
Normalizing Object-oriented Class Styles in JavaScript

Widd Gama, Manar H. Alalfi, James R. Cordy, Thomas R. Dean

School of Computing, Queen’s University, Kingston, Canada
{gama, alalfi, cordy, dean}@cs.queensu.ca

Abstract—JavaScript is a dynamic, weakly typed, multi-
paradigm programming language that supports object-oriented,
imperative, and functional programming styles. While web de-
velopers appreciate this flexibility when implementing complex
and interactive web applications, this wide range of possible
styles can hinder program comprehension and make maintenance
difficult, especially in large projects involving many different
programmers. A particular problem is the several different ways
in which object-oriented classes can be expressed in JavaScript.
In this work we aim at enhancing the maintainability of object-
oriented JavaScript applications by automatically normalizing
the representation of classes to a single model.

I. INTRODUCTION

JavaScript is the most widely used client-side scripting
language, is increasingly popular as a crucial component of
the AJAX technology, and is one of the core components of
the upcoming HTML5 standard [18]. When used in the object-
oriented style, JavaScript is a prototype-based language, with
no explicit class declaration to provide a definitive description
of the fields and methods of a given object. In JavaScript,
the developer simply defines a constructor function that builds
object instances, and the application can later add or remove
properties from the instance. The flexibility of the language
and the lack of any clear mapping to conventional class-based
object-oriented concepts has led to a plethora of different
class representation techniques when developing applications.
Sometimes, multiple techniques are used in the same program,
resulting in code that is inconsistent and difficult to maintain.

Figure 1 shows three of the many styles of encapsulation of
data and methods possible in JavaScript. All three are almost
identical in semantics. The first style (Figure 1(a)) is closest
to the conventional syntactic class-based style. The function
Class acts as both the class definition and the constructor.
When the new operator is applied (line 6), an object is created
and the function is invoked on it, adding two properties. The
first property, x, is a scalar data property with the value 4,
and the second property m is a method (since its value is a
function). Both the value and the method are accessed using
the name of the property (e.g., c.x and c.m () respectively).

The second variation (Figure 1(b)) uses the function’s
prototype object. In this case the constructor function is an
anonymous(lambda) function that is assigned to the variable
Class. The initialization of the object, instead of being inside
the constructor function, has been moved to the code following
the creation of the object. This variation is semantically
equivalent to the first, but reduces the level of encapsulation.

The third variation (Fig. 1(c)) uses the same Class variable
and anonymous function, but leaves the assignment of the

(a) Object class variant 1
function Class () {

this.x = 4;
this.m= function m() {

}
}
c = new Class();

(b) Object class variant 2
Class = function () {
}
c = new Class ();
c.x = 4;
c.m = function m() {

}

(c) Object class variant 3
Class = function () {

this.x = 4;
}
Class.prototype.m = function m() {

}
c = new Class();

Fig. 1. Data and Method Encapsulation in JavaScript

value to the x property inside the constructor function. The
method m, instead of being assigned as a property of the
object, is assigned to the prototype of the object. As a result,
all objects created using the Class constructor function will
share this same method, using the __proto__ chain. While not
identical to the first two in semantics, the differences are not
important for most JavaScript code in practical use today.

This paper describes an automated approach to normalizing
JavaScript code to a single consistent object-oriented style. In
particular, we address the issue of the consistent encapsulation
of data and functions as object classes (inheritance is left for
future work). We begin with a survey of the class represen-
tation patterns that occur in a set of real world JavaScript
web applications, and then show how these patterns can be
automatically recognized and normalized to a single consistent
class representation pattern.

II. SURVEY AND CATALOG OF JAVASCRIPT
ENCAPSULATION STYLES

In this paper we focus on the definition and encapsulation of
methods in JavaScript. We began with a survey of web tutorials
[3, 17], several JavaScript resource books [16, 6, 10], and a
large set of over 70 production JavaScript applications. While
the styles described in the books and tutorials were interesting
and elegant, we found that most production applications used
styles different from those described in the books. The five
styles that we found to be used in practice in the collection of
web applications we surveyed can be categorized as:

1) Inner lambda. In the inner lambda style, anonymous
(lambda) functions are assigned directly to properties
of the object inside the constructor function to create
methods. The advantage of this style is that the functions

Fig. 2. Class Style Normalization Architecture

are defined at the same time as the class, and are
explicitly encapsulated inside the class function. The
disadvantage is that the function objects (methods) are
rebuilt every time the constructor is called.

2) Inner method. In the inner method style, the method
definitions also appear inside of the class function, but as
standalone functions. In some ways, this is closest to the
Java and C++ inline function class syntax for declaring
methods. The name of the function appears immediately
before the parenthesis, and a couple of housekeeping
lines are inserted where the field properties are actually
added. This similarity is however a bit deceiving, since
in JavaScript the name of the property of the object is the
important name, and the name of the function definition
itself has no effect on the execution, and need not be
the same as the name of the object’s method property.

3) Outer method. In this style, the method definitions
appear outside of the constructor (class) function as
standalone functions, but are added as properties as part
of the constructor. This style resembles the C++ class
syntax for non-inlined functions.

4) Outer lambda. The outer lambda style is very similar to
the outer method style, except that the method functions
are created as lambda functions assigned as properties of
the class constructor function, which are then copied to
each created object as part of the constructor function.
An advantage of this style is that the class name (con-
structor function name) appears with the declaration of
the method functions, making the relationship explicit.

5) Prototype lambda. This style also defines the functions
as lambda functions outside of the constructor func-
tion. But instead of storing the method functions as
properties of the constructor, the functions are stored
in the prototype object. This makes them available to
all instances created by the constructor function through
the __proto__ chain.

III. APPROACH

To help alleviate the maintenance challenges posed by the
inconsistency of these different styles, our plan is to recognize
each of these style patterns in JavaScript applications, analyze
their components, and automatically normalize them to a sin-
gle preferred style. The choice of preferred style is admittedly
arbitrary, but our feeling is that any consistent style is better
than none. Section V proposes and justifies a particular choice.

The architecture of our normalization system is shown in
Figure 2. Our system is implemented in the TXL source
transformation language [5], using the existing TXL JavaScript

grammar to parse and pattern match JavaScript source. Be-
cause the representation of the various styles may cross
JavaScript source file boundaries, our first step is to merge the
entire source of the JavaScript application into one file that
we can process as a unit (“Merge” on the left of Figure 2). To
assist in the recreation of original files, comments are added
to encode the locations of the original file boundaries so that,
when our process is complete, we can recreate the original
source files after style normalization (“Split De-rename” on
the right of Figure 2).

As in many reverse engineering tasks, unique renaming
is applied so that function and variable names are globally
unique before processing (“Rename” in Figure 2). In this way
there is no confusion between local and global variables of
the same name in different scopes or files. We rename all
functions (including class constructor functions), parameters
and variables to reflect their scope. Outer level functions are
given a prefix to indicate that they are the top level of the
application, and inner functions, parameters, variables and
anonymous functions are renamed with that prefix combined
with the outer function name as well as the name of the
inner function itself. Since function expressions (anonymous
functions) do not have names, we give them the standard name
“Lambda” along with a number that indicates the function’s
order in the class so it will be uniquely named.

As a running example, we use a small class function
from the Wiso web application [13] (Figure 3). Wiso is an
AJAX-based open source web application and framework
written in HTML, JavaScript and CSS. It can be a standalone
application, or part of a 2.5D (isometry) game engine for
web games. Wiso consists of 9 large JavaScript files, which
after running the merging script are combined into one. This
file is then parsed using the TXL JavaScript grammar and
processed by our JavaScript unique naming transformation.
The output for our small example constructor function is
shown in Figure 4. Formatting is standardized based on the
parse, and functions, parameters and variables are renamed
to reflect the scope to which they belong. For example, the
anonymous function assigned to this.readyStateChange() has
become _qcam_WAjaxRequest_Lambda_1().

The core of our process is the three central steps - “Class
Identification”, “Style Analysis” and “Style Transformation”,
described in detail in the following sections.

IV. CLASS IDENTIFICATION AND STYLE ANALYSIS

After merging the source files of the application and glob-
ally renaming functions, parameters and variables as described
in the previous section, we then mark up the merged source

function WAjaxRequest (url, obj) {
var xhr = WAjaxRequest.getComponent();

this.readyStateChange = function() {
if (xhr.readyState == 1) {

if (obj.onLoading != null)
obj.onLoading();

}
else if (xhr.readyState == 4) {

if(xhr.status >= 200 && xhr.status < 300) {
...

}
}

if (obj.method != null) {
xhr.onreadystatechange = this.readyStateChange;

if (obj.asynchronous == null)
obj.asynchronous = true;

xhr.open(obj.method, url, obj.asynchronous);
...

}
}

WAjaxRequest.getComponent = function() {
...

}

Fig. 3. An example JavaScript class function from the Wiso web application

function _qcsm_WAjaxRequest (_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj)
{

var _qcsm_WAjaxRequest_xhr = WAjaxRequest.getComponent ();
this.readyStateChange = function _qcsm_WAjaxRequest_Lambda1 ()
{

if (_qcsm_WAjaxRequest_xhr.readyState == 1) {
if (_qcsm_WAjaxRequest_obj.onLoading != null)

_qcsm_WAjaxRequest_obj.onLoading ();
}
else if (_qcsm_WAjaxRequest_xhr.readyState == 4) {

if (_qcsm_WAjaxRequest_xhr.status >= 200 && _qcsm_WAjaxRequest_xhr.
status < 300) {

...
}

}
if (_qcsm_WAjaxRequest_obj.method != null) {

_qcsm_WAjaxRequest_xhr.onreadystatechange = this.readyStateChange;
if (_qcsm_WAjaxRequest_obj.asynchronous == null)

_qcsm_WAjaxRequest_obj.asynchronous = true;
_qcsm_WAjaxRequest_xhr.open (_qcsm_WAjaxRequest_obj.method,

_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj.asynchronous);
...

}
}

_qcsm_WAjaxRequest.getComponent = function _qcsm_Lambda1 (){
...

}

Fig. 4. The Wiso example class function after parsing and unique renaming

to tag each function with its role and attributes. The input to
this stage is the merged and renamed source of the original
application, shown for our small Wiso example in Figure 4.

JavaScript does not distinguish between class constructors
and functions. A function may be an object constructor, an
object method, or simply an independent or routine function.
We will refer to a function that has properties and methods
inside of it as a class function, and a function that is either
inside or a property of that function as a method function.
The main goal of this stage is to identify class and method
functions, and to recognize the encapsulation patterns by
classifying and tagging the method implementation style in
the recognized class functions.

Somewhat surprisingly, in practice we have found that one
class function may use a number of different method styles,
and so may be tagged with more than one style pattern.
For example, a single class function may use both the inner
lambda style (where anonymous method function objects are
assigned as properties inside the class function) and the
prototype lambda style (where anonymous method function
objects are assigned as properties outside the class function)
in the same constructor, as is the case in the Wiso example

function _qcsm_WAjaxRequest (_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj)
{

var _qcsm_WAjaxRequest_xhr = WAjaxRequest.getComponent ();
this.readyStateChange = function

<<<< _qcsm_WAjaxRequest readyStateChange InnerLambda >>>>
_qcsm_WAjaxRequest_Lambda1 ()

{
if (_qcsm_WAjaxRequest_xhr.readyState == 1) {

if (_qcsm_WAjaxRequest_obj.onLoading != null)
_qcsm_WAjaxRequest_obj.onLoading ();

}
else if (_qcsm_WAjaxRequest_xhr.readyState == 4) {

if (_qcsm_WAjaxRequest_xhr.status >= 200 && _qcsm_WAjaxRequest_xhr.
status < 300) {

...
}

}
if (_qcsm_WAjaxRequest_obj.method != null) {

_qcsm_WAjaxRequest_xhr.onreadystatechange = this.readyStateChange;
if (_qcsm_WAjaxRequest_obj.asynchronous == null)

_qcsm_WAjaxRequest_obj.asynchronous = true;
_qcsm_WAjaxRequest_xhr.open (_qcsm_WAjaxRequest_obj.method,

_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj.asynchronous);
...

}
}
_qcsm_WAjaxRequest.getComponent = function

<<<< _qcsm_WAjaxRequest.getComponent getComponent OuterLambda >>>>
_qcsm_Lambda1 ()

{
...

}

Fig. 5. The Wiso example after class analysis and style identification

(Figure 3). In the collection of open source web applications
we have analyzed (Section VI), we found that applications
often use multiple style patterns in one class function, which
strengthens our motivation since having multiple class styles
in one application can significantly complicate understanding
and maintenance.

We use TXL rules to tag instances of each style in the
parsed and renamed JavaScript source with a special markup,
using TXL patterns and constraints to implement recognition
of each of the five style patterns enumerated in Section II.
Because JavaScript may be mixed with XML, we chose a
markup syntax based on <<<< and >>>> brackets, which are
not legal syntax in JavaScript or XML. The markup encodes
a relationship of our model, relating a class function name, a
method function name, and a style pattern. For example:

<<<< ClassName MethodName patternStyle >>>>.
The TXL rules search for functions that contain other func-

tions and function object properties to identify and distinguish
class functions. Each class function is then matched against
each of the style patterns described in Section II, and each
method function of the class is marked with its style using the
markup above. For example, the TXL rules look for a method
function defined inside the scope of a class function using an
anonymous function expression in order to mark up the inner
lambda style. The attributes of the method functions in the
corresponding meta-model help in characterizing the patterns
we are looking for.

The marked-up result of running our class pattern identifi-
cation on the parsed and renamed Wiso example of Figure
4 is shown in Figure 5. In this example, for the class
function WAjaxRequest, the property readyStateChange() has
been tagged as an inner lambda method, and the property
getComponent() has been tagged as an outer lambda method.

V. STYLE NORMALIZATION

Once we have identified all of the class and method func-
tions in the JavaScript application and marked up each method

function _qcsm_WAjaxRequest (_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj)
{

this _qcsm_WAjaxRequest_xhr = WAjaxRequest.getComponent ();
if (_qcsm_WAjaxRequest_obj.method != null) {

this._qcsm_WAjaxRequest_xhr.onreadystatechange = this.readyStateChange;
if (_qcsm_WAjaxRequest_obj.asynchronous == null)

_qcsm_WAjaxRequest_obj.asynchronous = true;
this._qcsm_WAjaxRequest_xhr.open (_qcsm_WAjaxRequest_obj.method,

_qcsm_WAjaxRequest_url, _qcsm_WAjaxRequest_obj.asynchronous);
...

}
}
_qcsm_WAjaxRequest.prototype.readyStateChange = function

_qcsm_WAjaxRequest_Lambda1 ()
{

if (this._qcsm_WAjaxRequest_xhr.readyState == 1) {
if (_qcsm_WAjaxRequest_obj.onLoading != null)

_qcsm_WAjaxRequest_obj.onLoading ();
}
else if (this._qcsm_WAjaxRequest_xhr.readyState == 4) {

if (this._qcsm_WAjaxRequest_xhr.status >= 200 && this.
_qcsm_WAjaxRequest_xhr.status < 300) {

...
}

}

_qcsm_WAjaxRequest.prototype.getComponent = function _qcsm_Lambda1 ()
{

...
}

Fig. 6. The Wiso example JavaScript class function after normalization to
prototype lambda style

function with its style pattern, we are ready to transform the
program to normalize to a single style. The question arises as
to which style we should choose? As observed in Section II,
the style most similar to Java and C++ is probably the inner
method style. However, in JavaScript both the inner method
and the inner lambda styles have the drawback that every time
a new object is constructed, the method functions must be
recreated in the new instance. While conceptually elegant, this
is very inefficient.

Another possibility is the outer method style, which is very
similar to the C++ style for non-inlined functions. However,
the drawback of both the outer method and the outer lambda
style in JavaScript is that they are implemented in the global
namespace, which means that the program will increase in
static size and, as programs grow, the chances of a naming
conflict will rise rapidly.

All of these drawbacks can be resolved by delegating the
method to the prototype of the class function, as in the
prototype lambda style pattern. JavaScript is by nature a
prototype-based language, and thus the prototype lambda style
is also the most consistent with its original design philosophy.
In addition, prototypes are used in inheritance, so all method
functions that are properties of the prototype of a class function
are public and can be accessed and modified by child class
functions. Thus, while we could transform to normalize to
any of the styles, we have selected the prototype lambda style
to be the target of our normalizing transformation.

After all method functions are tagged with their style, the
normalizing transformation is carried our by another TXL
program that looks for instances of each style markup, and
transforms the marked-up method function to the prototype
lambda style. Since the prototype lambda style pattern defines
method functions outside the scope of the class function,
inner method and inner lambda pattern methods are first
extracted and relocated outside the class function, effectively
transforming them to outer method and outer lambda form. As
part of this step, variables bound as closures in the functions

function WAjaxRequest (url, obj)
{

this.xhr = WAjaxRequest.getComponent ();
if (obj.method != null) {

this.xhr.onreadystatechange = this.readyStateChange;
if (obj.asynchronous == null)

obj.asynchronous = true;
this.xhr.open (obj.method, url, obj.asynchronous);
...

}
}

WAjaxRequest.prototype.readyStateChange = function ()
{

if (this.xhr.readyState == 1) {
if (obj.onLoading != null)

obj.onLoading ();
}
else if (this.xhr.readyState == 4) {

if (this.xhr.status >= 200 && this.xhr.status < 300) {
...

}
}
WAjaxRequest.prototype.getComponent = function ()
{
...
}

Fig. 7. The final normalized Wiso example JavaScript class function after
derenaming and splitting

!""#$%&'$()*+&,-*./012 !3&"'145
.678972

:41((;
.8<7=2

1>$)-?-
@$33#AB$;$
.7=C6D2

EF--%$G)-'
.7D8H82

IJ$%;1())-%'
.89<CH2

B$?(
.<7C2

KF('('A"-*/&,L3& 8H 8H 9H< 67 9 96

M))-F*/&,L3& 8N N D6 7< 896 87

0J'-F*/&,L3& 9< N 7= 7 N D

0J'-F*5-'>(3 N N N 77 N N

M))-F 5-'>(3 N N N N N N

@('&#*@F&)?O(F,-3*K&''-F) 6< N 6D 97 896 89

TABLE I
SUMMARY OF JAVASCRIPT APPLICATIONS TESTED

are transformed into properties. A second step then transforms
the outer method forms to outer lambda, and finally a third step
transforms the outer lambda forms to prototype lambda form.
Each step is implemented as a TXL source transformation
matching the parsed, renamed and tagged source output by
our style identification phase.

Figure 6 shows the result of running the prototype lambda
normalizing transformation on the tagged Wiso example of
Figure 5. As an example, the method function assigned to
property readyStateChange, identified and tagged as an inner
lambda, has been extracted and transformed to prototype
lambda style in the result.

The final step of our process is the de-renaming of the
source to restore original names, and the splitting of the
merged source into the original JavaScript file structure, in the
case of Wiso the nine separate source files. Figure 7 shows
the final result for the small example Wiso class function.

VI. EVALUATION

In order to test our approach, we gathered several open
source web applications of varying application domains and
sizes, ranging from about 500 to about 62,000 lines of code.
Table I summarizes the application name, number of lines
of code, number of instances of each class style pattern we
identified in the application, and finally the number of patterns
we were able to transform to prototype lambda form. In every
case we were able to identify and normalize all identified
patterns in the applications.

Strangely, although both the web tutorials and the reference
books recommend the inner method style, as we can see from
the styles listed in Table I, to our surprise none of the test
applications that we gathered actually used this style. We have
since found other examples using this style that we will be
processing in future work.

The performance of our system varied little from small to
large JavaScript applications, consistently processing programs
in less than a minute, and our framework scales well to realistic
JavaScript programs. The test applications also had a mix of
class patterns, showing that our method can deal with mixed
styles. In some cases programs were already using the target
pattern (prototype lambda), in which case the transformation
did not make any changes after style identification.

For example, the application Freecivnet has four patterns:
prototype lambda, inner lambda, outer lambda and outer
method. Inner lambda appears 28 times in the application,
outer lambda appears 2 times, outer method appears 22 times,
and prototype lambda appears 62 times. All inner lambda,
outer lambda and outer method patterns were transformed
successfully to prototype lambda and obviously the three
prototype lambda instances were left in their original form.

VII. RELATED WORK

While the potential maintenance problems associated with
type and style consistency in JavaScript have been studied by
several other researchers [1, 14], there seems to be remarkably
little other work on JavaScript style improvement. Perhaps
the closest other work to ours has been in migration from
procedural to object-oriented language paradigms, such as
that by Zou et al. [19], and Sneed et al. [15]. As pointed
out by Ciupke [4], the biggest challenge in this kind of
reengineering is the identification of appropriate classes and
their representation. By contrast, in our work we are able to
use a lightweight pattern-based identification and automated
transformation, because even though the patterns we are look-
ing for differ widely in structure and appearance, they already
represent conceptually similar object-oriented class models.

Many authors have discussed the normalization of Cobol
dialects [7, 8], which is similar to our problem and has
the same goal: easier long-term maintenance. One dialect
translation effort that bears strong similarity to our work is
that of Ekman and Hedin [9], who automatically recognize
patterns in Java code that can be better expressed using newer
Java features, in a similar way to our recognition of JavaScript
class patterns that can be expressed using a different style.

Malton [11] describes a general transformation-based mech-
anism for dialect conversion, API migration and language
migration that is the abstract model for our technique. The
work of Ceccato et al. [2] on GOTO elimination in legacy
code bears some similarity to our work, since they use TXL
in a similar way to identify and transform GOTO patterns.
ReAJAX is a tool aimed at improving maintainability and
comprehension of complex Ajax applications [12] in a way
similar to our work.

VIII. CONCLUSION

This paper presents a class normalization framework for
JavaScript designed to increase stylistic consistency and thus
improve web application comprehension and maintainability.
Our automated approach identifies class patterns in JavaScript
applications and automatically transforms them to a chosen
standard, such as the prototype lambda style, yielding a
consistent and easier to maintain result.

We are presently working on processing a large number of
additional web applications, and in particular those using the
inner and outer method styles for class representation. While
class representation is the biggest problem, JavaScript also
allows for a number of different expressions of the inheritance
concept, and in future we hope to attack normalization of
inheritance styles as well.

ACKNOWLEDGMENTS

This work is funded in part by the Natural Sciences and
Engineering Research Council of Canada, and by the Ministry
of Higher Education, Kingdom of Saudi Arabia.

REFERENCES

[1] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference
for javascript. In ECOOP, pages 428–452, 2005.

[2] M. Ceccato, P. Tonella, and C. Matteotti. Goto elimination strategies in
the migration of legacy code to Java. In CSMR, pages 53–62, 2008.

[3] Chriswa. Writing object-oriented JavaScript, Part 1, 2003.
http://www.codeproject.com/Articles/5608/Writing-Object-Oriented-
JavaScript-Part-1 (last access 25 May 2012).

[4] O. Ciupke. Automatic detection of design problems in object-oriented
reengineering. In TOOLS (30), pages 18–32, 1999.

[5] J. R. Cordy. The TXL source transformation language. Sci. Comput.
Program., 61(3):190–210, 2006.

[6] D. Crockford. JavaScript - the good parts: unearthing the excellence in
JavaScript. O’Reilly, 2008.

[7] T. R. Dean, J. R. Cordy, K. A. Schneider, and A. J. Malton. Using design
recovery techniques to transform legacy systems. In ICSM, pages 622–
631, 2001.

[8] A. V. Deursen, P. Klint, and C. Verhoef. Research issues in the
renovation of legacy systems. In FASE, pages 1–21, 1999.

[9] T. Ekman and G. Hedin. Automatic renovation of Java programs using
ReRAGs - examples and ideas. In ECOOP Workshop on Object-Oriented
Refactoring, 2004.

[10] D. Goodman and M. Morrison. The JavaScript Bible (6th ed.). Wiley,
2007.

[11] A. J. Malton. The software migration barbell. In ASERC Workshop on
Software Architecture, 2001.

[12] A Marchetto, P. Tonella, and F. Ricca. ReAjax: a reverse engineering
tool for Ajax web applications. IET Software, 6(1):33–49, 2012.

[13] Nikogj. Wiso, http://sourceforge.net/projects/wiso-project/ (last access
25 May 2012).

[14] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An analysis of the
dynamic behavior of JavaScript programs. In PLDI, pages 1–12, 2010.

[15] H. M. Sneed. Object-oriented Cobol recycling. In WCRE, pages 169–
178, 1996.

[16] S. Stefanov. JavaScript Patterns - Build Better Applications with Coding
and Design Patterns. O’Reilly, 2010.

[17] S. Stefanov. Three ways to define a JavaScript class,
http://www.phpied.com/3-ways-to-define-a-javascript-class/ (last access
25 May 2012).

[18] W3C. HTML5: Differences from HTML4, http://www.w3.org/
TR/2012/WD-html5-diff-20120329 (last access 25 May 2012).

[19] Y. Zou and K. Kontogiannis. Quality driven transformation compositions
for object oriented migration. In APSEC, pages 346–355, 2002.

