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Abstract—Software maintenance is the last phase of software
development, and typically one of the most time-consuming. One
reason for this is the difficulty in finding related source code
fragments. A high-level understanding of the source code is
necessary to make decisions about which source code fragments
should be modified together, for example, in the context of fixing a
bug. Even with a similarity metric available, understanding what
it means to measure similarity in the first place is important; if a
technique suggests that two source code fragments are related, is
there a human-oriented way of explaining that relation? In this
paper, we attempt to identify a concrete link between software
maintenance and the similarity metrics provided by latent topic
models. We show that similarity in topic models is related to the
likelihood that source code fragments will be modified together
in the future, and that an awareness of similar source code can
make software maintenance easier.

I. INTRODUCTION

Software development tends to be dominated by mainte-
nance [12]. One difficult problem in software maintenance
involves predicting other source code fragments that should be
considered when making a change. One approach to solving
this problem involves tracking the maintenance history of
code sections and assuming that code that has been changed
together in the past may need to be changed together in
the future. This approach has been shown to make good
suggestions [8], [9], leading to the possibility of using co-
maintenance history as an evaluative source of data. While
it is possible to observe past co-maintenance by observing
the changelists in the history of a project, making meaningful
predictions for the future often requires a long history.

In this paper, we show that Latent Dirichlet Allocation, an
unsupervised latent topic model, can be effective at predicting
required changes. We demonstrate this fact by artificially
omitting source code fragments from clusters of historically
co-maintained fragments to simulate a forgotten change. By
choosing arbitrary points in the project’s revision history and
generating topic models based on that version of the source
code, as seen in Figure 1, we use the observed future change-
lists to evaluate the model’s ability to predict co-maintenance.
By basing our experiment on actual maintenance history, we
show that in many cases, topic models are able to predict co-
maintenance relationships without supervision. In essence, we
can evaluate how well they predict what else we might have
forgotten to change when making a revision.

II. BACKGROUND

Co-maintenance is an observable property of software sys-
tems under source control, in which source code fragments are
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modified together within some time frame. The most familiar
representation of co-maintenance is the changelist, a set of sev-
eral source code changes grouped together to represent a more
complete view of a change [7]. For example, implementing a
feature may involve many individual changes across several
functions or files. A changelist groups these individual changes
together, and each changelist in the history of the project can
be considered to define a set of co-maintained code fragments.
Statistical models are one approach for identifying rela-
tionships between documents in terms of their “variables”. In
natural language processing, variables generally refer to the
presence or absence of words, or “terms” in a collection of
input documents. For example, in a corpus built from a mixture
of ten thousand different terms, a statistical model with ten-
thousand variables can be constructed to evaluate how the
documents relate to each other. In some models, this yields a
set of latent “topics”, each of which is characterized by details
about how the terms co-occur. This idea has been adopted in
source code analysis, where source code fragments such as
methods, functions, or classes are used in place of the natural
language documents to identify related code fragments [10].
Latent Dirichlet Allocation (LDA) is one such topic model
that defines a generative prior topic distribution over the
documents [1]. This means that each document is considered
to have been generated from a mixture of latent unobserved
topics, where the probability distributions of each topic are
assumed to have a Dirichlet distribution. In this way, each doc-
ument is represented in the model as a bag-of-words consisting
of the individual terms from the original document, and each
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Fig. 1. A visualization of the process used to evaluate a model’s predictive
ability. We clone the revision history of a project to a local repository. The
repository is force synchronized to a particular date in the past, and an LDA
model of the source code is generated using the functions from the system
at that point in time as documents. Once the model has been created, the
successive changelists from that point forward are used as an oracle for
correct co-maintenance predictions. For changelists with two or more function
modifications, we observe the effect of omitting one function from the list of
modified functions and using the remaining functions to predict similarity
across all other functions in the system. If the omitted function is in the
top-n, then the model has predicted the forgotten function in the changelist.
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Fig. 2. The set of n functions modified in each changelist is identified. Removing each of the functions one-by-one produces n groups of function subsets
and an omitted correct prediction. We refer to these as prediction trials, or simply trials.

commit 96d00b59d5c396b3af37de7a707980793eeldbbf
Author: Stefan Fritsch <sf@apache.org>
Date: Mon Feb 27 21:45:18 2012 +0000

Prevent listener thread from ever
updating a worker’s scoreboard slot

diff --git a/server/mpm/event/event.c
b/server/mpm/event/event.c
index d3abale..déc76f5 100644
-—-- a/server/mpm/event/event.c
+++ b/server/mpm/event/event.c
@@ -767,10 +767,6 @@ static int
start_lingering_close (event_conn_state_t =*cs)

Fig. 3. A sample changelist from Git’s revision history for the httpd project.
On the last given line (the change hunk starting with @ @ and split to column-
width), Git has attempted to identify the context of the change using regular
expression handling. If the change occurs inside of a function, as in this
example, the function name will be listed. These are extracted to identify
which functions have been changed inside of each changelist.

document has an associated topic distribution identifying how
the model categorizes this document in relation to the latent
topics, and by association, in relation to the other documents
in the data set.

III. METHODOLOGY
A. Mining Co-maintenance History

Each changelist holds information about modifications to
the project, and therefore has the potential to contain a set of
modified functions. For each changelist in the revision history,
we generate partial subsets of the modified code fragments.
For example, in a changelist that describes modifications
made to four software functions, we can obtain four partial
subsets of three functions, each associated with the removed
fourth function, which is treated as a “correct prediction”.
This can be seen in Figure 2, where a changelist containing
four functions produces four groups of three functions and an
implicit correct prediction. In this way, we can use trial4 as
an oracle to show whether or not a model can predict the co-
maintenance relationship with function_A(). We refer to these
groups of function subsets and an omitted correct prediction
as prediction trials, or simply trials.

We cache a full log of the entire set of changelists using
the git log -p command. This list of changelists and diffs
is stored locally in a file and used in later stages of the
process. The most relevant data gained using the log command
is the list of commit ids, dates, and modified functions (if
they exist). Figure 3 shows a portion of one changelist from
the httpd revision history. Each commit id is a 40-character
string associated with one particular changelist. The changelist
also contains one or more change hunks, listing any additions

or deletions to individual files under revision control. This
range information begins with a double-at sign, and includes
information about where the change occurs, and if possible, the
semantic context in which the change was made. In this study,
we look for information on this line indicating modifications
inside of functions that are then used as input to the topic
model.

B. Model Generation

To evaluate the predictive power of a topic model, we
force sync the local repository to some date in the observed
history of the project and generate a model of the software
system from that point. To do this, we use the git rev-list
command with the —before and —max-count=1 parameters.
This returns a single commit id before an arbitrary date. For
example, to obtain a model accurate for January 1st, 2010,
we use —before 2010-01-01. The commit id returned from this
command is used with gif reset to force a hard sync, followed
by a git clean, ensuring the repository is as close to that point
in history as possible.

In this study, the documents used as input to the model
are the set of all functions in the system. We obtain this set
of functions using the NiCad clone detection tool [13], which
includes a function extractor written in TXL [2]. All functions
of a non-trivial size (five lines or more) are extracted, stripped
of comments, and stored in an XML file. This XML file is
parsed and used to generate the set of interesting terms for each
document (i.e., function). In our case, these are programming-
language keywords and programmer-defined names. Since
many programmer-defined names have internal structure, we
separate such names into their component pieces if they have
been built in one of the standard ways (for example, breaking
at underscores) and count both the entire name and each of its
sub-pieces as terms. For example, the term get_attribute would
be represented by three terms: get, attribute, and get_attribute.
Models are generated using GibbsLDA++ [11], an open-source
implementation of LDA.

C. Extracting Prediction Trials from Maintenance History

After the model has been generated and the revision history
is available, we identify future changes in the project, and
examine the similarity between functions modified in those
changes. Each changelist modifies zero or more functions,
identified using the change hunks as shown in Figure 3. Every
change hunk describes the code block in which a change was
made, and each changelist describes the files where modifi-
cations are made. These change hunks are compared to the
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Fig. 4. The topic model is used to identify topic similarity between the
functions in the changelist subset and the rest of the functions in the entire
software system. This produces an ordered list of functions across the original
system. We are interested in how often the left-out function is predicted by
the topic model.

list of functions identified using the NiCad function extractor,
and from this, we identify which functions represented in the
model are modified in each changelist.

Function definitions can be modified over the life of a
software project, including modifications to the parameters,
return type, or name of a function. Functions can also be
moved between files, for example in a refactoring. Since the
function definition is provided in the change hunk of a Git
changelist as indication of which function has been modified,
we employ heuristics to attempt to track functions across
such minor modifications in order to retain their identity. For
example, if a function used in the generation of the latent
model disappears after some time interval, but a new function
in the same file exists, similar to the old one but with a
different return type, we assume these functions are really
versions of the same function.

By acquiring the set of functions represented in the model
that are modified in each changelist, the trials shown in
Figure 2 are generated and used to evaluate a model’s ability
to predict co-maintenance changes, as shown in Figure 4. The
cosine similarity, a standard similarity metric (described in
practice in [6]), is calculated between the remaining functions
in a prediction trial and each of the other functions in the
software system. For example, in a system with 100 functions,
a changelist modifying four functions will result in four pre-
diction trials of three functions each, and each prediction trial
with three functions will be compared to 97 other functions.
The desired result is that the left-out function will be near the
top of a ranked similarity list of those 97 functions.

D. Evaluating Prediction Trials

For each prediction trial, the topic model is used to identify
which individual code fragments are most similar to the other
functions remaining in the changelist. These similar code frag-
ments are interpreted as co-maintenance suggestions by the
model. For example, if the model suggests that function_A()
is most similar to the functions function_B(), function_C(), and
Sfunction_D(), we suggest that the model can be interpreted to
recommend function_A() as a potential co-maintained func-
tion. If the omitted function from the changelist is among
the most similar functions suggested by the topic model, we
argue that the topic model is able to predict co-maintenance
relationships.

TABLE I
SYSTEMS USED IN THIS STUDY

[ System [ Functions | Changelists | Topics |
git 2989 20547 125
httpd 3509 23438 150
memcached 267 936 50
php-src 8169 70262 200

In Figure 4, one of the trials is used to identify a candidate
list of similar functions. The trial 4 trial from Figure 2 has
omitted function_A() from the original changelist. We estimate
the similarity between the functions in the software system
using the cosine distance between the vector representations
of the associated topic distributions generated using LDA. The
complete list of similar functions is determined by identifying
the functions in the software system that are most similar to
all the retained functions in trial 4.

The cumulative set of similarity scores between an arbitrary
system function and the functions modified in a changelist is
used to predict co-maintenance. For each function modelled
in the system that is not already modified in the changelist,
the sum of similarity scores between it and each modified
function provides a changelist similarity. If a function is very
similar to most or all of the functions in a changelist, it
will have a high changelist similarity score, and may be a
candidate for co-maintenance. If a function is similar to few
or none of the functions in a changelist, it will have a low
changelist similarity score, and is marked as unlikely to require
modification at the same time.

IV. EXPERIMENT

The goal of a maintenance recommender system is to enable
a programmer to spend more time working on code instead
of navigating it [8]. With that goal, we consider the position
of the left-out function to be correctly predicted if it is in the
top-n positions of the returned results, for several values of
n. For example, in an IDE sidebar, it would not be practical
to return several hundred results; users could not be expected
to navigate through a long list of false positives. However,
including the top-10 or top-25 is more reasonable for a user
to consider. For completeness, we include a range of values in
the experimental results. We also consider the different sizes of
the systems. A model generated from system with thousands
of functions, such as php-src, will realize more value if the
predicted function is frequently returned in the top-25 results.

Table I lists the set of C open source systems used in this
study. January Ist, 2010 was used as the model generation
date for each model for consistency, although any date in
the history of the project would have been acceptable. In the
interest of reproducing the results, we provide full source code
and instructions on how to generate the data'. The number
of functions given in Table I is therefore the number of
functions in the system at that date. The changelists referenced
in column 3 of Table I is the total number of changelists

IThe source code for this experiment is available at

http://research.cs.queensu.ca/home/scott/csmrwcre2014/
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TABLE 11
CO-MAINTENANCE PREDICTION RESULTS FOR ALL SUBSETS OF ALL CHANGELISTS WITH 20 OR FEWER MODIFIED FUNCTIONS

[ System [ Duration [ Trials | Top-10 [ Top-25 [ Top-50 [ Top-100 |
git 365 days 1577 25.7% (406) 39.8% (627) 50.1% (790) 60.0% (946)
httpd 365 days 902 36.3% (327) 46.5% (419) 54.1% (488) 61.8% (557)
memcached | 365 days 23 43.5% (10) 56.5% (13) 56.5% (13) 60.1% (14)
php-src 365 days 1813 19.4% (351) 29.0% (525) 39.2% (710) 49.8% (1813)

commit 36110078166239ba5b730a873b63£70e89de608c
Author: Daniel Earl Poirier <poirier@apache.org>
Date: Tue Feb 16 20:50:10 2010 +0000

Log command line on startup, so there’s a record
of command line arguments like -f. Suggested by
Shaya Potter. [Dan Poirier]

Functions modified:

static int prefork_run(...)
static int event_run(...)
static int worker_run(...)
static int netware_run(...)

(prefork.c)

(event.c)

(worker.c)
(mpm_netware.c)

Omitted: static int prefork_run(...) (prefork.c) [
2.9660 static int prefork_run(...) (prefork.c)
2.9626 static int make_child(...) (worker.c)
2.9563 static int make_child(...) (event.c)
2.9217 static void server_main_loop(...) (worker.c)
2.9167 static void server_main_loop(...) (event.c)
2.9150 static int make_child(...) (prefork.c)
2.8874 int ap_create_scoreboard(...) (scoreboard.c)
2.8751 int ap_process_child_status(...) (mpm_unix.c)
2.8632 void ap_init_scoreboard(...) (scoreboard.c)
2.8537 static int reclaim_one_pid(...) (mpm_unix.c)

Fig. 5. A sample changelist from Git’s revision history for Attpd for analysis.

over the entire life of the software system under revision. The
number of changelists used in prediction is a subset of that
value, based on the number of changes made between the date
at which we force sync the source code and the time interval
used for prediction.

We use the approach given in our earlier work for identify-
ing an appropriate number of topics for analyzing source code
[4]. In that work, we show that the appropriate topic count for
a system is dependent on the number of methods or functions,
and that a good value for the topic parameter can be obtained
if the number of functions is known.

Table II provides the co-maintenance prediction results for
all prediction trials of all changelists with 20 of fewer modified
functions. We accept each changelist regardless of change type
as a lower bound on the performance of the model to predict
the observed co-maintenance relationships. The percentage of
time that a left-out function occurs in the related predictions
over all left-out functions in the timeframe is given. For
example, if there are 902 prediction trials (not changelists,
but subsets of changelists missing one function, as described
in Figure 2) in the prediction window for httpd, and the top-10
percentage is 36.3% as given by Table II, the model is able
to identify the left-out function in 327 of the 902 trials.

These models are generated with no prior information about
co-maintenance between functions or other explicit links;
these models evaluate similarity using the observed tokens in
documents. Using this simple set of data, the co-maintenance
relationships can be identified.

V. ANALYSIS

We use an example from the httpd project to show how
a set of co-modified functions is used to predict an omitted
function. Specifically, we show that if a function is left out
from a changelist, and the remaining functions are used to
identify related code fragments in the rest of the project, the
most relevant functions often include the omitted function. The
commit description, given at the top of Figure 5, describes this
change as a modification to the startup routines. Four functions
(prefork_run, event_run, worker_run, and netware_run) are
modified in this change.In Figure 5, the top-10 similarity
results for three of the four functions are given, and the omitted
function and its score is highlighted in the list. Using the three
remaining functions to find similarity across the rest of the
functions allows us to identify the left-out function.

By using several functions to compare related code frag-
ments in a particular context, two clear benefits are observed.
Groups of co-maintained functions are often modified together
in some context, so similar functions in the model are often
also related to the same task. In addition, functions that are
modified together in the current changelist can be pruned from
the list of recommended functions, narrowing the results to a
tighter focus. We review these two benefits in detail.

By examining multiple related modifications across func-
tions, as would be observed in a developer’s active changelist,
a query against the rest of the functions in the software system
will more often be in a specific task context. This implies that
prediction results will be more accurate as more information
about the current task context is known. For example, in
Figure 5, any three of the four modified functions clearly leads
to discovery of the omitted function, as all four functions
are performing a related task. In the top-left portion of the
table, the prefork_run function has been omitted from the
similarity calculations, leaving the remaining three functions
listed in the changelist above. When the remaining functions
are used to calculate similarity against all other functions in
the system, prefork_run is at the top of the list. In addition
to this omitted function, other related functions can be seen,
including the make_child functions from other run operations.
In an expanded task context, it may make sense to include
these functions in the changelist. And if these new functions
are included, they will be used in the similarity detection,
bringing up the relevance of other make_child or creation
functions similar to the ones given. By using knowledge about
an existing changelist, as performed in the study presented in
this paper, better predictions can be obtained about forgotten
or missing changes.
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VI1. THREATS TO VALIDITY

In this work, we only examined systems written in C. This
choice was made to minimize the number of variables in our
study. It is possible that this approach does not generalize
to other languages. For example, in our previous work on
identifying appropriate topic counts using latent topic models
[4], [5], it appears that a model is less likely to capture good
co-maintenance information in Java than in C. We would like
to expand this study in the future to include a wider range of
systems in different languages.

An additional choice made to reduce the number of vari-
ables was a consistent point in time to generate each model.
We chose January 1st, 2010, as it was recent enough to
have meaningful changes in each of the systems, but distant
enough to allow us to use longer time intervals for prediction.
One issue this resulted in was a low number of changes in
memcached. This can be seen in the low number of prediction
trials identified in the 365-day interval. A future study will
need to try a range of model dates in addition to a range of
time intervals.

VII. RELATED WORK

Ying et al. [16] were among the first to investigate how
mining the change history of a project could be used to aid
developers find related source code fragments. By identifying
files that are changed together frequently in the project history,
common change patterns are identified and used to suggest
future changes. They performed an analysis on Eclipse and
Mozilla, two large open-source systems, and show how change
pattern not only be identified, but evaluated based on their
predictability and interestingness.

Kersten and Murphy [8], [9] explore the task context
model, an approach to reducing views of entire systems to
context-specific views relevant only to the current task. This
narrowing of focus has led to statistically significant increases
in productivity, and has now been expanded into a top-level
Eclipse project where it is used by millions of users. The task
context model is further validated by additional studies [3],
[14] showing how targeted recommendations can be a valuable
part of the development environment.

The Hipikat project, developed by Cubrani¢ and Murphy
[15], is a tool that uses project archives to build a recommender
for artifacts relevant to a particular task. Hipikat’s goal is to
assist new developers who do not have a full set of infor-
mation about the software project by replacing the traditional
mentoring role. Hipikat performed well as a starting point for
new developers working on a new task, validating the use of
recommendation systems.

VIII. CONCLUSION

In this paper we have explored the hypothesis that latent
topic models, such as LDA, may be able to predict code
fragments that should be changed together directly from the
source code, without the need for a record of previous co-
maintenance. We have tested this hypothesis using the actual
revision histories of several open source projects as oracles

for sets of co-maintained functions, and observed that LDA
can often identify missing functions in a co-maintained set as
part of the top 10 to 25 suggested related functions. When a
set of several functions is used as the basis, the suggestions
appear better than those we have observed for single functions
in previous work.
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