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Abstract Over the past 25 years, thousands of developers have contributed
more than 18 million lines of code (LOC) to the Linux kernel. As the Linux
kernel forms the central part of various operating systems that are used by mil-
lions of users, the kernel must be continuously adapted to changing demands
and expectations of these users.

The Linux kernel provides its services to an application through system
calls. The set of all system calls combined forms the essential Application
Programming Interface (API) through which an application interacts with the
kernel.

In this paper, we conduct an empirical study of the 8,770 changes that
were made to Linux system calls during the last decade (i.e., from April 2005
to December 2014)

In particular, we study the size of the changes, and we manually identify
the type of changes and bug fixes that were made.

Our analysis provides an overview of the evolution of the Linux system calls
over the last decade. We find that there was a considerable amount of technical
debt in the kernel, that was addressed by adding a number of sibling calls (i.e.,
26% of all system calls). In addition, we find that by far, the ptrace() and
signal handling system calls are the most difficult to maintain and fix.

Our study can be used by developers who want to improve the design and
ensure the successful evolution of their own kernel APIs.

1 Introduction

Since its introduction in 1991, the Linux kernel has evolved into a project
that plays a central role in the computing industry. In addition to its usage

School of Computing, Queen’s University, Kingston, Ontario
Email: {mojtaba, kahani, bezemer, ahmed, dingel, cordy }@cs.queensu.ca



2 Mojtaba Bagherzadeh et al.

on desktop and server systems, the Linux kernel forms the foundation of the
Android operating system that is used on almost 1.5 billion mobile devices [21].

Over the past 25 years, thousands of developers have contributed more
than 18 million lines of code (LOC) to the Linux kernel. The kernel source
code and its development process have been thoroughly analyzed by software
engineering researchers (e.g., [1, 23, 24, 30, 31, 40, 42, 43, 48, 50-52, 60, 61]).

As the Linux kernel forms the central part of various operating systems, it
must be continuously adapted to fulfill the changing demands and expectations
of users [35]. As a result, many changes to the kernel are driven by changing
or increasing demands from the users of the operating systems that use the
kernel, or by hardware evolution and innovation. Analysis of the evolution of
the Linux kernel can provide us with a window into how the demands of both
operating system users and the computing industry have evolved.

The Linux kernel provides its services to an application through system
calls. All system calls combined form the essential Application Programming
Interface (API) through which an application interacts with the kernel. Even
the simplest Linux application uses system calls to fulfill its goals. For example,
the 1s command exercises 20 system calls more than 100 times to list the
contents of a directory.

Studying the evolution of the API of a system can lead to valuable insights
for developers of the APIs of other systems. For example, Bogart et al. [4]
interviewed developers of the R, Eclipse and npm ecosystems to understand
the practices that are followed by each ecosystem for breaking an API, and
found that each ecosystem has their own way of handling and communicating
breaking API changes. Such knowledge can be leveraged by API developers
to make decisions about the way in which their own system handles breaking
API changes.

In this paper, we conduct an empirical study on the 8,770 changes that
were made to the Linux system calls during the last decade, to sketch an
overview of the changing landscape of the Linux kernel API. We are the first,
to the best of our knowledge, to focus on system calls rather than on the Linux
kernel as a whole. The main contributions of our study are:

1. An overview of the evolution of the Linux system calls over the last decade
in terms of the size and type of changes that were made to the system calls.

2. A study of the type of bug fixes that were made to the system calls over
the last decade.

Our study can be used by developers who want to improve the design and
ensure the successful evolution of their own kernel APIs.

The outline of the rest of this paper is as follows. Section 2 gives background
information about system calls. Section 3 discusses related work. Section 4
presents the methodology of our empirical study. Section 5, 6 and 7 discuss
the results of our empirical study. Section 8 discusses the implications of our
results. Section 9 discusses threats to the validity of our study. Section 10
concludes the paper.
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Fig. 1: The sequence of a system call.

2 System Calls

The kernel provides low-level services, e.g., network or file system-related,
which need to be executed in kernel mode. In addition, the kernel enforces
an isolated execution environment for each process. Therefore, it is necessary
to continually make a context switch back-and-forth between the kernel and
user mode. System calls are the primary method through which user space
processes call kernel services.

Figure 1 outlines the (simplified) execution sequence of a system call. In
this paper, we consider a system call as the combination of the handler and
service in the kernel mode. While it is possible to invoke a system call directly
from a process, in most cases the call goes through a wrapper function (step
1) in the C standard library (i.e, glibc [20]). Thus we focus on explaining the
sequence for library calls here.

The glibc wrapper function traps the kernel into kernel mode and invokes
the system call handler (step 2). The system call handler is a kernel function
that retrieves the system call parameters from the appropriate registers and
calls the required kernel services (step 3). Finally, the required kernel services
are executed and the result is returned to the application (steps 4-6). There
are two ways to trap into kernel mode, which we briefly discuss below.

2.1 The Old-Fashioned Way

Every available Linux system call has a unique identifier number [32]. In the
old-fashioned way (i.e., before Linux kernel 2.5), the glibc wrapper function
copies the identifier number of the system call that it wraps into the %eax reg-
ister and copies the parameters into the other registers. The wrapper function
then sends an interrupt, which causes the kernel to switch into kernel mode
and read the %eax register to identify the appropriate service that must be
called (step 2).
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2.2 The Modern Way

Hayward reported that the old-fashioned way of executing system calls was
slow on Intel Pentium 4 processors [26]. To solve this problem, an alternative
way of executing system calls was added to the kernel. The alternative way
uses Intel’s SYSENTER and SYSEXIT (or AMD’s SYSCALL and SYSRET) instruc-
tions [7]. These instructions allow fast entry and exit to and from the kernel
without the use of expensive interrupts.

In the remainder of the paper, we present our empirical study of the system
calls over the last decade.

3 Related work

In this section, we discuss prior related work. In particular, we first discuss
related work on API evolution, then we discuss related work on evolution of
the Linux kernel.

3.1 API Evolution

There have been many studies on API evolution. In this section, we give an
overview of the most important prior work. The main contribution of our work
in comparison to prior work on API evolution is that we are the first, to the
best of our knowledge, to deliver an in-depth study of the evolution of the
kernel API of an operating system with a very long maintenance history.

3.1.1 Refactoring in APIs

Dig and Johnson [12, 13| studied breaking changes in an API. They confirmed
that refactoring plays an important role in API evolution. In particular, they
found that more than 80% of breaking API changes are refactorings. Their
conclusion is that many of these refactorings can and should be automated. In a
large-scale study, Xavier et al. [68] showed that almost 28% of the API changes
are breaking, which emphasizes the need for automation of API refactoring.

Several tools were proposed to automate API evolution (e.g., [27, 53, 69]).
For example, the CatchUp! tool [27] uses the existing refactoring support of
modern IDEs to record and replay API evolution. The Diff-CatchUp tool [69]
uses differences between APIs to automatically suggest plausible replacements
in the code that uses the API.

3.1.2 The effect of API evolution on developers

Robbes et al. [55] studied how developers in the Pharo ecosystem react to
deprecation in the API. Hora et al. [28] later extended Robbes et al.’s study
by studying the reaction of developers to all types of API changes in the Pharo
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ecosystem. Hora et al. found that developers often do not react to API changes
that are not because of deprecation. One of the main reasons is that developers
are not notified of such API changes, while the use of a deprecated method
yields a warning message. In addition, both Robbes et al. and Hora et al.
found that it takes relatively long (i.e., a median adoption time of 14 days for
deprecation changes and 34 days for all changes) to react to an API change.

Linares-Vésquez et al. [37] studied how the fault and change-proness of
the Android API affects mobile apps that use this API. They found that
Android apps that depend on fault and change-prone APIs are less successful.
McDonnell et al. [46] found that the adoption time of changed API usage in
the Android ecosystem is around 14 months.

In our study, we found that it can take very long (i.e., years) for system call
changes to ‘ripple through’ to different system architectures (see Section 5.1),
which indicates that even within one system, it takes time for API changes to
be applied throughout the system.

3.2 Evolution of the Linux Kernel

The evolution of several aspects of the Linux kernel has been empirically stud-
ied over the years. We are the first, to the best of our knowledge, to study the
evolution of system calls in depth, despite their importance. In this section,
we discuss the most relevant related work.

Evolution of the Linuz kernel as a whole: Godfrey and Tu [23, 24] conduct a
quantitative study of the evolution of 96 versions of the Linux kernel. They find
that the Linux kernel code grows at a geometric rate and follows Lehman’s laws
of software evolution [35]. In addition, Godfrey and Tu find that code cloning
is a common practice in the Linux kernel, which is confirmed by Livieri et
al. [40]. Izurieta and Bieman [31] re-analyze the evolution of the Linux kernel
and conclude that the growth rate is similar to that of industrial systems.

Israeli et al. [30] study 810 versions of the Linux kernel, released over a
period of 14 years, and find that the development follows several of Lehman’s
laws that are related to growth and stability of the development process. In ad-
dition, Israeli et al. find that the average complexity of functions is decreasing
due to the addition of a large number of small functions.

Merlo et al. [48] define four metrics to study the similarity of 365 Linux
kernel versions. They find that code removal is much higher in consecutive
releases of unstable releases than for consecutive releases of stable releases. In
a different study, Antoniol et al. [1] study code clones in the Linux kernel and
find that code duplication remains stable across releases.

Lotufo et al. [42] and Passos et al. [52] explain that the Linux kernels offers
its features and configuration options as an explicit variability model. Lotufo
et al. study the evolution of this model and conclude that in the case of Linux,
the evolution was smooth. Passos et al. present several evolution patterns for
variability models that are extracted from a case study of the Linux kernel.
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Li et al. [36] and Tan et al. [62] studied bug characteristics in open source
projects, including Linux. Both studies found that semantic bugs, i.e., bugs
that require domain knowledge to be solved, are by far the most common.

Atlidakis et al. [2] study the usage of POSIX in Android, Mac OS and
Ubuntu Linux. POSIX is a set of standards and abstractions for operating
system design, such as the design of the shell scripting language, file structure
and environment variables. Atlidakis et al. find that while new abstractions
are taking form, these abstractions are not converging into a new standard,
which increases fragmentation across Linux-based operating systems.

The Unix operating system and the Linux kernel are very similar. Spinel-
lis [60] discusses the Unix GitHub repository, which contains 44 years of Unix
evolution. In addition, Spinellis et al. [61] study the evolution of C program-
ming practices using the Unix operating system. They find, for example, that
Unix developers evolved their coding style in tandem with advancements in
hardware technology.

Evolution of a specific part of the Linuz kernel: Tsai et al. [66] study the
usage of the Linux API across all applications and libraries in the Ubuntu
Linux 15.04 distribution. They identify important APIs by calculating the
probability that an installation includes at least one application that requires
the given API. Tsai et al. find that many APIs are not used in practice.

Palix et al. [51] use static analysis techniques to study the fault rate of
parts of the kernel in versions 1.0 through 2.4.1 of Linux. The fault rate ex-
presses the number of faults compared to the amount of code. Although kernel
drivers comprise a large part of the kernel code and contain the majority of the
faults, the fault rate of drivers is lower than the fault rate of the architecture-
specific code and the file systems. In addition, Palix et al. find that while
faults are continually being introduced, the overall quality of the kernel code
is improving.

Padioleau et al. [50] study co-evolution of the Linux kernel and kernel
drivers in versions 2.2 through 2.6 of Linux. From one version to the next one,
co-evolution can account for up to 35% of the changed source code.

Lu et al. [43] study 8 years of Linux file system changes through 5,079
commits, of which 1,800 are bug fixes. They find that the number of bug
fixes does not decrease over time. In addition, they show that semantic bugs,
which require an understanding of file system semantics to find or fix, are the
dominant bug category (over 50% of all bugs).

4 Methodology

This section introduces our approach for collecting and analyzing the evolution
of system calls over the last decade. Figure 2 gives an overview of the steps of
our data collection, and Figure 3 gives an overview of our empirical study.
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Fig. 2: An overview of our data collection.

4.1 Collecting Data
4.1.1 Extracting System Calls

We extract the list of existing system calls from the system call tables of each
supported architecture (e.g., the Intel x86 and AMD64 x86_64-architectures).
For example, we study the syscall*.tbl and syscallx.S files, respectively
for the x86 and s390-architectures, in the arch file system in Linux. There
exist 393 system calls as of Linux kernel 3.7. However, since not all architec-
tures support all system calls, the number of available system calls differs per
architecture [45]. 6 out of 393 system calls were removed from the kernel since
earlier versions and 17 out of 393 system calls are architecture-specific, e.g.,
the ppc_rtas system call for PowerPC. Throughout this paper, we will study
the full list of 393 system calls.

Two of the authors manually classified all existing system calls into the
system call categories that are proposed by Mauerer [45]. After both authors
independently finished the classification, they compared the classifications dis-
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Fig. 3: An overview of our empirical study.

cussed and resolved differences. Table 1 shows the number of system calls for
each system call category.

4.1.2 Extracting Commits

To study changes that are made to the system calls, we extract system call-
related commits from the official Linux kernel git repository [65]. We consider
a commit to be system call-related when it changes (1) code of the service pro-
vided by the system call, or (2) system call handler code. We extract commits,
using the --no-merges option to avoid duplicate commits, between April 16,
2005 (i.e., the creation of the git repository) and December 31, 2014. We did
not include commits from 2015, because we started our study in September
2015. Therefore, we did not have access to a set of all commits of 2015 at that
time. We extract all commits of which the commit message matches one or
more of the following keywords: the names of all system calls, and the terms
“system call”, “syscall” and “vdso”!'. The keywords were identified based on
our experience and study of documentation on making changes in the Linux
kernel [39, 45].

1A vDSO is a shared object that can be accessed in the kernel and user mode without
switching context. Hence, vDSOs are often employed by system calls [8].
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Table 1: An explanation of the system call categories (ordered by the number
of calls in each category). The last five columns show the number of system
calls that were added to and removed from each category over the last

decade.
Number of system calls
Code Category Example Total New NewF! Sibling Arch? Rem?®
FS File system & I/O Reading and writing a file. 147 37 9 28 - 2
PM Process management Creating, cloning or debugging 71 9 5 4 2 -
a process.
IPC IPC* & network Sharing memory between pro- 51 9 5 4 - -
cesses.
MM Memory management Mapping pages in memory. 27 7 7 3 2
SH Signal handling Killing a process. 24 3 1 2 2
TO Time operations Setting and querying the time. 23 4 4 -
SI System info & settings  Retrieving information about 21 1 - 1 -
the system.
SC Scheduling Thread prioritization. 14 2 2 - -
SEC Security & capabilities ~ Performing security checks. 8 3 3 - -
MO Modules Loading a module. 6 1 - 1 - -
All system calls 393 76 36 40 5 6

TNewF = the number of added system calls that provide new functionality
2Arch = the number of added system calls that are architecture-specific
3Rem = the number of removed system calls
4IPC = Interprocess Communication
We extracted 88,178 commits in total using our keywords. Not all of these
commits are system call-related, because (1) system calls can be used in other
parts of the kernel, and (2) some system calls have names that are common
English words (e.g., write()). To extract commits that are truly system call-
related, we applied a set of heuristics that are based on the location of the
changed file(s). For example, we ignore commits that are extracted by the
read keyword that do not change a file in the /fs (file system) folder. A
full description of the heuristics that we applied is available in our online
appendix [3]. After applying our heuristics, we have a set of 12,328 commits.
As a final filtering step, we manually went through the commits to remove
all commits that were not related to system calls. After the final step, our data
set contains 8,770 system call-related commits, covering all versions between
2.6.12-rc2 and 3.19-rc2 of the Linux kernel.
We manually verified the change history of two randomly-selected system
calls (reboot() and fork()) and found that our keyword-matching missed
respectively 0% and 4% of the commits for those system calls.

4.2 Analysis

Figure 3 shows the steps taken in our empirical study. Our empirical study
consists of the following steps:

1. A quantitative analysis of system call-related commits (Section 5).
2. A manual classification and qualitative analysis of:

(a) System call-related commits (Section 6).

(b) System call bug fix commits (Section 7).

In the remainder of this paper, we present the results of each step of our
empirical study in detail.
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Fig. 4: The percentage of new system calls that provide new functionality
and the number of sibling system calls. The red line is a LOESS regression fit
line [19].

Table 2: System calls that were removed in the last decade.

System call Removed Reason

set_zone_reclaim() 2006 Had a flawed design and was therefore never
made accessible in user mode and ultimately
removed.

perfctr() 2010 Replaced by the perf_open system call.

nfsservctl() 2011 Replaced by a set of files that can be used to
control the nfsd filesystem [33].

remap_file_pages () 2014 Had few users in practice and required 600+
lines of non-trivial code in the kernel [6].

fast_syscall_xtensa() 2014 Had issues when called with invalid arguments
and was not used by anybody [18].

fast_spill_registers() 2014 Had issues when called with invalid arguments

and was not used by anybody [18].

5 The Evolution of System Calls over the Last Decade

Motivation: We first conducted a study on the number and size of the Linux
system calls. We studied the evolution of system calls over the last decade in
three dimensions: (1) the number of system calls, (2) the size of a commit (in
terms of the number of lines of code and the number of files that are changed),
and (3) the number of developers who work on the system calls. We detail the
approach and findings for each dimension below.

5.1 The Number of System Calls

Approach: We began with a quantitative study of the number of system calls
that were added and removed from the kernel over the last decade, and the
number of commits that are required to do so. We identified these commits
through a manual classification process which is described in Section 6.

A new system call must be activated on a system architecture before it
can be used on that architecture. Therefore, we studied the integration delay
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for a system call on the supported system architectures to get a better un-
derstanding of whether all architectures are equally supported by the Linux
kernel.

Finally, we conducted a qualitative study on the system calls that were
added during the last decade. In this qualitative study, we first focused on
sibling calls and then on the functionality that is added by new system calls.
Findings: 76 system calls were added to and 6 system calls were
removed from the kernel, through 482 of the 8,870 (5%) system
call-related commits. Table 2 shows the system calls that were removed
in the last decade, together with the reason for removing them. Removing a
system call is always done in one or two commits. However, to add a system
call, an average of 6.3 commits, 352 days and 5.4 developers are needed. The
relatively large number of commits needed to add a system call demonstrates
that adding a system call to the kernel is time-consuming and complex. To add
a new system call, first, a service function is implemented which provides the
main interface to the kernel. Then, the system call is activated (wired up) for
the 31 system architectures that are currently supported by the Linux kernel.
A system call can be activated by assigning a unique number to the call and
adding its name and number to the system call table. Each supported archi-
tecture has its own system call table. Depending on the functionality of the
system call, the system call may require an architecture-specific implementa-
tion.

A new system call is usually not activated for all architectures
at the same time. We manually studied the 76 added system calls and
observed that there may be a delay in activating a system call in architectures
that ranges from a day to several years. For example, the accept4 system
call, which was introduced in November 2008, was activated on the same day
for the Sparc64-architecture, in August 2010 for the ARM-architecture and in
2013 for the Xtensa-architecture (even though the kernel has supported this
architecture since 2005 [70]).

40 out of 76 (53%) new system calls were sibling calls, which
provide functionality that is similar to that of an existing system call.
Table 1 shows the number of new system and sibling calls for each category over
the last decade. A sibling call is a system call that is similar in functionality,
and often in name, to another system call. In most cases, sibling calls are a
repayment of technical debt in the Linux kernel API, i.e., the introduction of
a sibling call indicates that the original system call was not designed with the
required extensions in mind.

Additionally, our study shows that 102 of the 393 (26%) currently existing
system calls are sibling calls. We identify six types of sibling calls, which can
be distinguished by the name of the sibling call. Table 3 shows the number
of sibling calls of each type and the pattern through which each type can be
identified. In the following paragraphs, we explain each type of sibling call.

1. Parameter extension-sibling calls: The parameter extension-sibling calls are
wrapper functions for the original system call. These sibling calls can be
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recognized by the number [1..4] after the system call name, which indi-
cates the number of arguments that the sibling call takes. This type of
sibling call emerged from extended knowledge of how the original system
call is used in practice. To prevent endless extension of the list of system
calls with siblings for every new argument (e.g., the dup(), dup2() and
dup3() system calls), the flags and a flexible structure pointer argument
were introduced [38]. The bits of the flags argument can be used to se-
lect behaviour in the system call. The usage of the flags argument was
officially included in the guidelines for adding a system call in 2015 [17],
but the flags argument was used much earlier, e.g., in 2006 [16]. The
flexible structure pointer allows to pass a struct object with the function
arguments enclosed, which can be extended as required.

While the flags and flexible struct arguments introduce some additional
complexity inside the system call (i.e., to handle the arguments), the impact
on the kernel interface itself and dependent applications is smaller than
when new arguments are continually added to the system calls. Figure 4
shows that the percentage of new system calls that are sibling calls has
considerably decreased over the past few years, which suggests that the
strategy of using a flexible flags and struct argument is effective for
avoiding the introduction of new sibling calls. An example of a system call
that uses the struct argument is the perf_event_open() system call.

. Architecture-sibling calls: The architecture-sibling calls add support for

32 and 64-bit arguments to the original system call. For example, the

truncate64 () system call supports truncating larger files than the truncate ()

system call does.

Working directory-sibling calls: The working directory-sibling calls were
all added in 2006 to implement a virtual current working directory, which
is necessary for, e.g., a multi-threaded backup [15]. The difference between
an original system call and its working directory-sibling is the way in which
the parameters are treated. For example, the open() and openat () system
calls have the following signatures:

int open(const char *pathname, int flags)
int openat(int dirfd, const char *pathname, int flags)

If pathname contains a relative path, the open() system call will interpret
the path relative to the current working directory of the calling process.
The openat () system call will interpret the path relative to the directory
referred to by file descriptor dirfd. Aside from how the parameters are
treated, the open() and openat () system calls provide the same function-
ality.

Backwards compatibility-sibling calls: In six cases, a system call was re-
placed by a newer version. The old version was renamed (e.g., from vm86 ()
to vm8601d()) to provide backwards compatibility. The glibc wrapper
function takes care of the backwards compatibility, so that developers who
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wish to remain using the old system call do not need to change their ap-
plications.

5. Real time-sibling calls: The eight real time-siblings add support for real-
time operations to the system call. The main difference between the original
system call and its real time-sibling is that the sibling can handle larger
signal sets as argument.

6. Other sibling calls: There exist 30 sibling calls that cannot easily be grouped
based on their naming scheme. An example of these sibling calls is the
waitpid() system call, which suspends execution of the calling process
until the child process specified by the pid argument terminates. The
waitpid() system call is a sibling of the wait4() system call, which sus-
pends the execution of the calling process until one of its children termi-
nates.

Table 3: The number of sibling calls of each type.

Type of sibling Pattern f:‘ Example
calls
Parameter extension *[1..4] 12 dup(O, dup20)
Architecture *[82/64] 32 truncate(),
truncate64()
Working directory *at 14 open(), openat ()
Backwards compatibility — *old 6 vm86(), vm8601d ()
Real time rt* 8 sigreturn(),
rt_sigreturn()
Others - 30  waitpid(), wait4()
Total number 102

Table 4: The number of new system calls in the last decade that provide new
functionality, grouped by functionality and ordered by the number of system

calls.
Functionality # of system calls Example
Monitoring 8 inotify(), getcpu()
Synchronization 7 eventfd(), signalfd()
Hardware-specific 6  cacheflush(), move_pages()
Message passing 5 process_vm_readv(), tee()
Security 3 bpf(), seccomp()
Other! 7 setns(), clock_adjtime()
Total number 36

TThe “other” functionality group contains system calls that
provide functionality which could not be grouped.
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9 sibling calls provide a batch execution of the original system
call. These sibling calls allow the user to repeatedly execute a system call with-
out having to make the expensive context switch between execution modes.
For example, the sendmmsg() system call allows the user to send multiple
messages, rather than the sendmsg() system call which allows to send only
one at a time. The first batch sibling call in our studied dataset was added in
2009 [9]. However, earlier examples of batch sibling calls exist. For example,
the writev() and readv () sibling calls were introduced as batch sibling calls
for the write() and read() system calls in 4.2BSD in 1983 [34].

Most functionality that is added by new system calls during the
last decade is to support monitoring and synchronization. We grouped
the new functionality system calls from the last decade based on the type of
newly-added functionality. Table 4 shows the functionality groups and the
number of system calls that provide such functionality.

Not all architectures directly support all new system
calls. 53% of the new system calls that were added
in the last decade are sibling calls, which are a re-
payment of technical debt in the kernel. To avoid
having to add additional sibling calls in the future,
flexible flags and struct arguments are currently
being used.

5.2 The Size of System Call Commits

Approach: We conducted a quantitative study on the number of lines of code
and the number of files that were changed by system call-related commits and
kernel commits. We extracted the system call-related commits as described in
Section 4. We extracted the kernel commits by retrieving all 508,980 commits
that are made in the study period (including the system call-related commits)
from the git repository of the Linux kernel.

We used the Wilcoxon signed-rank test to compare commits that are made
to the system calls with commits that are made to the kernel. The Wilcoxon
signed-rank test is a non-parametrical statistical test, of which the null hy-
pothesis is that the two input distributions are identical. If the p-value of the
Wilcoxon test was smaller than 0.05, we rejected the null hypothesis and con-
cluded that the input distributions are significantly different. To quantify the
difference between two distributions, we calculated Cliff’s delta effect size [41].
Cliff’s delta returns a real number d between -1 and 1. The absolute value
of the returned number is used to assess the magnitude of the effect size. We
used the following thresholds for d, which are provided by Romano et al. [56]:
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Fig. 5: The number of files that are changed in a system call-related commit
and in a kernel commit. The number in the boxplot is the median value.
Note that the axis is in logarithmic scale.

negligible, if |d| < 0.147.

. small, if 0.147 < |d| < 0.33.
Effect size = . .
medium,  if 0.33 < |d| < 0.474.
large, if 0.474 < |d| < 1.

Findings: There were on average 25 lines of code (LOC) that were
added to the system calls per day. Compared to the average number of
LOC that are added to the Linux kernel (approximately 3,500 in 2012 [54]),
the growth of the system call code is relatively slow. The slow growth implies
the following: (1) the system calls are relatively stable and (2) it is feasible for
system call developers to keep track of the daily commits and evolution of the
system calls.

The commits that are made to system calls are slightly more
scattered than kernel commits. Figure 5 shows the distribution of the
number of files that are changed in a system call-related commit and in a
kernel commit. We found that 58% of the system call-related commits make
changes to one file, while 75% of the commits makes changes to at most two
files. The Wilcoxon signed-rank test shows that the difference between the
number of files that are changed in a system-call related commit and a kernel
commit is significant, but with an effect size of 0.05, which is negligible.

With an average growth of 25 LOC per day, the sys-
tem calls are relatively stable.
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5.3 The Developers of System Calls

Approach: We conducted a quantitative study on the system call developers
and kernel developers. We computed the skewness of the distribution of the
number of commits made by a developer to study whether the contributions
are equally spread over the community. The skewness of a distribution captures
the symmetry of that distribution around the mean and median. A positive
skew means that most developers contribute a small number of commits, while
a negative skew means that most developers contribute a large number of
commits.

Findings: The majority of developers who worked on the system calls
during the last decade provided a single fix or extension. Figure 6
shows the number of commits that were made by each developer to the system
calls and the Linux kernel during the last decade. The median number of
commits made by a developer was 1, compared to 2 for the Linux kernel.
In both cases, the distribution of the number of commits was heavily right-
skewed (i.e., a skewness of 16.27 and 37.11 for the system calls and kernel
respectively). The high skewness indicates that while there is a small group
of very active developers, the majority of system call developers commit only
once.

There exists a small group of very active system call
developers.
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6 Classifying a Decade of System Call Commits

Motivation: In the previous section we studied how much system calls changed
over the last decade. However, we did not study in depth why and how system
calls evolved. In this section, we classified system call-related changes from the
last decade based on the driver for committing them.

Approach: The first two authors manually and independently classified the
commit messages of all 8,770 system call-related commits that were extracted
from 2005 to 2015 into one or more of the following commit categories:

1. Add/remove: The commit was made to add or remove one or more system
calls.

2. Bug fix: The commit was made to fix a bug.

Improvement: The commit was made to make an improvement.

4. Restructuring: The commit was made to conduct code restructuring,
such as cleaning up comments or refactoring.

©w

After classifying all commits, the first author identified 686 out of 8,770
(8%) conflicting classifications. To resolve these conflicts, the first two authors
discussed the differences until an agreement was reached.

Table 5: The system calls with the most commits during the last decade.

System call ALL Restructuring! Bug fix Improvement
ptrace() 743 46% 35% 21%
signal() 714 53% 33% 18%
ioctl() 438 44% 32% 25%
futex() 257 35% 43% 23%
ipc() 253 51% 23% 30%
mmap () 213 30% 43% 31%
perf_event_open() 199 10% 46% 45%
readdir() 169 46% 41% 14%
splice() 166 30% 40% 25%

TNote that since a commit can be classified into multiple categories, the
percentages in a row for a system call may not add up to 100%.

Findings: 8,288 of the 8,770 commits (95%) were made to maintain,
improve and fix bugs in system calls. 4,498 (50%) of these commits
were made to only 25 (6%) of the 393 system calls. Table 5 shows
the system calls for which more than 150 commits were made during the last
decade. The ptrace() and signal() system calls required by far the most
commits. The high number of bug fixes demonstrates the complexity of the
ptrace() and signal () system calls, which is caused by their conceptual com-
plexity and dependence on the underlying architecture. The ptrace() system
call is used in debuggers or system call tracing applications. The signal ()
system call is used to install a new signal handler. As both the ptrace() and
signal() system calls trigger exceptional cases in context switching, such as
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Table 6: The number of commits per commit category, ordered by the
number of commits.

Commit category # of commits % of commits
Restructuring 3,164 35
Bug fix 3,247 36
Improvement 2,131 24
Add/remove 482 5
Total # of classifications! 9,024 100

TNote that this number is higher than the total number of
studied commits, as we classified some commits into multiple
categories.

the system call restart mechanism [5, 63|, their internals are complex by na-
ture. The complexity of the ptrace() and signal() system call (especially
when they are interacting) is acknowledged on the Linux kernel mailing list
by one of the main kernel developers [67].

35% of the system call-related commits were made to conduct re-
structuring on the code. Table 6 shows the number of commits per commit
category. The large portion of restructuring commits emphasizes the impor-
tance of refactoring to keep the source code of the system calls clean and
manageable. The restructuring activities consist of writing helper functions,
cleaning dead or duplicate code, merging code, generalizing functionality, re-
locating files and formatting code.

36% of the system call-related commits were made to fix bugs.
Figure 7 shows the trends of the number of commits per commit category
for the last 10 years. The number of bug fixes has been steadily increasing
over the last decade. Lu et al. [43] observed a similar number of bug fixes
(approximately 35% of the commits) and a similar trend when studying eight
years of Linux file system-related commits. In Section 7 we study the bug fixes
in more detail.

Restructuring of the ptrace() and signal handling system calls
caused restructuring peaks in 2008 and 2012. As shown in Figure 7,
there were peaks in the number of restructuring commits in 2008 and 2012.
In 2008, the peaks were caused by restructuring to the ptrace() and signal
handling system calls.

The ptrace() system call is highly dependent on the underlying system
architecture [57]. Hence, applications that rely on the ptrace() system call,
such as gdb and strace, are not easily portable. In 2008, 101 out of 485
(21%) restructuring commits were made to make the ptrace() system call
less dependent on the underlying system architecture.

140 out of 485 (29%) restructuring commits were made in 2008 to signal
handling system calls. Most of these commits are made to unify the source
code of the 32-bit, 64-bit and real-time versions of the signal handling system
calls. For example, the source code of the 32 and 64-bit version of the signal ()
system call was merged into one file. Within that file, the preprocessors #ifdef
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CONFIG_X86_64 and #ifdef CONFIG_X86_32 are used to execute the required
version of the system call.

In 2012, 164 out of 448 (37%) restructuring commits were made to sig-
nal handling system calls. The majority of those 171 commits were made
to change the sigaltstack(), sigprocmask(), sigsuspend(), sigaction(),
rt_sigprocmask(), rt_sigpending(), rt_sigqueueinfo() and rt_sigaction()
from architecture-specific into generic system calls.

In 2009, 45 commits were made to improve the robustness of
system calls towards a reported security issue. Vulnerability report
CVE-2009-0029 [49] describes a security issue in which system calls of the
$390, PowerPC, sparc64 and MIPS 64-bit architecture rely on the user-mode
application to do sign extension when using 32-bit arguments in a 64-bit regis-
ter. The system calls did not verify that the sign extension was done correctly,
allowing malicious users to crash the kernel or gain privileges through a crafted
system call. 45 commits were required to make the architectures in question
robust to this security issue.

The perf_event_open() system call had 87 changes in 2009, of
which 28 were bug fixes. The perf_event_open() system call was added
in December 2008 and provides an abstraction for accessing performance coun-
ters. Since this abstraction is architecture-specific, the implementation of the
abstraction is complex and bug-prone, which is demonstrated by the high
number of bug fixes for this system call in 2009.

In 2014, there is an increase in bug fixes related to file system & 1/0O calls.
However, we were unable to identify a specific system call as the culprit for
the increase.

Bug fixes had the smallest commit size. We calculate the size of a
commit by counting the number of lines of code that are added and removed
by the commit. Figure 8 shows the distributions of the commit size for the
commits in the four commit categories. The median commit size of a bug fix
is 9. The largest commits are made for improvements (median commit size 23)
and restructuring (median commit size 24).

The vast majority of the development effort goes to a
small group of system calls. Especially the ptrace()
and signal () system calls require a large amount of
restructuring.

7 Classifying a Decade of Bug Fixes for System Calls

Motivation: In Section 6, we observed that one-third of the system call-related
commits were made to fix one or more bugs. In this section, we studied these
bug fixes in more depth to gain an insight into what type of bugs were prevalent
in system calls during the last decade. Such insights can help system call
developers to better understand what are the most bug-prone and therefore,
more difficult to develop, system calls.
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Approach: To conduct a qualitative study of the bug fixes for system calls,
we classified all bug fix commits into bug fix categories, based on the type of
bug that the commit was fixing. We used the same process for classifying the
bug fix commits as we did for the commits in Section 6. The first two authors
manually and independently classified the commit message of all 3,067 bug fix
commits into one or more of the following bug fix categories:
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1. Compatibility: Compatibility-related bugs are caused by compatibility
issues between architectures (e.g., 32-bit versus 64-bit).

2. Concurrency: Concurrency-related bugs are caused by issues with atom-
icity, execution order, synchronization or locking, and lead to problems
such as deadlock or race conditions [44].

3. Error code: Error code-related bugs are caused by returning the wrong
error code or handling a returned error code incorrectly.

4. Memory: Memory-related bugs are caused by incorrect usage of the mem-
ory, thereby introducing an issue such as a memory leak.

5. Semantic: Semantic bugs are bugs in the implementation of the system
call-specific behaviour, such as the logic of the service provided by the
system call.

We used the same bug fix categories as Lu et al. in their study of bug fixes
for Linux file systems [43], but we added the compatibility category as we
find during our study that compatibility bugs are a recurring issue for system
calls. After classifying the bug fix commits, we identified 62 out of 3,247 (2%)
conflicting classifications. These conflicts were resolved in the same way as
described as in Section 6.

In addition, we calculated the number of bug fixes per system call by
dividing the number of bug fixes for all system calls in a system call category
(see Table 1) by the number of system calls in that category. For example,
there were 69 compatibility-related bug fixes and 147 system calls in the file
system & I/0 category. Hence, there were 0.47 compatibility-related bug-fixes
per file system & I/O system call.

Finally, we calculated the normalized static entropy [25] of each system call
to express its bugginess as a value between 0 and 1. The entropy helps us to
understand how the bug fixes are spread over the study period. A system call
has an entropy of 0 when all its bug fixes are made in the same year. Likewise,
a system call has an entropy of 1 when its bug fixes are evenly spread over the
studied years. We calculate the normalized static entropy for each system call
as follows:

n

entropys = — Z(pk % 10gn i)
k=1
where n is the number of studied years and py is the probability of having
a bug fix in year k for system call s. For example, if there were 10 bug fixes
in total in 10 years for a system call s, of which 2 were made in 2005 and 8 in
2012, the entropy of s is 0.22:

t 2 * ] 2 + 8 l 8

entropys = ——— 6] —_ — x o —_

Y 10 910 10 10 910 10
=0.22

Findings: Developers make mistakes in the seemingly trivial activa-
tion process of a system call. The steps that are required to activate a
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system call, such as assigning the unique number and updating the system
call table, are performed manually. As a result, developers make mistakes in
the activation process. For example, a mistake in the system call number of the
migrate_pages() system call caused the migrate_pages(), select6() and
ppoll() system calls to malfunction [47]. Similar typographical errors caused
problems in other cases [10, 11, 14, 58, 59, 64].

Clearly there is value in automating the activation process of a system
call. In particular, automation can help developers to adhere to the DRY-
principle (Don’t Repeat Yourself) [29], as the activation process is the same
for all system calls. Currently, the only automated assistance is given by the
linux/scripts/checksyscalls.sh script, which lists the missing system calls
for a specific architecture, as compared to the i386-architecture.

Memory management system calls have the highest bug fix en-
tropy. Table 7 shows the median entropy of a system call for each system
call category. Memory management system calls have the highest median en-
tropy (0.74), which indicates that most memory management system calls had
bug fixes throughout the study period. There are six system calls that have
an entropy of 0.95 or higher: the ptrace(), mbind(), signal(), umount(),
symlink (), fork() and fcntl() system calls. The entropy of the ptrace()
and signal () system calls emphasizes their complexity, as the number of bug
fixes made for those system calls is very high as well (see Table 5). The high
number of bug fixes and entropy indicate that every year a large number of
bug fixes is made to these system calls.

Table 7: The median entropy of a system call for each system call category,
ordered by median entropy.

Category Median entropy
Memory management 0.74
File system & I/O 0.45
Process management 0.45
System info & settings 0.44
IPC & network 0.43
Security & capabilities 0.38
Time operations 0.30
Signal handling 0.30
Scheduling 0.30
Modules 0.00

58% of the bug fix commits were made to fix semantic bugs.
Table 8 shows that semantic bugs are by far the most common for system
calls. This observation is in line with Lu et al.’s [43] findings for Linux file
systems.

The portion of bug fixes that fix memory-related bugs remained
constant throughout the last decade. Figure 9 shows the portion of all bug
fixes that fit in a specific bug category over the last decade. Interestingly, the
proportions remain relatively constant over the years. In their study on bugs
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Table 8: The number of commits per bug fix category, ordered by the
number of commits.

Bug fix category # of commits % of commits
Semantic 1,922 58
Concurrency 521 16
Memory 339 10
Compatibility 285 9
Error code 221 7
Total # of classifications’ 3,288 100

TNote that this number is higher than the total number of
studied commits, as we classified some commits into multiple
categories.
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Fig. 9: The % of bugs made in each bug category over the last decade. The
red line is a LOESS regression fit line.

in open source software, Li et al. [36] reported a downward trend for memory-
related bugs from 1991 to 2006, due to the use of automated detection tools
of memory-related bugs.

A manual review of the memory-related bug fixes for system calls shows
that most fixes are for “simple” issues, such as memory leaks or null-pointer
dereferences. The majority of the memory leaks are caused by (1) not prop-
erly releasing memory after entering a failure path and (2) not initializing a
variable properly. The majority of the null-pointer dereferences are caused by
not validating a returned value or function argument.

The downward trend for memory bugs does not appear to apply or continue
for system calls, which suggests that existing tooling is not powerful enough to
automatically detect memory-related bugs in system calls, or that such tooling
is not used by inexperienced system call developers.

Signal handling system calls have the highest number of semantic
(9.33) and compatibility-related (1.70) bug fixes per system call. The
high number of compatibility-related bug fixes emphasizes the dependency



24 Mojtaba Bagherzadeh et al.

mprotect

- j
move_pages migrate_pages
pag [¢] pag

[ mremap ] [set_mempolicy]

Other components

truncate

[ moek | [ munmep [

Fig. 10: All race conditions for memory management system calls (the purple
nodes) that were fixed during the last decade. The thick lines indicate two
fixed race conditions.

of signal handling system calls on the underlying system architecture. The
majority of these bugs are related to the signal() system call.

Signal handling system calls have by far the highest number of semantic
bugs per system call, which confirms the complexity of these system calls.
A manual review shows that concepts such as the system call restart mecha-
nism [5, 63], signal handling and the signal stack are challenging for developers
to grasp. For example, when a system call is interrupted during its execution
and queued, it needs to be restarted later. However, the system call should
not always be completely restarted, which causes confusion with developers.
There are 36 bug fixes that add support for handling exceptional cases in the
system call restart mechanism. These bug fixes are often fixes for the same
problem on different architectures.

Memory management system calls have the highest number (1.81)
of concurrency-related bug fixes per system call. Most of these bug fixes
address race conditions that occur between system calls. A race condition oc-
curs when two system calls, or application code in kernel or user mode, are
executed simultaneously and the output of the system is dependent on the
execution order. As a result, race conditions can lead to non-deterministic
behavior and should be avoided. To understand and prevent race conditions,
developers must understand interactions between system calls and other parts
of the system, which is difficult.



Analyzing a Decade of Linux System Calls 25

Compatibility Concurrency ErrorCode
10.0
75
5.0
_ 25
©
98 oo mmEEm— mm__ Eml_B_= mmm
20
o Memory Semantic
%100
[sajres
@
275
5.0
0.0 -.- N e .
category
IFiIe System (FS)IInIraprocess Communication (IPC)IMemory Management (MM)IModules (MO) IProcess Management (PM)
IScheduIing (SC) ISecuri(y (SEC) Signal Handling (SH) System Info & Settings (SI) Time Operations (TO)

Fig. 11: The number of bug fixes per system call in each bug category over
the last decade.

We extract all race conditions between memory management system calls
that were fixed during the last decade and show them in Figure 10. Each
node is a system call and a connection between two nodes indicates that a
race condition between these system calls was fixed during the last decade.
Figure 10 shows that the mmap() system call is the memory management
system call with the most fixed race conditions during the last decade. The
full graph of all fixed race conditions can be found online [3]. The graph of
fixed race conditions is valuable for system developers, as it gives an overview
of which interactions between a system call and the system may occur, and
hence require extra testing.

Signal handling system calls have by far the highest
number of semantic bug fixes per system call. Mem-
ory management system calls have the highest rate
of concurrency-related bug fizes, and the highest bug
fix entropy.

8 Discussion

In this section, we discuss the implications of our findings. First, we discuss
the generalizability of our findings through a study on the FreeBSD operat-
ing system. Then, we discuss the implications of our findings with regards to
maintenance effort and the support of multiple architectures in an open source
operating system. Finally, we give suggestions for opportunities for automa-
tion.
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8.1 Generalizability of Our Findings

In this paper, we focused on the evolution of the Linux kernel API (i.e., the
system calls). Studying the Linux kernel APT is important because nowadays,
many systems depend on this kernel API. For example, almost 1.5 million
mobile devices run on the Android operating system [21], which is derived
from Linux. To verify the generalizability of our findings, we performed a
sanity check to ensure that the system call mechanism in other UNIX-based
operating systems is similar, by studying the documentation? and source code®
of the latest commit of the FreeBSD operating system.

There exist 447 system calls in FreeBSD. FreeBSD allows the activation
of system calls through configurations, mainly to provide backwards compat-
ibility by keeping old system calls activated. 386 system calls are activated
by default in all configurations in BSD. Through a manual study, we found
that 199 of the system calls on Linux and FreeBSD have the same signature.
Approximately 164 system calls in FreeBSD have a different signature but
provide very similar functionality as their Linux counterparts (either system
calls or glibc methods).

The process of handling and maintaining system calls in FreeBSD and
Linux is similar and includes managing system call tables and context switch-
ing. The needed steps to add a system call are similar. However, the process
of managing the system call table and adding the system call number in the
related header files is automated in FreeBSD, while it is manual in Linux.

The different types of sibling calls in FreeBSD are similar to those in Linux.
For example, we observed the parameter extension sibling system calls such
as thr_kill() and thr_kill2(), pipe() and pipe2(); working directory
system calls such as mkdirat () and mkdir (); and batch operation system calls
such as mlock() and mlockl1l(). There are no sibling calls of the backwards
compatibility and real-time type in FreeBSD. However, we did observe other
types of sibling system calls such as rfork() and vfork(). The existence of
sibling calls in both FreeBSD and Linux suggests that UNIX-based operating
systems deal with technical debt in a similar way.

Our findings on the FreeBSD operating system confirm that other UNIX-
based operating systems use a system call mechanism that is similar to that
of Linux. Therefore, we can safely assume that our findings can be generalized
towards other UNIX-based operating systems.

8.2 Maintenance Effort
In Section 6 and 7, we studied the maintenance effort in terms of commits

and bugs in system calls over the last decade. In this section, we compare our
findings with similar studies on Linux [36, 62] and the Linux file system [43].

%https://www.freebsd.org/
Shttps://github.com/freebsd/freebsd/commit/67£6441
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Lu et al. [43] classified 5,200 commits in 6 types of Linux file systems. While
their and our classification resulted in mostly the same division of maintenance
effort, we found a higher percentage of commits that were related to improve-
ment of the studied system (i.e., 25% compared to 10% in Linux file systems).
In addition, we found that 5% of the commits were done to add or remove
system calls, which is naturally not necessary for file systems. Our findings
show that more maintenance effort is spent on improving the reliability, per-
formance and functionality of the existing system calls, thereby confirming
the importance of the core component of Linux that the system calls form
together.

Li et al. [36] and Tan et al. [62] automatically classified bugs in open
source systems, including Linux. In addition, Lu et al. [43] classified bugs in
the Linux file system. All three studies found that semantic bugs are by far
the most common, which is confirmed by our study.

An interesting observation is that Li et al. [36] and Tan et al. [62] found a
downward trend in memory bugs in open source systems, while we did not ob-
serve such a downward trend, as explained in Section 7. One possible explana-
tion is that the available tools for detecting memory bugs, such as valgrind?,
are not capable of crossing the boundary between kernel and user mode, which
is required to debug system calls. Another possible explanation is that it is
difficult to systematically test the Linux kernel in all possible configurations,
as many of these configurations can be tested only on specific combinations of
hardware. Hence, our recommendations for future researchers are that existing
memory bug detection tools (1) should be made compatible with testing sys-
tem calls, and (2) should better support testing different kernel configurations.

Several implications can be derived based on our findings with regards to
the effort for maintaining system calls.

Implication 1: Compared to regular software systems, kernel APIs
require an additional type of maintenance that involves adding and
removing system calls. In Section 7, we found that this additional type of
maintenance is susceptible to bugs. However, as shown by FreeBSD, most of
the maintenance required to add and remove system calls can be automated.
Therefore, we recommend that the process of adding and removing system
calls is automated in Linux as well.

Implication 2: 11% of the system-call related changes are made to
the system call handler mechanism. We observed that 89% of the system-
call related changes are made to maintain the actual system call, while 11% of
the changes are related to the system call handler mechanism, including con-
text switching, vDSO and vsyscall (two mechanisms two accelerate system
call execution). Our finding implies that approximately 11% of the mainte-
nance effort of a kernel API is assigned to the infrastructure for providing the
APIL

4http://valgrind.org/
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8.3 Supporting Multiple System Architectures

Because an operating system’s kernel operates close to the hardware, a large
part of the system-call related changes are architecture-dependent. We clas-
sified all changes that were made to files in (a subfolder of) the /arch folder as
architecture-dependent, and we found that 41% of the changes were architecture-
dependent. We found that there are several implications for an open source
operating system that supports multiple architectures.

Implication 3: There are likely to exist inconsistencies between
supported features across different architectures. As we found in Sec-
tion 5, system calls are usually not activated in all architectures at the same
time. In addition, as we found in Section 7, different bugs may exist across ar-
chitectures. An additional burden of supporting multiple architectures is that
system calls that are architecture-dependent need to be reimplemented for
each architecture, which results in a considerable amount of code duplication.

Implication 4: Architecture-dependent code may prevent a large
number of developers from contributing to that code. In Section 5,
we found that a small group of developers works on system calls, as compared
to the Linux operating system in general. In addition, we observed that 653
developers contributed to the architecture-dependent code, while 1,002 devel-
opers contributed to the architecture-independent code. However, a smaller
number of contributors does not necessarily mean weak support for an archi-
tecture. The combination of low cost of a x86-server that runs Linux, and its
similarity to a Unix-server, have made the combination of the x86 server and
Linux attractive to industry. Intel recognized this attraction, and contributed
a large part of the code for x86 support in Linux, thereby increasing the pop-
ularity of their own x86 architecture [22]. Hence, despite the lower number of
developers that work on architecture-dependent code, support for a particular
architecture can still be strong in an open source operating system if a small
group of developers is active.

The above implications show that future research should focus on prop-
agating changes that are made to architecture-dependent code across other
architectures. In addition, future research should focus on methods for check-
ing functional consistency across architectures, to assist with the prevention
and detection of architecture-dependent bugs.

8.4 Suggestions for Applying Automation in the Linux Kernel API Evolution

During our study, we encountered several cases in the evolution of the Linux
kernel API where automation would have been possible. In the remainder of
this section, we give our suggestions on where to apply automation.
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8.4.1 Automated Testing

System call developers make heavy use of fuzz testing, a technique that calls
system calls at random and in parallel, with random arguments. Two fuzz
testing tools for system calls are Trinity® and Syzkaller®, which detected re-
spectively 42 and 422 bugs over the last years. The input of such fuzz testing
tools is a set of system calls that are called during the fuzz test. Currently,
system call developers specify this set based on their knowledge of and ex-
perience with interaction (e.g., sharing resources) between system calls. Such
knowledge is difficult to gain, despite the small growth of the system call API
per day (Section 5.2). However, as we showed in Section 7, we can use historical
information to identify interactions between system calls.

Suggestion 1: Our race graph [3] can be used to guide the fuzz
testing process to identify more bugs. One of the deliverables of our
study is the race graph in which historical race bugs are visualized. This race
graph can be used to identify interactions between system calls, but also to
identify patterns of race bugs, which can in turn be used to guide the fuzz
testing process. Many of these patterns can be identified using the system call
names or by reading their man-pages. We extracted four main patterns from
the race graph:

1. Pattern 1: reader-writer or writer-writer. This pattern describes the
case in which two system calls read from and write to the same resource.
Often, file system and memory management system calls are susceptible
to such bugs. System calls that interact following this pattern can often
be identified by their name (e.g., recvmsg() & sendmsg() and readv()
& writev()). Other examples of system calls that follow this pattern are
mmap () & truncate(),read() & truncate() and move_pages() & mmap().

2. Pattern 2: admin-admin. Some system calls are used for administra-
tive tasks in Linux. These system calls may race with each other during
their execution. For example, open() & close(), ptrace() & signal(),
swapon() & swapoff(), inotify_rm_watch() & inotify_add_watch(),
mount () & umount() and umount() & close().

3. Pattern 3: (reader or writer)-admin. This pattern occurred between
administrative system calls and other system calls that try to read from
or write to the resource that is targeted by the administrative system calls
(e.g, mprotect() & migrate_pages(), inotify_watch() & umount() and
close() & write()).

4. Pattern 4: self-race. Multiple instances of the same system call may
race together (e.g., mmap(), swapon(), and swapoff()). This pattern
may happen for any writer or administrative system call that is executed
several times simultaneously.

The above patterns can be used to select system calls for fuzz testing,
thereby leading to better results and increasing the efficiency of the existing

Shttps://codemonkey.org.uk/projects/trinity/
Shttps://github.com/google/syzkaller
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tools. In addition, the patterns can be used for regression testing of system
calls.

Suggestion 2: Existing automated testing tools should be ex-
tended to support system call testing. There exist several automated
testing tools, such as valgrind, which are currently not capable of crossing
the boundary between kernel and user mode. These tools should be extended
to support system call testing.

8.4.2 Automated Refactoring

We found in Section 6 that 35% of the system call-related changes were done to
restructure/refactor code. In our manual review, we found that the majority
of these changes were done to reduce duplication in the code by extracting
duplicate code into a helper function, or by replacing architecture-dependent
code with architecture-independent code.

Suggestion 3: Automated refactoring tools should be used when
restructuring the Linux kernel API. Dig and Johnson [12, 13] already
stressed the importance of automating refactoring more than 10 years ago.
However, we did not find evidence that automated refactoring tools are sys-
tematically applied to refactor the Linux kernel API. Hence, our suggestion is
to use existing tools, such as code clone detectors, to assist with the restruc-
turing of the Linux kernel API.

9 Threats to Validity

One of the threats to the external validity of our findings is generalization. In
this paper we study Linux system calls in depth. Linux is one of the oldest,
most well-developed open source projects and studies of Linux have led to
numerous interesting findings (e.g., [1, 23, 24, 30, 31, 40, 42, 43, 48, 50-52,
60, 61]). As explained in the previous section, we are certain that our findings
apply to other Unix-based operating systems. However, it is possible that
system calls in non-Unix-based operating systems have different characteristics
than Linux system calls. More research is needed to make claims about the
further generalizability of our findings.

A second external threat comes from the quality of the classified commit
messages. We use the commit messages to classify commits and understand
the drivers of developers for performing such changes. Hence, we rely on the
quality of the description of the commit (i.e., the commit message).

The most important threat to the internal validity of our results is the man-
ual classification process that we used to classify commits and bug fixes. To
mitigate this threat, two of the authors independently conducted the classifica-
tion. The low percentage of conflicting classifications (i.e., 5% of the commits
and 2% of the bugs) suggests that the classification task was not overly sus-
ceptible to subjectivity. We made all our classifications available in an online
appendix [3].
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We found that it is extremely difficult to fully automate the commit ex-
traction process. Hence, we applied a set of heuristics to semi-automate the
extraction of commits that are related to system calls, in combination with a
final manual analysis step. We do not claim that we studied all system call-
related commits. However, our studied data set is still considerably large with
8,770 system call-related commits. Hence, our findings and conclusions are
not affected by the fact that we may not have studied all system call-related
commits.

10 Conclusion

The Linux kernel provides its services to the application layer using so-called
system calls. All system calls combined form the Application Programming
Interface (API) of the kernel. Hence, system calls provide us with a window
into the development process and design decisions that are made for the Linux
kernel.

We conducted an empirical study of the changes that were made to the
system calls during the last decade (i.e., from April 2005 to December 2014).
The most important findings of our study are:

1. There is a considerable amount of technical debt in the kernel, that is
addressed by an increase in the number of sibling system calls. Guidelines
were introduced in 2015 to avoid technical debt of this type in the future
by using more flexible function arguments for system calls.

2. There exists a small group of very active system call developers and the
growth of the system calls is slow (i.e., 25 LOC per day).

3. The ptrace() and signal handling system calls are by far the most difficult
ones to maintain and fix.

Our findings can be used by kernel API developers to learn about the chal-
lenges and problems that come with the long term maintenance of an kernel
API, such as the long-lived Linux kernel API. In particular, we make two im-
portant suggestions in our paper. First, we suggest that historical information
about the evolution of a kernel API should be used to guide the testing pro-
cess. Second, we suggest that existing automated testing tools are extended,
so that they can be used for testing system calls.
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