
NICAD: A Next Generation

Chanchal K. Roy and James R. Cordy
Software Technology Laboratory, School of Computing

Queen's University, Kingston, Ontario, Canada

●  Intentional copy/paste a common reuse technique
in software development*

●  Previous studies report 7% - 23% cloned code in
various kinds of software systems, Baker WCRE’95

In response, many clone detection methods

●  Lightweight text-based and lexical

–  High recall and text accuracy
–  But results aren’t meaningful syntactic units

●  Heavier parser-based techniques

–  Meaningful units and high precision
–  But expensive comparison and low recall

●  Neither handles near-miss clones well

1. Introduction

Our plan, a hybrid:

●  Combines strengths, overcomes limitations of
both text-based and AST-based techniques
–  Proven effective (with high precision and recall) in

finding near-miss function clones

●  A hybrid parser / text line-based technique
–  And other novel features of other approaches

Approach Strengths Limitations
Text-Based 100% Precision Sensitive to formatting & editing,

Non-syntactic clones

Token-Based Fast, High recall,
Normalization

Medium precision, Often not
syntactic clones

Tree-Based Syntactic clones,
High precision

Low recall, Fully-fledged parser,
Expensive tree comparison

Metrics-Based Fast, Syntactic
clones

Medium precision and recall,
Fully-fledged parser

Graph-Based Might detect
semantic clones

Low recall, Not scaled,
Expensive graph comparison

2. Overview of Existing Methods
Bellon et al. TSE’07, Roy and Cordy ICPC’08, SCP’09, TechReport’07

return result;}

int foo(){
 int a;

 F1
return result;}

int foo(){
 int a;

 F2

return id ; } int id () { int id;

3. Text- and Token-Based Often
Detect Non-Syntactic Clones

4. Text-Based: Sensitive to
Formatting Changes

if (x==5) a=1; else a=0; if (x==5)
{
 a=1;
 }
else {
 a=0;
 }

if (x==5)
 a=1;
else
 a=0;

if (x==5)
 {
 a=1;
 }
else
 {
 a=0;
 }

Line F1 F2 F3 F4

1
2
3
4
5
6
7
8

●  Text line-based
–  Not clones

We Do: Structural Extraction
●  Use robust island grammars to isolate and

extract
–  Meaningful units for comparison
–  Example: begin-end block, function block

or any structured block
–  Source coordinate of the units

●  No need of fully-fledged parser
–  Standalone, only TXL grammar

Token-Based: Not Fully Robust to
Formatting Changes

if (x==5) a=1; else a=0; if (x==5) {
 a=1;
 }
else {
 a=0;
 }

if (x==5)
 a=1;
else
 a=0;

if (x==5)
 {
 a=1;
 }
else
 {
 a=0;
 }

Line F1 F2 F3 F4

1
2
3
4
5
6
7
8

if (id == id) { id = id ; } else { id = id ; }

if (id == id) id = id ; else id = id ;

Token-based
●  (F1, F3) & (F2, F4)
 as clone pairs

Tree-Based: Robust to
Formatting Changes

Tree/AST-based
●  Find as clones, but expensive , low recall, not good

for finding near-miss clones

if (x==5) a=1; else a=0; if (x==5) {
 a=1;
 }
else {
 a=0;
 }

if (x==5)
 a=1;
else
 a=0;

if (x==5)
 {
 a=1;
 }
else
 {
 a=0;
 }

Line F1 F2 F3 F4

1
2
3
4
5
6
7
8

if

== = =

id id id id id id

cond then else

l r lhs rhs lhs rhs

We Do: Standard Pretty-Printing
●  Parser eliminates commenting (if any) and input

formatting differences
–  Pretty-printing to preserve tree structure in text

redefine if_statement
 if ([expr]) { [IN][NL]
 [statement] [EX]
 }
 [opt else_statement]
end redefine

redefine else_statement
 else { [IN][NL]
 [statement] [EX]
 }
end redefine

Standard Pretty-Printing

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

 Line F1 F2 F3 F4
1
2
3
4
5
6

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

●  Even “{“ and “}” are added to fragments F2 and F3
●  Text-line comparison now finds them exactly similar
●  Form a clone class, {F1, F2, F3, F4} as of tree-based method

but avoids expensive tree comparison
●  Because of text-comparison, precision is now 100%

5. Token- and Tree-Based: Robust to
Token-Level Editing Changes

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

Line F1 F2

1
2
3
4
5
6

if (y==5) {
 flag=1;
 }
else {
 flag=0;
 }

if

== = =

id id id id id id

cond then else

l r lhs rhs lhs rhs

●  Both fragments similar AST

●  Text-based are sensitive to any changes
●  Token-based methods give lots of false positives, Bellon et

al. TSE’07
●  Tree-based methods are expensive, low recall, and not as

high precision as of text-based methods

We do: Flexible Token-Normalization

if (id==5) {
 id=1;
 }
else {
 id=0;
 }

Line F1 F2

1
2
3
4
5
6

if (id==5) {
 id=1;
 }
else {
 id=0;
 }

●  Text-line comparison now finds
them as clone pair

●  High flexibility in token-
normalization

●  We use parser, but avoid the problems of tree-based methods
by text-comparison

●  As we first extract structural units for comparison, we avoid
problems of classical text-based and token-based methods

Text-, Token- and Tree-Based are
Sensitive to Structural Changes

if (x==5) {
 a=1;
 }
else {
 a=0;
 }

Line F1 F2

1
2
3
4
5
6

if (x==5) {
 a=x;
 }
else {
 a=x-1;
 }

Lexical change, same sub-
tree, so okay with tree-based

=

id id
lhs rhs

=

id id
lhs rhs

id id

=

id -
lhs rhs

l r

Structural change:
sub-trees not similar

We Do: Flexible TXL Rules for
Structural Normalization

if (x==5) {
 a=id;
 }
else {
 a=id;
 }

Line F1 F2

1
2
3
4
5
6

if (x==5) {
 a=id;
 }
else {
 a=id;
 }

●  Text-line comparison finds them

●  High Flexibility in Abstraction

●  LHS of the assignments Not normalized
to avoid false positives.

●  Avoid the problems of tree-based

6. Flexible Code Filtering

void foo(){
int x=10;
Int n=2;
Int y=5, a=0;
if (x<=5) {
 a=n + y;
 }
else {
 a=n - y;
 }
}

 F1 Line Line F2
1
2
3
4
5
6
7
8
9

void foo(){
int x=10, n=2, y=5, a=0;
if (x<=5) {
 a=n + y;
 }
else {
 a=n - y;
 }
}

1
2
3
4
5
6
7
8
9
10
11

7. Flexible Pretty-printing
●  Example, “for” headers

0% same on text-line comparison

{F1, F2} 75% same
{F1, F3} 25% Same
{F3, F3} 25% Same

for(i=0;i<10;i++) for(i=1;i<10;i++) for(j=2;j<100;j++)
Line F1 F2 F3

1

1
2
3
4

for(
i=0;

 i<10;
i++)

for(
i=1;

 i<10;
i++)

for(
j=2;

 j<100;
j++)

Line F1 F2 F3

8. Text-Line Comparison with Gaps

if (x<=5) {
 a=n + y;
 y=y + 2;
 n=n +1;
 functionX(a, y, n) ;
 }
else {
 a=n - y;
 }

 F1 Line Line F2
1
2
3
4
5
6
7
8
9

if (x<=5) {
 a=n + y;
 y=y + 2;
 n=n +1;
 }
else {
 a=n - y;
 }

1
2
3
4
5
6
7
8

LCS: 1-2-3-4-6-7-8-9 (w.r.t. F1)

 #Lines(F1)
No. of unique items/lines in F1 w.r.t. F2

UPI_F1 = x 100

 #Lines(F1)
 #Lines(F1) - #Lines(LCS)

 = x 100

Similarly, for fragment F2,

 #Lines(F2)
 #Lines(F2) - #Lines(LCS)

UPI_F2 = x 100

●  Definition of Clone

–  Given a UPI threshold UPI_T, fragments F1 and F2 form a
clone pair if and only if,

(UPI_F1 <= UPI_T) AND (UPI_F2 <= UPI_T)

●  E.g., if UPI_T is 20%, then two fragments considered
clones if 80% of pretty-printed text lines identical.

For the running example, #Lines(LCS)=8
UPI_F1=11% and UPI_F2=0%
If UPI_T==10%, not clone pair
If UPI_T==15%, {F1, F2} clone pair

9. Comparing the Potential Clones
●  LCS algorithm compares two extracted units /potential

clones at a time
–  In principle, must compare every pair of potential clones =>

quadratic w.r.t. no. of potential clones

●  Three major strategies to improve
–  Apply dynamic clustering based on the size of a chosen exemplar

and the UPI threshold

–  Farm out pair comparisons to multiple processors

–  Make comparisons one-pass using exemplars

Choose Largest
Unclassified Potential
Clone as Exemplar

Pretty-Printed / Normalized
/ Filtered Potential Clone Files

1 2 3 4

Dynamic Cluster
Comparable Size
Potential Clones

Clone
Classes

5.pc
23.pc
67.pc
 . . .

12.pc
17.pc
22.pc
 . . .

15.pc
18.pc
78.pc
 . . .

21.pc
63.pc
97.pc
 . . .

37.pc
39.pc
44.pc
 . . .

Comparable Size Potential
Clone Cluster

Pair Comparison
of Exemplar with
Potential Clones

Exemplar

Choose Next Exemplar
and Repeat the Process

UPI Threshold

10. Reporting/Output Generation
●  Two forms of output

–  XML database of clone classes with source coordinate
information (file name, begin-end line numbers)
●  Suitable for use by IDEs, statistical analysis / reporting tools

–  HTML website report of clone classes
●  Original raw source code reported

–  Using source coordinate annotations from potential clones

11. Conceptual Diagram of NICAD

Exemplar-Based, Fast Text-Line Comparison
with Dynamic Clustering and Unanticipated Gaps M

ap
pe

d
to

 o
rig

in
al

 c
od

e

Code Base

Flexible and Context-Sensitive
Token and Structural Normalization

Extraction +
Pretty-Printing

Flexible Code Filtering
+ Flexible Pretty-Printing

XML Format

HTML Format
Reporting

12. First Experimental Results
•  Weltab

–  Studied effect of flexible pretty-printing,
normalizations

13. Large Empirical Studies
●  Comprehensive in-depth evaluation of clone properties

–  In different dimensions
–  Three different languages (10 C, 7 Java and 7 C#)
–  Diverse varieties of applications
–  All open source systems including complete Linux Kernel
–  4 KLOC- 6.3 MLOC
–  In varying UPI thresholds

●  Also evaluated with a mutation / injection based evaluation
framework, Roy and Cordy, Mutation’09
–  NICAD was found very good both for precision and recall for

different types of fine-grained clones

References
●  C.K. Roy and J.R. Cordy. NICAD: Accurate Detection of Near-Miss Intentional Clones Using

Flexible Pretty-Printing and Code Normalization. In ICPC, pp. 172-181, 2008.

●  C.K. Roy and J.R. Cordy. An Empirical Study of Function Clones in Open Source Software.
In WCRE , pp. 81-90, 2008 (Invited for special issue).

●  C.K. Roy and J.R. Cordy. Near-miss Function Clones in Open Source Software: An Empirical
Study. In JSME , 23 pp., 2009 (submitted).

-Roy and Cordy WCRE’08

●  After removing the declaration statements, text-line
comparison will find them as clone pair with high
accuracy

Clone Detection Tool

