors noticed
limitations due to the mono-context nature of Ocl and the difficulty of applying such
approach on exogeneous transformations because it requires the manipulation of an
amalgamated metamodel (i.e. a metamodel that includes both the source and the
target). Guerra, de Lara, Wimmer et al. [47] proposed PaMoMo, a platform for
declaratively specifying requirements independently of the language used to perform
the transformation. The visual contracts specifying the requirements can express
pre-/post-conditions (i.e. conditions for a model to be eligible for transformations, and
patterns in an output models to capture required or forbidden configurations for the
result) and invariants for the input/output pair of models, and can be automatically
translated into Qvt-R for checking that a given transformation (expressed using Gbt)
respects them. Being formally defined, the PaMoMo contract language allows an
enhanced diagnosis process when contracts are violated, pointing precisely to model
elements involved in the violation, as well as reasoning on the consistency of the
contracts by detecting redundancies, contradictions and pattern satisfactions and
assessing metamodel coverage.

4.3 Summary

Table 2 classifies the literature contributions according to the last dimension, namely the
formal verification technique employed for ensuring transformation correctness. This
research emphasised two cross-cutting levels: whether a verification technique depends
on the transformation at hand, or applies to all possible transformation expressible
within the transformation framework; and whether it depends on a particular input
model, or for all possible conforming input models. This classification offers a graduated
evaluation of the effort needed for the verification process: the more specific it is (i.e.
specific to a transformation and an input model), the easier and “lightweight” the
technique can be performed. At one extreme, transformation-dependent and input-
dependent techniques are very close to testing, but with the fundamental difference
that they are still offline.

Another result of this research is the large spectrum of techniques already imple-

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


26 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

mented for verifying model transformations. With the notable exception of Abstract
Interpretation, all other techniques are at least implemented by one contribution, the
most represented being model-checking. Beyond its relative popularity, model-checking
is an attractive technique for two reasons: it is fully automatic, and the state explosion
problem can be sometimes circumvented within specific contexts, when the models
involved in a transformation are sufficiently small.

5 Discussion

Our tridimensional classification captures all variation points influencing the activity
of formally verifying model transformations. In this Section, we first revisit the tridi-
mensional classification, then elaborate on the relation between model transformation
intent and characteristic properties.

5.1 Revisiting the Tridimensional Classification

Our classification is based on three dimensions: the transformation (T), the property
kind (PK) and the formal verification technique (FVT) used for proving the properties
(cf. Figure 1). We now revisit this classification by studying the relations between
each pair of dimensions, extracting lessons from our survey (cf. Figure 5).

5.1.1 Property Kind / Fv Technique (PK/FVT)

This relation is the best explored within this paper, and directly relates to the
contributions made by the Computer-Aided Verification community: on the one
hand, we distinguished two property kinds that follow the dual nature of model
transformations [22] to obtain language- related and transformation-related properties;
on the other hand, we identified three different types of Fv techniques that depend or
not on the transformation and the input.

From the literature, we showed that language-related properties, such as termination
or determinism, are often proved mathematically: when it is possible to establish such
properties for all transformations expressible in a given Tl, the proof is discharged
mathematically once and for all; otherwise, sufficient criteria (also mathematically
proved) are integrated into Tls to help transformation designers establish those kind
of properties for each transformation. The difficulty is then to ensure that the Tl’s
implementation adequately follows the mathematical proofs.

Classical Fv techniques, such as static analysis, model-checking, theorem-proving,
are mostly employed for transformation-related properties that are related to the
transformation’s semantics, and that have to be verified on all possible inputs. We
note that abstract interpretation is largely absent from the reviewed contributions.
Two explanations can justify this fact: the underlying difficulty of the mathematical
underground, and the lack of general-purpose tools.

It is sometimes interesting to prove some properties of interest on a specific input
only, for example when the transformation is used on a limited number of input models
that need to be deployed within an application (e.g. a transformation expressing the
behaviour of a Dsl). In this context, the classical techniques remain applicable but
lightweight approaches become also interesting because they are generally easier to
deploy.

An interesting trend in the literature is the use of model syntactic correspondences.
Although the idea already exists for programming languages, it reaches another level
of complexity for model manipulations. Capturing the similarity of the input and

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 27

Transformation

Verification
Technique

Property (kinds)
PK/FVT

T/PK

T/FVT

Clockwise

Scenario

Anticlockwise

Scenario

Figure 5 – Closing the loop. Analysing the relationship between pairs of dimensions in the
classification provides an interesting insight of the current trends in formal verifica-
tion of model transformations: (PK/FVT) documents how property kinds have been
successfully analysed by dedicated techniques, revealing numerous lacks (e.g., the in-
existence of abstract interpretation-based analyses) and trends (e.g., model syntactic
correspondences); (T/FVT) uncovered an interesting trend of using existing verifica-
tion domains instead of developing new analysis tools; (T/PK) demonstrated that the
notion of intent, a “semantic” classification of model transformations, is more conve-
nient for deriving the properties one needs to prove to ensure correctness, and is also a
plea for the clockwise scenario, i.e. reasoning according to the transformation/property
pair instead of being guided by technical choices when first selecting the verification
technique/tool as in the anti-clockwise scenario.

output models through patterns or contracts expressed on each side avoids diving into
the complexity of the semantic layer. This trend has interesting results for structural
models, but can only provide a quick check for more complex models that integrate
behaviour.

5.1.2 Transformation / Fv Technique (T/FVT)

This relation remains largely unexplored in our work as well as in the literature. It
seems natural that the underlying paradigm of Tls would influence the spectrum
of Fv techniques that are usable for proving some property kinds. The respective
research communities (of programming languages on the one hand, and of verification
on the other hand) could provide interesting knowledge about the core principles
governing this relation, and to which extent it is possible to adapt this knowledge to
the manipulation of models.

From the literature, we noticed however an interesting trend. Instead of developing
specific techniques for model transformations, some contributions took the opposite
approach: they express the full semantics of a Tl within a verification domain that
is usually a general-purpose programming language already equipped with analy-
sis capabilities. For example, Maude, a powerful algebraic specifications rewriting
engine allowing simulation, model-checking and theorem-proving within the same
framework [31], has been chosen as a semantic and verification domain for various
Tls belonging to different styles: Gbt in simple/ double pushout style [100]; object-
oriented metaprogramming in Kermeta [2]; and hybrid transformations in Atl [113].
This approach is interesting because it is often perceived as easier than developing an
analysis engine from scratch. However, it is limited by two factors: first, the spectrum

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


28 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

of verifiable property kinds is limited by the verification domain itself; second, it
forces to have a minimal knowledge of the verification domain in order to interpret
the verification answers, since the backward translation is almost never implemented.

The previous trend requires a deep understanding of both the Tl’s and the
verification domain’s semantics in order to adequately express the first into the other.
For reaching better results, and overcoming the limitations that may hinder the
verification process, we believe that the Mde community should invest into two
research directions for enabling formal verification scalable in an industrial context.
First, investigating the development of verification engines that are fully aware of the
specificities of models and their manipulation could bring a significant improvement
both in terms of usability (thus overcoming the second limiting factor), as well as
performance and scalability (because translations to verification domains are avoided).
Second, deriving models specifically for the verification process could be interesting:
those models would contain additional information for “guiding” verification algorithms
or for decorating them with information computed during verification: e.g., annotating
operations with call sites to accelerate call graph construction1. Of course, such a
practice raises the usual questions: how is it possible to maximise the automation of
the derived models creation, and how to keep both models synchronised. We expect
the community to focus on those topics in the upcoming years, when Mde will gain
more audience in embedded and critical systems.

5.1.3 Transformation / Property Kind (T/PK)

We showed on a simple example that the current classifications for model transformation
are not sufficient to derive the properties one needs to prove to ensure transformation
correctness. What really matters is the intent of a transformation: by capturing the
purpose of a transformation instead of the form of its expression, one can define precisely
what is the appropriate notion of correctness attached to this transformation. We
extracted several kinds of properties of model transformations from the contributions
found in the literature; however, a more systematic study of both dimensions and how
they relate to each other will enable a better engineering of model transformation
verification.

5.2 Gluing all dimensions: towards an Intents/Properties Mapping

How can a transformation designer be guided through the process of formally verifying
model transformations, especially when those transformations are used in sensitive
applications like safety-critical, embedded or cyber-physical systems? We have already
discussed the drawbacks of first selecting a transformation engine natively equipped
with predefined verification capabilities, which corresponds to the anticlockwise scenario
in Figure 5.

In our opinion, another possibility is more desirable: the clockwise scenario of
Figure 5 makes a central place to the notion of model transformation intent by gluing
together all three dimensions.

Figure 6 depicts our proposal for an intent-based verification engineering [71]. Our
three dimensions are represented in the bottom, greyed layer: a formal verification tool
makes use of both the transformation (specification) and the various properties. We

1We thank the participants of the Volt 2013 Workshop for this suggestion and their feedback on
industrial applications of Mde verification

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 29

¬

­ ®

¯

Figure 6 – Building an Intent/Property Mapping (borrowed from [71]). The grey area
represents the classical approach, which solely uses the transformation specification to
figure out which properties to prove. Out approach takes a semantic detour: determine
the transformation intent ­ that conveys the purpose of a transformation ¬, then
look at the associated intent properties ®, finally translate them into transformation
properties ¯.

motivated in Section 2.4 the fact that finding the appropriate properties for a given
transformation is difficult based on a syntactic characterisation of transformations.

Instead of working at a syntactic level, the clockwise scenario suggests to work at
a more “semantic” level: an intent captures the purpose of a set of transformations
independently of the language they are expressed in, and independently of their
syntactic features. Some intents will by nature fix specific syntactic aspects: e.g.,
defining a Dsl’s semantics operationally or refactoring a transformation specification
always happens endogenously. Providing a catalogue of such intents for identifying
the appropriate intent of a transformation should be based on the identification of
recurrent problems of transformation specification, and the documentation of their
solution based on the best practices of the engineering experience, just as it happens for
design patterns (for object-oriented programming [42], enterprise application, security
applications, etc.)

In this approach, transformations are related to intent properties that capture the
notion of correctness appropriate for each intent. Intent properties always include what
we have called transformation-related properties (Section 3.2) for describing the intent
computation type. Furthermore, we can characterise intent properties by the level
they are operating at: either syntactic, referring to the transformation specification; or
semantic, referring to the transformation execution. We found properties kinds that
share the samemathematical form, although acting at different levels. A (mathematical)
relation maps either syntactic elements (i.e. objects, attributes and so on) through
structural correspondences [1, 79, 81], or semantic elements (i.e. states from the
semantic domains) through (bi-)simulations [16, 32, 80]. A preservation expresses
patterns at a syntactic level [46,70,85], or formulas at a semantic level [114] that need
to be proved equivalent (in a given sense) through the transformation. Behavioural
properties use safety properties that should hold on the transformation execution
[8, 11,23,44,68, 86,95,98,100]. Figure 7 places some of the contributions reviewed in

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


30 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

Structural

[1, 79,81]

. . .

Pattern-Based

[46, 70,85]

. . .

(Bi-)Simulation
[16, 32,80]

. . . . . .

Safety Preservation
[114]

Invariants
[11, 23,68,86]
Safety Property
[8, 44,95,98,100]

ApproachesCorrespondence

. . .

Figure 7 – Classification of some contributions from the Property Kind Dimension (Sec-
tion 3.2), according to the mathematical form of the property to-be-proven and its
application level.

Section 3.2 according to their mathematical form and application level. New forms
should be expected when studying new intents.

We are currently working on an Intent/Property Framework whose purpose is
relate each possible intent with the set of properties that characterise it, providing
an efficient, practical way to guide the engineers’ work towards the verification of
their transformation. As an illustration, let us apply these ideas to our small example
of Section 2.4. For a Dsl semantics defined operationally, the transformation cor-
recntess should be assessed through the proof of behavioural, temporal properties,
and depending on the nature of the Dsl, termination and/or determinism may not
hold: e.g., a security system embedded in a car should not terminate by itself (until
the engine is stopped). When defined translationally, the correctness is assessed by
establishing correctness relations between each side of the transformation: structural
correspondences between the source and target model or, if an explicit representation
of each semantic domain is available, a bisimulation.

These ideas have already been investigated in [3, 71] : we have built an intent
catalogue that documents more than 20 transformation purposes; and we have formally
described properties at various abstraction levels. We established these intent/property
mapping for five of the most common intents found in the literature, corresponding to
the higher level of Figure 6, and describe the application of such mappings for concrete
transformations. Naturally, practical experimentation as well as further description of
other intents will allow us to validate and/ or improve this Framework.

6 Related Work

The interest of the MDE community in the formal verification of model transforma-
tions grew up significantly in the recent years leading to a large number of different
approaches. This Section discusses previous reviews of model transformation vali-
dation [26, 43, 94] that complete the tridimensional classification presented in this
paper.

Calegari and Szasz [26] borrowed our tridimensional classification (originally pre-
sented in [4]) to extract a state-of-the-art from a systematic literature review. Beyond

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 31

being systematic, and written more than a year later, thus covering more contributions,
their work enunciates two additional property kinds: preservation of execution se-
mantics at the language-related level, and functional behaviour at the transformation
related level. The former is defined as the fact that “the transformation execution
must behave as expected according to the definition of the transformation language
semantics”: with the vocabulary of Figure 2, it means that transformation executions
should comply, or respect, the transformation specification’s semantics. For us, this
is not a property kind per se: preserving the execution’s semantics cannot be the
transformation designer’s responsibility, who simply has the role of a user of the
transformation engine, but rather the responsibility of the transformation language
itself to ensure that sentences of the language execute correctly with respect to their
expected semantics. Besides, at a lower level of abstraction, this is the minimal
expectation for a transformation language. The latter property kind is not general
but only applies for graph-based, model-to-model transformations, as described in the
framework studied in the work [23] from which it has been borrowed. In contrast,
our classification is agnostic of the transformation language’s paradigm and its imple-
mentation. Furthermore, the authors also consider testing as a verification technique:
this directly contradicts our full covering and static criteria (cf. Section 4.1.2) for an
analysis technique for being considered as formal. Summarising, Calegari and Szasz
base their study on a relaxed definition of what verification is, and do not propose
any new property kinds to panorama of properties we present here.

Rahim and Whittle [94] proposed a large survey using as a primary entry point the
validation techniques employed, extending their study to informal approaches as well:
testing, generated code inspection and metrics. Surprisingly, they also consider “graph
transformation” as a specialised possible entry, whereas we showed that most of the
techniques can be employed independently of the transformation language’s paradigm.
For us, it is not a technique, but rather simply a transformation language’s paradigm
(cf. Dimension 1 in Section 2) for which elements from other dimensions (property
kinds and Fv techniques) can indistinctly apply: as a matter of fact, we showed that
model-checking and theorem-proving, among others, are already available for Gbts.
Interestingly, they cover certification techniques, i.e. techniques generating checkable
evidence — either by a human or by another machine — that the verification process
went well; this is only partially covered by our work. We did not consider certification
as a primary technique since it always subsumes some sort of analysis performed ahead
of the certification process. Similarly to our Fv types in Section 4.2, they distinguish
between indirect/direct techniques (corresponding to our input (in-)dependent type).
At a finer-grained level, they included two additional points that are, from our point
of view, less objective: the input/output complexity, i.e. the amount of data to inject
to make things work; and the tooling, i.e. whether tool support exists for a reviewed
approach. We do not address those points at all due to their subjectivity, but also
because they are subject to evolution in the future.

Gabmeyer, Brosch and Seidl [43] proposed a feature-based classification of only five
contributions specifically targetting the model-checking Fv technique. Not surprisingly,
many of their features cross components of our dimensions: for example, their verifica-
tion goal is largely covered by the property kind dimension; their domain representation
corresponds to our transformation dimension. Contrasting to our classification that
remains general, they adopt a finer-grained classification for model-checking specifici-
ties: the state space representation and the precise model-checked property. Although
preliminary, their feature-based classification can be complementary to ours if it
is extended to all Fv techniques: with finer-grained features, comparing literature

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


32 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

contributions becomes easier, at the likely expense of complicated the classification
grid.

7 Conclusion

This paper proposed to analyse the question of formal verification of properties for Mde
applications according to a tridimensional classification, based on the core ingredients
involved in verification: transformations, properties and formal verification techniques.
Several contributions can be identified in our work : (i) it broadened the conceptual
definition of model transformation and discussed the necessity of a classification based
on transformations’ intents; (ii) it proposed a comprehensive taxonomy of property
kinds, supported by many contributions from the literature; (iii) it proposed a review
of the available verification techniques supported by the contributions in the literature
to ensure such properties. This study also discussed in detail how the relations between
each dimension can bring more insight about the current practice in this field. Note
that this study is complementary to another popular validation technique, testing,
which was largely explored and surveyed in the recent years (cf. [10, 57,103]).

Future work should identify how it is possible to take advantage of each verification
technique and overcome their respective drawbacks [120]. As a concrete continuation of
this work, we would like to propose the community to contribute for a comprehensive
benchmark for Fv of transformations: it consists of storing pairs constituted by a
transformation together with its properties of interest. This benchmark can help
researchers as well as practitioners, and could provide a common reference for playing
with verification of transformations by easily targeting a technique, a property kind
among those identified in this paper, and comparing efficiency and scalability of
approaches.

References

[1] David Akehurst, Stuart Kent, and Octavian Patrascoiu. A Relational Approach
to Defining and Implementing Transformations in Metamodels. Journal of
Software and Systems Modeling (SoSyM), 2(4):215–239, 2003.

[2] Moussa Amrani. Towards The Formal Verification of Model Transformations
— An Application to Kermeta. PhD thesis, University of Luxembourg, 2013.

[3] Moussa Amrani, Jürgen Dingel, Leen Lambers, Levi Lúcio, Rick Salay, Gehan
Selim, Eugene Syriani, and Manuel Wimmer. Towards a Model Transformation
Intent Catalog. In Proceedings of the First Workshop on Analysis of Model
Transformations (Amt), October 2012.

[4] Moussa Amrani, Levi Lúcio, Gehan Selim, Benoît Combemale, Jürgen Dingel,
Hans Vangheluwe, Yves Le Traon, and James R. Cordy. A Tridimensional
Approach for Studying the Formal Verification of Model Transformations. In
Proceedings of the First Workshop on Verification And Validation of Model
Transformations (Volt), April 2012.

[5] Kyriakos Anastasakis, Behzad Bordbar, and Jochen M. Küster. Analysis of
Model Transformations via Alloy. In MoDeVVa, pages 47–56, 2007.

[6] Andy Schürr and Felix Klar. 15 Years of Triple Graph Grammars. In Interna-
tional Conference on Graph Transformation ( Icgt), pages 411–425, 2008.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 33

[7] Thomas Baar and Slaviša Marković. A Graphical Approach to Prove the
Semantic Preservation of Uml/Ocl Refactoring Rules. In I. Virbitskaite and
A. Voronkov, editors, 6th International Andrei Ershov Memorial Conference
— Perspectives of Systems Informatics Psi, volume 4378 of Lecture Notes in
Computer Science, pages 70–83, 2006.

[8] Paulo E.S. Barbosa, Franklin Ramalho, and Jorge C.A. de Figueiredo. An Ex-
tended MDA Architecture for Ensuring Semantics-Preserving Transformations.
In Annual Ieee Software Engineering Workshop (Sew), 2008.

[9] Bruno Barroca, Levi Lúcio, Vasco Amaral, Roberto Félix, and Vasco Sousa.
DslTrans: A Turing-Incomplete Transformation Language. In Software
Language Engineering (Sle), volume 6563 of Lecture Notes in Computer
Science, 2010.

[10] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le
Traon, and Jean-Marie Mottu. Barriers to Systematic Model Transforma-
tion Testing. Communications of the ACM, 53(6):139–143, 2010.

[11] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein, and Daniela Schilling.
Symbolic Invariant Verification For Systems With Dynamic Structural Adap-
tation. In International Conference on Software Engineering ( Icse), 2006.

[12] Josh Berdine, Byron Cook, Dino Distefano, and Peter W. O’Hearn. Automatic
Termination Proofs for Programs with Shape-Shifting Heaps. In Computer-
Aided Verification (Cav), volume 4144 of Lecture Notes in Computer Science,
pages 386–400, 2006.

[13] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development — Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. Springer, 2004.

[14] Bertrand Meyer. Object-Oriented Software Construction (2nd Edition). Pren-
tice Hall, 2000.

[15] Enrico Biermann. Local Confluence Analysis of Consistent Emf Transforma-
tions. Electronic Communications of the European Association of Software
Science and Technology Easst, 38:68–84, 2011.

[16] Jan Olaf Blech, Sabine Glesner, and Johannes Leitner. Formal Verification of
Java Code Generation From UML Models. In Fujaba Days, 2005.

[17] Matthias Bohlen, Chad Brandon, Martin West, Carlos Cuenca, Peter Friese,
Naresh Bhatia, Steve Jerman, Joel Kozikowski, Bob Fields, Michail Plush-
nikov, and Vance Karimi. The AndroMda Website: http://www.andromda.
org.

[18] Paul Boocock. The Jamda Website http://jamda.sourceforge.net.

[19] Artur Boronat. MoMent: A Formal Framework for Model manageMent.
PhD thesis, University of Valencia, 2007.

[20] H.J. Sander. Bruggink. Towards a Systematic Method for Proving Termination
of Graph Transformation Systems. Electronic Notes in Theoretical Computer
Science (Entcs), 213(1):23–28, 2008.

[21] Bx Community. The Bidirectional Transformations (Bx) Community Wiki
http://bx-community.wikidot.com/.

Journal of Object Technology, vol. 14, no. 3, 2015

http://www.andromda.org
http://www.andromda.org
http://jamda.sourceforge.net
http://bx-community.wikidot.com/
http://dx.doi.org/10.5381/jot.2015.14.1.a3


34 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

[22] Jean Bézivin, Fabian Büttner, Martin Gogolla, Frédéric Jouault, Ivan Kurtev,
and Arne Lindow. Model Transformations? Transformation Models! In Model
Driven Engineering Languages and Systems (MoDELS), Lecture Notes in
Computer Science, 2006.

[23] Jordi Cabot, Robert Clarisó, Esther Guerra, and Juan de Lara. Verification
and Validation of Declarative Model-to-Model Transformations Through
Invariants. Journal of Systems and Software, 83(2):283–302, 2010.

[24] Jordi Cabot, Robert Clarisó, and Daniel Riera. Verification of UML/OCL
Class Diagrams Using Constraint Programming. In International Workshop
on Model-Driven Engineering, Verification, and Validation (MoDeVVa), pages
73–80, 2008.

[25] Daniel Calegari, Carlos Luna, Nora Szasz, and Álvaro Tasistro. A Type-
Theoretic Framework for Certified Model Transformations. In Jim Davies,
Leila Silva, and Adenilso Simao, editors, Formal Methods: Foundations and
Applications, volume 6527 of Lecture Notes in Computer Science, pages 112–
127. Springer Berlin Heidelberg, 2011.

[26] Daniel Calegari and Nora Szasz. Verification of Model Transformations: A
Survey of the State-of-the-Art. Electronic Notes in Theoretical Computer
Science (Entcs), 292:5–25, 2013.

[27] Eric Cariou, Cyril Ballagny, Alexandre Feugas, and Franck Barbier. Contracts
for Model Execution Verification. In Ecmfa, volume 6698 of Lncs, pages 3–18,
2011.

[28] Éric Cariou, Nicolas Belloir, Franck Barbier, and Nidal Djemam. OCL Con-
tracts For The Verification Of Model Transformations. In Workshop on the
Pragmatics of Ocl and Other Textual Specification Languages (Ocl), 2009.

[29] Marsha Chechik, Shiva Nejati, and Mehrdad Sabetzadeh. A Relationship-
Based Approach to Model Integration. Journal on Innovations in Systems and
Software Engineering ( Isse), 8(1):3–18, 2011.

[30] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model-Checking.
The MIT Press, 1999.

[31] Manuel Clavel, Francisco Duran, Steven Eker, Patrick Lincoln, Narciso Marti
Oliet, Jose Meseguer, and Carolyn Talcott. All About Maude. A High-
Performance Logical Framework, volume 4350 of Lecture Notes in Computer
Science (Lncs). Springer, July 2007.

[32] Benoit Combemale, Xavier Crégut, Pierre-Loïc Garoche, and Xavier Thiri-
oux. Essay On Semantics Definition in Mde – An Instrumented Approach for
Model Verification. Journal of Software, 4(9):943–958, 2009.

[33] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleaveland, J. F.
Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock, N. P. Mendler, P.
Panangaden, Scott F. Smith, and James T. Sasaki. Implementing Mathematics
with The NuPrl Proof Development System. Prentice–Hall, 1984.

[34] Patrick Cousot and Radhia Cousot. A Gentle Introduction to Formal Verifica-
tion of Computer Systems by Abstract Interpretation. In Javier Esparza, Orna
Grumberg, and Manfred Broy, editors, Logics and Languages for Reliability
and Security, Nato Series III: Computer and Systems Sciences, pages 1–29.
IOS Press, 2010.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 35

[35] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of Model Trans-
formation Approaches. Ibm Systems Journal, 45(3):621–645, 2006.

[36] Krzysztof Czarnecki, Zhenjiang Hu, Ralf Lämmel, Andy Schürr, and James F.
Terwilliger. Bidirectional Transformations: A Cross-Discipline Perspective
(Grace Meeting Notes, State of the Art, and Outlook). In International
Conference on Model Transformation: Theory And Practice ( Icmt), pages
260–283, 2008.

[37] Juan de Lara and Esther Guerra. Pattern-Based Model-to-Model Transforma-
tion. In International Conference on Graph Transformations ( Icgt), pages
426–441. Springer-Verlag, 2008.

[38] Juan de Lara and Hans Vangheluwe. Using AToM3 as a Meta-Case Tool. In
International Conference on Enterprise Information Systems ( Iceis), pages
642–649, 2002.

[39] Juan de Lara and Hans Vangheluwe. Automating the Transformation-Based
Analysis of Visual Languages. Formal Aspects of Computing, 22(3-4):297–326,
2010.

[40] Hartmut Ehrig, Karsten Ehrig, Claudia Ermel, Frank Hermann, and Gabriele
Taentzer. Information Preserving Bidirectional Model Transformations. In
International Conference on Fundamental Approaches to Software Engineering
(Fase), volume 4422, pages 72–86, 2007.

[41] Hartmut-Karsten Ehrig, Gabriele Taentzer, Juan de Lara, Dániel Varró, and
Szilvia Varró Gyapai. Termination Criteria for Model Transformation. In
International Conference on Fundamental Approaches to Software Engineering
(Fase), 2005.

[42] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[43] Sebastian Gabmeyer, Petra Brosch, and Martina Seidl. A Classification of
Model Checking-Based Verification Approaches for Software Models. In Pro-
ceedings of the Second Workshop on Verification And Validation of Model
Transformations (Volt), 2013.

[44] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. Combining
Formal Methods and Mde Techniques for Model-Driven System Design and
Analysis. Journal On Advances in Software, 3(1–2):1–18, 2010.

[45] Roy Grønmo, Ragnhild Runde, and Birger Møller Pedersen. Confluence of
Aspects For Sequence Diagrams. Journal of Software and Systems Modeling
(SoSyM), 12(4):789–824, Sep. 2011.

[46] Esther Guerra, Juan de Lara, and Fernando Orejas. Pattern-Based Model-to-
Model Transformation: Handling Attribute Conditions. In Proceedings of the
2nd International Conference on Theory and Practice of Model Transforma-
tions ( Icmt), pages 83–99. Springer-Verlag, 2009.

[47] Esther Guerra, Juan de Lara, Manuel Wimmer, Gerti Kappel, Angelika Kusel,
Werner Retschitzegger, Johannes Schönböck, and Wieland Schwinger. Au-
tomated Verification of Model Transformations Based on Visual Contracts.
Automated Software Engineering, 20(1):5–46, 2013.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


36 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

[48] Clément Guy. Facilités de Typage pour l’Ingénierie des Modèles. PhD thesis,
University of Rennes I (France), 2013.

[49] Clément Guy, Benoit Combemale, Steven Derrien, Jim Steel, and Jean-Marc
Jézéquel. On Model Subtyping. In Antonio Valecillo, editor, 8th European
Conference on Modelling Foundations and Applications (Ecmfa), volume
7349 of Lecture Notes in Computer Science, pages 400–415. Springer Verlag,
2012.

[50] Henning Günther, Stefan Milius, and Oliver Möller. On the Formal Verification
of Systems of Synchronous Software Components. In Frank Ortmeier and
Peter Daniel, editors, Computer Safety, Reliability, and Security, volume
7612 of Lecture Notes in Computer Science, pages 291–304. Springer Berlin
Heidelberg, 2012.

[51] David Harel and Bernhard Rumpe. Meaningful Modeling: What’s the Seman-
tics of "Semantics"? Computer, 37(10):64–72, 2004.

[52] Reiko Heckel, Jochen M. Küster, and Gabriele Taentzer. Confluence of Typed
Attributed Graph Transformation Systems. In International Conference on
Graph Transformation ( Icgt), 2002.

[53] Frank Hermann, Hartmut Ehrig, Fernando Orejas, Krzysztof Czarnecki, Zi-
novy Diskin, Yingfei Xiong, Susann Gottmann, and Thomas Engel. Model
Synchronization Based On Triple Graph Grammars: Correctness, Complete-
ness and Invertibility. Journal of Software and Systems Modeling (SoSyM),
pages 1–29, 2013.

[54] Stephan Hildebrandt, Leen Lambers, Holger Giese, Jan Rieke, Joel Greenyer,
Wilhelm Schäfer, Marius Lauder, Anthony Anjorin, and Andy Schürr. A Survey
of Triple Graph Grammar Tools. In International Workshop on Bidirectional
Transformations (Bx), 2013.

[55] Holger Giese, Sabine Glesner, Johannes Leitner, Wilhelm Schäfer, and Robert
Wagner. Towards Verified Model Transformations. In International Workshop
on Model-Driven Engineering, Verification, and Validation (MoDeVVa),
pages 78–93, 2006.

[56] Daniel Jackson. Software Abstractions: Logic, Language and Analysis. MIT
Press, 2011.

[57] Yue Jia and Mark Harman. An Analysis and Survey of the Development of
Mutation Testing. Ieee Transactions of Software Engineering, 37(5):649–678,
2010.

[58] Shmuel Katz. Aspect Categories and Classes of Temporal Properties. Transac-
tions on Aspect-Oriented Software Development, 3880:106–134, 2006.

[59] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling
Full Code Generation. Wiley-IEEE Computer Society, March 2008.

[60] B. Kitchenham. Guidelines for performing Systematic Literature Reviews
in Software Engineering. Technical report, University of Durheim and Keele
University, 2007.

[61] Barbara A. Kitchenham. Procedures for Undertaking Systematic Reviews.
Technical Report TR/SE-0401, Computer Science Department, Keele Univer-
sity & National ICT Australia Ltd., 2004.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 37

[62] Dimitrios Kolovos, Louis Rose, Antonio García Domínguez, and Richard
Paige. The Epsilon Book. The Eclipse Foundation, 2012.

[63] Alexander König and Andy Schürr. Tool Integration with Triple Graph
Grammars – A Survey. Electronic Notes in Theoretical Computer Science
(Entcs), 148(1):113–150, 2006.

[64] Thomas Kühne, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer. Systematic Transformation Development. Electronic Com-
munications of the European Association of Software Science and Technology
Easst, 21, 2009.

[65] Jochen M. Küster. Definition and Validation of Model Transformations.
Journal of Software and Systems Modeling (SoSyM), 5(3):233–259, 2006.

[66] Leen Lambers, Hartmut Ehrig, and Fernando Orejas. Efficient Detection of
Conflicts in Graph-based Model Transformation. Electronic Notes in Theoreti-
cal Computer Science (Entcs), 152:97–109, 2006.

[67] Kevin Lano and Shekoufeh Kolahdouz Rahimi. Specification and Verification
of Model Transformations Using Uml-Rsds. In Integrated Formal Methods
(iFm), volume 6396 of Lecture Notes in Computer Science, pages 199–214,
2010.

[68] Hung Ledang and Hubert Dubois. Proving Model Transformations. In Fourth
International Symposium on Theoretical Aspects of Software Engineering
(Tase), pages 35–44, 2010.

[69] Tihamér Levendovszky, László Lengyel, and Tamás Mészáros. Supporting
Domain-Specific Model Patterns With Metamodeling. Journal of Software and
Systems (SoSyM), 8(4):501–520, 2009.

[70] Levi Lúcio, Bruno Barroca, and Vasco Amaral. A Technique for Automatic
Validation of Model Transformations. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS), 2010.

[71] Levi Lúcio, Moussa Amrani, Jürgen Dingel, Leen Lambers, Rick Salay, Gehan
Selim, Eugene Syriani, and Manuel Wimmer. Model Transformation Intents
and Their Properties. Journal of Software and Systems Modeling (SoSyM),
pages 1–38, July 2013.

[72] Ralf Lämmel. Coupled Software Transformations (Extended Abstract). In First
International Workshop on Software Evolution Transformations, pages 31–35,
2004.

[73] Márk Asztalos, László Lengyel, and Tihamer Levendovszky. Towards Auto-
mated, Formal Verification of Model Transformations. In Third International
Conference on Software Testing, Verification and Validation ( Icst), 2010.

[74] Slaviša Marković and Thomas Baar. Refactoring OCL Annotated Uml Class
Diagrams. Journal of Software and Systems Modeling (SoSyM), 7(1):25–47,
2008.

[75] Tiago Massoni, Rohit Gheyi, and Paulo Borba. Formal Refactoring for UML
Class Diagrams. In 17th Brazilian Symposium on Software Engineering (Sbse),
pages 152–167, 2005.

[76] Tom Mens and Pieter Van Gorp. A Taxonomy Of Model Transformation.
Electronic Notes in Theoretical Computer Science (Entcs), 152:125–142,
2006.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


38 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

[77] Tim Molderez, Hans Schippers, Dirk Janssens, Haupt Michael, and Robert
Hirschfeld. A Platform for Experimenting with Language Constructs for
Modularizing Crosscutting Concerns. In Proceedings of the Third Interna-
tional Workshop on Academic Software Development Tools and Techniques
(WASDeTT), 2010.

[78] Pierre-Alain Muller, Franck Fleurey, and Jean-Marc Jézéquel. Weaving Ex-
ecutability Into Object-Oriented Meta-Languages. In Proceedings of the 8th
international conference on Model Driven Engineering Languages and Systems
(MoDels), pages 264–278, 2005.

[79] Anantha Narayanan and Gabor Karsai. Specifying the Correctness Properties
of Model Transformations. In Proceedings of the Third International Workshop
on Graph and Model Transformations (GraMoT), pages 45–52, 2008.

[80] Anantha Narayanan and Gabor Karsai. Towards Verifying Model Transforma-
tions. Electronic Notes in Theoretical Computer Science (Entcs), 211:191–200,
April 2008.

[81] Anantha Narayanan and Gabor Karsai. Verifying Model Transformation
By Structural Correspondence. Electronic Communications of the European
Association of Software Science and Technology Easst, 10:15–29, 2008.

[82] Maxwell Herman Alexander Newman. On Theories With a Combinatorial
Definition of "Equivalence". Annals of Mathematics, 43(2):223–243, 1942.

[83] Jörg Niere and Albert Zündorf. Using Fujaba for the Development of Pro-
duction Control Systems. In Proceedings of the International Workshop and
Symposium on Applications Of Graph Transformations With Industrial Rele-
vance (Agtive), volume 1779, pages 191–191, 1999.

[84] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/Hol:
A Proof Assistant for Higher-Order Logic, volume 2283 of Lecture Notes in
Computer Science. Springer-Verlag, 2013.

[85] Fernando Orejas and Martin Wirsing. On the Specification and Verification
of Model Transformations. In Jens Palsberg, editor, Semantics and Algebraic
Specification, volume 5700 of Lecture Notes in Computer Science, pages 140–
161. Springer Berlin Heidelberg, 2009.

[86] Julia Padberg, Magdalena Gajewsky, and Claudia Ermel. Refinement versus
Verification: Compatibility of Net Invariants and Stepwise Development of
High-Level Petri Nets. Technical report, Technische Universität Berlin, 1997.

[87] Richard F. Paige, Phillip J. Brooke, and Jonathan S. Ostroff. Metamodel-
Based Model Conformance and Multi-View Consistency Checking. Acm
Transactions on Software Engineering and Methodology (Tosem), 16(3):1–48,
2007.

[88] Elena Planas, Jordi Cabot, and Cristina Gomez. Two Basic Correctness
Properties for Atl Transformations: Executability and Coverage. In Third
International Workshop on Model Transformation with ATL (Mt-Atl), 2008.

[89] Detlef Plump. Termination of Graph Rewriting is Undecidable. Fundamenta
Informaticæ, 33(2):201–209, 1998.

[90] Detlef Plump. Confluence of Graph Transformation Revisited. In Processes,
Terms and Cycles: Steps on the Road to Infinity, volume 3838 of Lecture
Notes in Computer Science, 2005.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 39

[91] Iman Poernomo. The Meta-Object Facility (Mof) Typed. In Acm Symposium
on Applied computing (Sac), pages 1845–1849, 2006.

[92] Iman Poernomo. Proofs-as-Model-Transformations. In Antonio Vallecillo,
Jeff Gray, and Alfonso Pierantonio, editors, Theory and Practice of Model
Transformations, volume 5063 of Lecture Notes in Computer Science, pages
214–228. Springer Berlin Heidelberg, 2008.

[93] Lukman Ab. Rahim and Jon Whittle. Verifying Semantic Conformance of State
Machine-to-Java Code Generators. In Proceedings of the International Con-
ference on Model Driven Engineering Languages and Systems (MoDELS),
pages 166–180, 2010.

[94] Lukman Ab. Rahim and Jon Whittle. A Survey of Approaches for Verifying
Model Transformations. Journal of Software and Systems (SoSyM), pages
1–26, 2013.

[95] Guilherme Rangel, Leen Lambers, Barbara König, Hartmut Ehrig, and Paolo
Baldan. Behavior Preservation in Model Refactoring Using DPO Transfor-
mations with Borrowed Contexts. In Hartmut Ehrig, Reiko Heckel, Grzegorz
Rozenberg, and Gabriele Taentzer, editors, Proceedings of the International
Conference on Graph Transformations ( Icmt), volume 5214 of Lecture Notes
in Computer Science, pages 242–256, 2008.

[96] Reiko Heckel and Sebastian Thöne. Behavioral Refinement of Graph
Transformation-Based Models. Electronic Notes in Theoretical Computer
Science (Entcs), 127(3):101–111, 2005.

[97] Arend Rensink, Àkos Schmidt, and Dániel Varró. Model Checking Graph
Transformations: A Comparison of Two Approaches. In International Confer-
ence on Graph Transformation ( Icgt), 2004.

[98] José E. Rivera, Francisco Durán, and Antonio Vallecillo. Formal Specification
and Analysis of Domain-Specific Models Using Maude. Simulation, 85(11–
12):778–792, 2009.

[99] José Eduardo Rivera. On The Semantics of Real-Time Domain-Specific Mod-
eling of Languages. PhD thesis, University of Malaga (Spain), October 2010.

[100] José Eduardo Rivera, Esther Guerra, Juan de Lara, and Antonio Vallecillo. An-
alyzing Rule-Based Behavioral Semantics of Visual Modeling Languages with
Maude. In Dragan Gašević, Ralf Lämmel, and Eric Wyk, editors, Proceeding
of the International Conference on Software Language Engineering (Sle), vol-
ume 5452 of Lecture Notes in Computer Science, pages 54–73. Springer Berlin
Heidelberg, 2009.

[101] Grzegorz Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformation, volume I. World Scientific Publishing, 1997.

[102] Bernhard Schätz. Verification of Model Transformations. In Proceedings of the
Ninth International Workshop on Graph Transformation and Visual Modeling
Techniques (Gt-Vmt), 2010.

[103] Gehan M.K. Selim, James R. Cordy, and Jürgen Dingel. Model Transformation
Testing: The State of the Art. In Workshop on Analysis of Model Transforma-
tions (Amt), 2012.

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3


40 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

[104] Shane Sendall and Wojtek Kozaczynski. Model Transformation: The Heart
And Soul Of Model-Driven Software Development. Ieee Software, 20(5):42–45,
2003.

[105] Fausto Spoto, Patricia M. Hill, and Étienne Payet. Path-Length Analysis of
Object-Oriented Programs. In International Workshop on Emerging Applica-
tions of Abstract Interpretation (Eaai), 2006.

[106] Jim Steel and Jean-Marc Jézéquel. On Model Typing. Journal of Software and
Systems (SoSyM), 6(4):401–413, 2007.

[107] Kurt Stenzel, Nina Moebius, and Wolfgang Reif. Formal Verification of QVT
Transformations for Code Generation. In International Conference on Model
Driven Engineering Languages and Systems (MoDELS), 2011.

[108] Perdita Stevens. A Landscape Of Bidirectional Model Transformations. In
Ralf Lämmel, Joost Visser, and João Saraiva, editors, Summer School on
Generative and Transformational Techniques in Software Engineering, volume
5235 of Lecture Notes in Computer Science, pages 408–424. Springer, 2008.

[109] Perdita Stevens. Bidirectional Model Transformations in Qvt: Semantic Issues
and Open Questions. Journal of Software and Systems, 9(1):7–20, 2009.

[110] Eugene Syriani. A Multi-Paradigm Foundation for Model Transformation
Language Engineering. PhD thesis, McGill University, 2011.

[111] Gabriele Taentzer. Agg: A Tool Environment for Algebraic Graph Trans-
formation. In Proceedings of the International Workshop and Symposium on
Applications Of Graph Transformations With Industrial Relevance (Agtive),
volume 1779, pages 333–341, 2000.

[112] The OpenDo Initiative. The GnatProve Project http://www.open-do.org/
projects/hi-lite/gnatprove/.

[113] Javier Troya and Antonio Vallecillo. A Rewriting Logic Semantics for ATL.
Journal of Object Technology (JoT), 10(5):1–29, 2011.

[114] Dániel Varró and András Pataricza. Automated Formal Verification of Model
Transformations. In Proceedings of the Critical Systems Development in UML
Workshop, pages 63–78, 2003.

[115] Dániel Varró, Szilvia Varró Gyapai, Hartmut Ehrig, Ulrike Prange, and
Gabriele Taentzer. Termination Analysis of Model Transformations by Petri
Nets. In International Conference on Graph Transformation ( Icgt), volume
4178, pages 260–274, 2006.

[116] Andreza Vieira and Franklin Ramalho. A Static Analyzer for Model Transfor-
mations. In Third International Workshop on Model Transformations with Atl,
2011.

[117] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park, and Flavio
Lerda. Model-Checking Programs. Automated Software Engineering, 10(2):203–
232, 2003.

[118] Manuel Wimmer, Gerti Kappel, Angelika Kusel, Werner Retschitzegger, Jo-
hannes Schönböck, and Wieland Schwinger. Right or Wrong? Verification
of Model Transformations using Colored Petri Nets. In Proceedings of the
9th OOPSLA Workshop on Domain-Specific Modeling (DSM’09). Helsinki
Business School, 2009.

Journal of Object Technology, vol. 14, no. 3, 2015

http://www.open-do.org/projects/hi-lite/gnatprove/
http://www.open-do.org/projects/hi-lite/gnatprove/
http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 41

[119] Glynn Winskel. The Formal Semantics of Programming Languages: An
Introduction (Foundations of Computing). MIT Press, 1993.

[120] Greta Yorsh, Thomas Ball, and Mooly Sagiv. Testing, Abstraction, Theorem-
Proving: Better Together! In Proceedings of the International Symposium on
Software Testing and Analysis ( Issta), pages 145–156, 2006.

About the authors

Moussa Amrani received an MSc degree of Joseph Fourier
University (Grenoble, France) in 1998 and a PhD in Computer
Science from University of Luxembourg in 2013. He worked for
several years as a software engineer for various companies in France
and Luxembourg. His research interests are centered around Model-
Driven Engineering and their Formal Verification, and Real-Time
Transformations in the context of embedded, critical and cyber-
physical systems. Contact: Moussa.Amrani@uni.lu or Moussa.

Amrani@gmail.com.

Benoît Combemale received his PhD in computer science from
the University of Toulouse, France in 2008. He first worked at
Inria before joining the University of Rennes 1 in 2009. He is
now Associate Professor in software engineering at University
of Rennes 1. Since 2013, he is also on secondment at Inria as
Research Scientist. His research interests include Model-Driven
Engineering (Mde), Software Language Engineering (Sle) and

Validation & Verification (V&V). Contact: Benoit.Combemale@irisa.fr, or visit
http://people.irisa.fr/Benoit.Combemale/.

Levi Lúcio is currently a Research Associate with the Mod-
elling, Simulation and Design Laboratory of McGill University.
He received his PhD. from the University of Geneva, Switzer-
land, in 2008. His research is about bridging software engineer-
ing and formal techniques. Some of his concrete areas of in-
terest are model-driven development, model transformation lan-
guages, the verification of model transformations, correctness-
by-construction, models of concurrency (in particular Algebraic

Petri Nets), model evolution, model-based testing and tool construction. He is
currently developing a suite of techniques and tools for the verification of model
transformations for the automotive industry. Contact: Levi@cs.mcgill.ca, or visit
http://msdl.cs.mcgill.ca/people/levi/.

Gehan M. K. Selim received a M.Sc. from Cairo University
(Faculty of Computers and Information) in Egypt and is currently a
Ph.D. candidate in the School of Computing of Queen’s University
in Canada. Her research interests include model transformations,
model transformation intents, testing of model transformations,
formal verification of model transformations, and software product
lines. Gehan@cs.queensu.ca.

Journal of Object Technology, vol. 14, no. 3, 2015

mailto:Moussa.Amrani@uni.lu
mailto:Moussa.Amrani@gmail.com
mailto:Moussa.Amrani@gmail.com
mailto:Benoit.Combemale@irisa.fr
http://people.irisa.fr/Benoit.Combemale/
mailto:Levi@cs.mcgill.ca
http://msdl.cs.mcgill.ca/people/levi/
mailto:Gehan@cs.queensu.ca
http://dx.doi.org/10.5381/jot.2015.14.1.a3


42 · Amrani M., Combemale B., Lúcio L., Selim G., Dingel J., Le Traon, Y. et al.

Jürgen Dingel received the MSc degree from Berlin University
of Technology, Germany, and the PhD degree in computer science
from Carnegie Mellon University, Pittsburgh, in 2000. He is
an associate professor in the School of Computing at Queen’s
University, Canada, where he leads the Modeling and Analysis in
Software Engineering Group. His research interests include model-
driven engineering, formal methods, and software engineering.
Dingel@cs.queensu.ca, or visit http://research.cs.queensu.

ca/~dingel/.

Yves Le Traon received his engineering degree and his PhD
in Computer Science at the “Institut National Polytechnique” in
Grenoble, France, in 1997. He is currently Professeur at the Uni-
versity of Luxembourg, working on the topics of software testing,
model-driven engineering, model based testing, evolutionary algo-

rithms, software security, security policies and Android security, and exploring key
topics related to Internet of things (IoT), Big Data (stress testing, multi-objective
optimization and data protection), and mobile security and reliability. He is also
the current head of the Csc Research Unit of the University, and member of the
Interdisciplinary Centre for Security, Reliability and Trust (SnT), leading the Serval
(SEcurity Reasoning and VALidation) Research Group. He (co-)authored more than
140 publications in international peer-reviewed conferences and journals. Contact:
Yves.LeTraon@uni.lu, or visit https://sites.google.com/site/yvesletraon/.

Hans Vangheluwe is a Professor in the department of Math-
ematics and Computer Science at the University of Antwerp in
Belgium, an Adjunct Professor in the School of Computer Sci-
ence at McGill University, Montreal, Canada and an Adjunct
Professor at the National University of Defense Technology in
Changsha, China. In a variety of projects, often with industrial
partners, he develops and applies the model-based theory and
techniques of Multi-Paradigm Modelling in diverse application

domains. Contact: Hans.Vangheluwe@uantwerpen.be or hv@cs.mcgill.ca, or visit
http://msdl.cs.mcgill.ca/people/hv.

James R. Cordy is Professor and past Director of the School
of Computing at Queen’s University. As leader of the Txl
source transformation project with hundreds of academic and
industrial users worldwide, he is the author of more than 160
refereed contributions in programming languages, software engi-
neering and artificial intelligence. Dr. Cordy is an Acm Dis-
tinguished Scientist, a senior member of the Ieee and an Ibm
Cas faculty fellow. Contact: Cordy@cs.queensu.ca, or visit

http://research.cs.queensu.ca/~cordy/.

Acknowledgments

The authors warmly thank the anonymous reviewers who suggested many improvements
that helped clarifying the paper, and several contributions that were missing.

Journal of Object Technology, vol. 14, no. 3, 2015

mailto:Dingel@cs.queensu.ca
http://research.cs.queensu.ca/~dingel/
http://research.cs.queensu.ca/~dingel/
mailto:Yves.LeTraon@uni.lu
https://sites.google.com/site/yvesletraon/
mailto:Hans.Vangheluwe@uantwerpen.be
mailto:hv@cs.mcgill.ca
http://msdl.cs.mcgill.ca/people/hv
mailto:Cordy@cs.queensu.ca
http://research.cs.queensu.ca/~cordy/
http://dx.doi.org/10.5381/jot.2015.14.1.a3


Formal Verification Techniques for Model Transformations: A Tridimensional Classification · 43

This work is partially supported by the Luxemburgish Fonds National de la
Recherche (Fnr), the Natural Sciences and Engineering Research Council of Canada
(Nserc), the Ibm Canada Center for Advanced Studies (Cas), the Automotive Part-
nership Canada (Apc) in the Necsis project, and by the French Agence Nationale
pour la Recherche (Anr) Ins Project GEMOC (ANR-12-INSE-0011).

Journal of Object Technology, vol. 14, no. 3, 2015

http://dx.doi.org/10.5381/jot.2015.14.1.a3

	Introduction
	Dimension 1: Transformations
	Definition
	Languages
	Classification
	Model Transformation Features
	Model Transformation Form

	Discussion: Extracting Properties of Interest

	Dimension 2: Properties
	Transformation Models: Language-Related Property
	Termination
	Determinism
	Transformation well-formedness

	Model Transformations: Transformation-Related Property
	Properties overs models and their metamodels
	Properties relating input and output models

	Summary

	Dimension 3: Formal Verification (Fv) Techniques
	Formal Verification in a Nutshell
	The Formal Verification Problem
	Characteristics of Fv Techniques
	Issues & Challenges

	Formal Verification Types
	Type I: Transformation-Independent and Input-Independent
	Type II: Transformation-Dependent and Input-Independent
	Type III: Transformation-Dependent and Input-Dependent

	Summary

	Discussion
	Revisiting the Tridimensional Classification
	Property Kind / Fv Technique (PK/FVT)
	Transformation / Fv Technique (T/FVT)
	Transformation / Property Kind (T/PK)

	Gluing all dimensions: towards an Intents/Properties Mapping

	Related Work
	Conclusion
	References
	About the authors

