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Abstract
In this paper, we introduce a technique for applying In-

dependent Component Analysis to vector space representa-
tions of software code fragments such as methods or blocks.
The distance between these points can be determined, and
used as a measure of the similarity between the original
source code fragments they represent. It can be reasoned
that if the initial matrix representation contains enough in-
formation about the syntactic structure of the source code,
the vector space representation will be sufficient to predict
the similarity of fragments to one another, and can provide
the likelihood that the code is a clone.

1. Introduction
Reuse of software code fragments by copy/paste/edit is a

common software development practice that leads to a large
number of similar code segments, or code clones, in soft-
ware systems [1, 15]. Code clones can cause problems for
software maintenance and evolution [9, 12], making them a
popular topic in software comprehension [5].

In the following paper, we introduce a method for using
existing Information Retrieval methods such as Independent
Component Analysis to analyse vector representations of
software methods. The vector representations of a software
package can be examined for their proximity to each other,
where the distance between any two vectors can be consid-
ered a measure of their similarity. It can be reasoned that if
the initial matrix representation contains enough informa-
tion about the syntactic structure of the methods, the vector
representation will be sufficient to predict the similarity of
methods to one another.

Independent Component Analysis (ICA) [3, 8] is a blind
signal separation technique that separates a set of input sig-
nals into statistically independent components. The pri-
mary difference between ICA and Latent Semantic Index-
ing (LSI) is that instead of focusing on signals that are sim-
ply decorrelated, ICA extracts signals that are mutually in-
dependent of one another. This is a stronger bound, and
when used in a domain like program comprehension, can
ensure a stronger difference between the extracted signals,

and a correspondingly stronger similarity between frag-
ments with similar signal profiles. ICA involves the fac-
torization of a source matrix comprised of a set of mixed
data signals into two new matrices. One of the matrices de-
scribes a number of independent components, and the other
is a mixing matrix that holds information about how the in-
dependent components themselves were combined to pro-
duce the original set of mixed signals.

2. Background
Latent Semantic Indexing (or Latent Semantic Analysis,

as it is also commonly referred to) was introduced in 1990,
and was described as a way to take advantage of higher-
order structure in the association of terms with documents in
order to improve the detection of relevant documents on the
basis of terms found in queries [4]. These term-associations
can be interpreted as the semantic structure of the document
set. By assuming that some latent semantic structure ex-
ists in a set of documents, the problem of term association
can be treated as a statistical problem. While LSI has been
tremendously useful, it operates under a slightly weaker sta-
tistical bound than another IR technique, Independent Com-
ponent Analysis (ICA).

ICA is a blind source separation method designed to
extract the statistically independent components of a non-
Gaussian source signal. It is described by the equation
x = As, and factors an original data matrix x into a trans-
formation, or mixing matrix, referred to as A, and a source
signal matrix s, where the extracted independent signals are
stored. If x is an m×n matrix, and we are interested in k
independent signals, A will be an m×k matrix, and s will
be k×n [17].

The original example of ICA as a technique is the idea of
a set of microphones hung over a crowded room, wherein a
number of people are engaged in conversations. If we ex-
amine the set of data obtained from the microphones, the
focus on statistical independence rather than decorrelation
allows ICA to isolate the original source signals, and indi-
vidual voice data for each of the attendees can be recovered.

Our previous work in this area [6] has shown that in-
dividual concepts found in software can be isolated using



Figure 1. ICA Matrices

this technique. As ICA identifies the signals that are statis-
tically independent from one another, we can be confident
that each axis in the vector derived from our original rep-
resentation is a measure of some significantly different at-
tribute. We believe this results in a clearer conceptual divi-
sion between methods, and better results when determining
syntactic and semantic similarity. With this information, we
demonstrate how ICA can be applied to the problem of lo-
cating clones in software, using a method-token matrix to
represent the set of code blocks in our input source code.
The resultant signals can be used to transform the original
representation of the code in vector space into a new set of
data based on the magnitude of the statistically independent
concepts in each code block.

We use the following definitions throughout, which are
clarified here for convenience.

• Method-token matrix: The matrix generated from the
input source code, where each row corresponds to a
single function, method, or code block, and each col-
umn corresponds to the presence of a token in that
code. For example, we expect to see a 1 at position
Mij if the ith method in our source contains the jth
token in an ordered list of tokens that span the corpus.
This is also known as a document-term matrix.

• Vector space: An n-dimensional space in which rep-
resentations of the code blocks we analyse are stored.
Initially, n is set to the number of non-unique tokens
spanning the input corpus, as each axis in the vector
corresponds to the presence of a token. We run ICA
on a matrix with reduced dimensions, and for ease of
visualization, we plot the final matrix points in a three-
dimensional space.

• Nearest neighbour score: The distance between a
point and its nearest neighbour. For our purposes, this
is a metric that can be used as the likelihood that a
method has a clone. If two points are close, it is likely
that those methods are very syntactically or semanti-
cally similar. Conversely, if two points have a very
large nearest neighbour score, they do not share similar
features, and are probably not clones of one another.

3. Method
In order to identify the most similar code blocks in our

source data, we take the following steps:

• Construct a method-token matrix using the non-unique
tokens found in our source code.

• Reduce the dimensionality of our matrix using SVD.
• Apply ICA to our reduced matrix, and save the results.
• Generate a new matrix based on ICA’s valuation of the

token relevance in order to identify the points in the
new vector space that correspond to our input data.

• Calculate the nearest neighbour scores of each method
using the previous matrix.

The source package to be analysed is segmented by
method (or any other code fragment unit), and a list of the
non-unique tokens used across the application is generated.
We define non-unique tokens as those tokens that appear
more than once, and therefore can contribute to some corre-
lation between methods. A method-token matrix is gener-
ated from the application methods and the list of non-unique
tokens. The presence of a token is represented by the value
1, and the absence of a token by the value -1.

To provide an example of the method-token matrix we
use as input, consider the following example.

s1 = My dog has fleas.
s2 = That dog has fleas.
s3 = My ukelele has fleas.
s4 = My team won the football game.
s5 = That dog ate all the turkey.

We have five input documents (or methods, when pars-
ing source code), named s1 through s5. In total, there are
six tokens used in the input, of which five are non-unique.
Since the token ’a’ is only used in s2, it is only relevant for
s2 and can be omitted, as it is outside the scope of tokens
we are interested in using in our comparison.

tokens = {all, ate, dog, fleas, football, game, has, my,
team, that, the, turkey, ukelele, won}

non− unique = {dog, fleas, has, my, that, the}

Our input matrix, here referred to as xflea, will neces-
sarily be a 5×6 matrix, with the five rows representing the
input documents s1 through s5, and the six columns repre-
senting the non-unique tokens above in the order they are
encountered when parsing the input documents.

xflea =


1 1 1 1 −1 −1
1 1 1 −1 1 −1
−1 1 1 1 −1 −1
−1 −1 −1 1 −1 1
1 −1 −1 −1 1 1


The representation of the original source code as a

method-token matrix now allows us to use a technique like



s1 s2 s3 s4 s5

s1 X 5.81 5.52 7.93 9.71
s2 5.81 X 8.64 11.79 9.62
s3 5.52 8.64 X 9.62 13.98
s4 7.93 11.79 9.62 X 8.64
s5 9.71 9.62 13.98 8.64 X

Figure 2. DVflea nearest neighbours

ICA to pull out some interesting results. Initially, we use
SVD as a dimensionality reduction method in order to re-
duce the memory footprint needed, and to force ICA to fo-
cus on only the most dominant signals. After the size of the
vector space has been reduced, we use ICA to identify the
statistically independent components of the input matrix.

It may help to think of the application of SVD and ICA
as a way of remapping the original matrix into a new vector
space, where each axis corresponds to some mathematically
significant concept or feature found in the original matrix.
It is important to note that the use of ICA over a technique
like LSI results in statistically independent components, and
should result in axes that are more unique than those gen-
erated from components that are merely decorrelated. An-
other interesting way to consider the results is to map to
three dimensions and to plot the results; we do this to iden-
tify clusters visually that may be clone groups, along with
outliers that are unlikely to have similar blocks of code.

In this application, the most useful application of this
new data is the similarity between the documents in our
original matrix. By using ICA to map our source matrix into
a reduced vector space, with axes that correspond to some
mathematically derived and independent feature of the data,
we can then use the results to see how close each method is
to each other one. LSI itself uses SVD transform the origi-
nal document-term matrix into a decomposition of matrices
used to identify relationships between the source data. We
take a similar approach here.

ICA is defined above as x = As. If the rows and
columns of x are documents and tokens, and the rows and
columns of s are signals and tokens, we can generate a new
document value matrix DV using the following equation:

DV = xsT

The logic for this comes from the fact that ICA has done
the work of figuring out which terms are semantically close.
By taking the product of our source matrix with raw token
availability and our derived signal-token matrix, the rela-
tionship between methods becomes apparent.

It is from this document value matrix that other LSI-
related activities like querying can be performed. We have
demonstrated in previous research [6, 7] how each axis cor-
responds to some independent concept, and can be used in-
dividually to show which sections of code correspond to
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Figure 3. DVflea vector plot

each concept. When the axes are used together, we have
a better overall view of the full similarity of each block.

After the matrix xflea above has been processed using
ICA, we generate the document value matrix, here called
DVflea, which looks like this:

DVflea = xfleasT
flea =


2.47 −1.82 2.03
5.34 2.38 −0.78
3.28 −5.98 −1.51
−5.34 −2.38 0.78
−3.28 5.98 1.51


If we treat each row as a distinct point in three-

dimensional space, the distance between each of these
points gives us the similarity of each document to the others.
In this case, we can show each source document, and each
of the nearest neighbours with their scores. In this way we
get an ordered list of related documents spanning the entire
range of the document set.

The strings and their nearest neighbours can be seen in
Figure 2. Each score is the Euclidean distance between the
points in three-dimensional space. The dimensionality of
the space is somewhat subjective, and we have chosen to
use three dimensions here to better display the meaning of
the results visually. As an example, Figure 3 shows how
the points map when plotted as vectors. By plotting in three
dimensions, we get an immediate sense of the placement of
the points relative to each other. As ICA enforces a strong
statistical bound on the axes, we expect to see points that
are quite distinct from one another. This is demonstrated by
the significantly different orientations of the vectors.

The meaning of these results is as follows. By applying
ICA to the original method-token matrix generated from our
input source code, we can derive a matrix DV that represents
the strength of each document in a new vector space. The
rows of DV can be plotted as points in this vector space, and
the Euclidean distance between any two points can be inter-
preted as a measure of their similarity, since each axis in this
new space corresponds to the strength of some statistically
independent concept.



static unsigned long source_load (int cpu, int type)
struct rq *rq = cpu_rq (cpu);
unsigned long total = weighted_cpuload (cpu);
if (type == 0) return total;
return min (rq->cpu_load[type - 1], total);

static unsigned long target_load (int cpu, int type)
struct rq *rq = cpu_rq (cpu);
unsigned long total = weighted_cpuload (cpu);
if (type == 0) return total;
return max (rq->cpu_load[type - 1], total);

Figure 4. First Percentile Nearest Neighbour

4. Results
To demonstrate the effectiveness of our approach, we

look at how well it identifies clones in the Linux kernel di-
rectory (hereafter referred to as kernel). This source code is
developed in C, and spans nearly 40,000 SLOC. The source
is segmented into 2731 individual methods, and was prepro-
cessed to only include tokens greater than three characters
in length. 9327 tokens were extracted, of which 6828 ap-
peared more than once. The time needed to perform ICA
and to generate our results for kernel is approximately one
minute on a standard desktop machine.

If two methods are found to be very similar, the points in
three-dimensional space derived from applying ICA to our
input matrix will be extremely close. Since we are treating
each signal in the matrix derived from ICA as some concep-
tual meaning, it means that for whatever those concepts are
determined to be, the two methods share that similarity. In
our tests, this has frequently (but not necessarily) demon-
strated itself by correlating to some subset of the code func-
tionality. For example, it may be the case that one signal has
high values for methods that handle memory management.
These conceptual axes are determined automatically when
ICA is applied, and are not seeded or predetermined by the
person analysing the matrices.

While it is not true that in any example, a score below a
certain constant threshhold is a definite identifier of a clone,
there is a very clear ordering in structure that can be ob-
served when looking at the matches. A nearest neighbour
score for a point in the first percentile means that the code
fragment represented by that point is within the top one per-
cent of potential clone candidates.

A sample clone, as indicated by its nearest neighbour
score, is the method source load seen in Figure 4. When
we have calculated the distances between the source load
point and every other point corresponding to methods in our
source code, it can be seen that the point for the target load
method is extremely close. Visually, these methods share a
great deal of similarity, and the only differences are in the
method name and in the usage of min or max.

Figure 5 is an interesting example, as there is a great
deal of structural similarity, but several key semantic dif-
ferences. In both cases, the entry variable is declared and

static int __init kallsyms_init (void)
struct proc_dir_entry *entry;
entry = create_proc_entry

("kallsyms", 0444, NULL);
if (entry) entry->proc_fops =

&kallsyms_operations;
return 0;

static int __init ioresources_init (void)
struct proc_dir_entry *entry;
entry = create_proc_entry

("ioports", 0, NULL);
if (entry) entry->proc_fops =

&proc_ioports_operations;
entry = create_proc_entry

("iomem", 0, NULL);
if (entry) entry->proc_fops =

&proc_iomem_operations;
return 0;

Figure 5. Tenth Percentile Nearest Neighbour

assigned using create proc entry, a comparison is made to
proc fops, and the value 0 is returned. However, a different
string value and file system mode is given, different con-
stants are used, and the proc fops comparison is made twice
in ioresources init. These methods are probably not clones
of each other, and we have no reason to assume that a near-
est neighbour score in the tenth percentile would indicate a
clone in kernel, but as a similar pair, they have been deter-
mined to be more alike than 90% of the other methods in
the source code. It seems like a fair claim, when looking at
the actual structure of the two methods in question.

We believe this is one of the interesting strengths of this
method; it may not provide a boolean truth test for whether
or not two blocks of code are clones of each other, but it can
provide an estimate on the likelihood that the methods are
clones relative to the rest of the source, with great certainty.

Although it is true that a number of methods have very
low nearest neighbour scores, there is often a very marked
difference between the nearest neighbour and the second
nearest neighbour (or rather, between potential clones and
the non-clone pairs). In fact, for the kernel example, scores
beyond the nearest neighbour often jump up by factors of a
thousand. If the distance between a first percentile match is
0.001, the second nearest neighbour will often have a score
around 3.0 or 5.0. Again, these are relative scores, but the
points that are not considered similar are considerably far-
ther apart than those that are considered potential clones.

This phenomenon continues on throughout the analy-
sis, and means that the relative scores need not act as a
hindrance against determining which code fragments are
clones. Although it is not possible to give a magic num-
ber that acts as a cutoff value when identifying clones by
their nearest neighbour scores for all inputs, we can demon-
strate that a meaningful gap appears between a source point
and any non-clone points.

By analysing the nearest neighbour score for each
method, we can also identify outliers that are far away



from other methods, and therefore bad candidates for clone
matching. Although the nearest neighbour distance score
is subjective between corpora, it is not unreasonable to say
that the values that are farthest apart can be excluded out-
right. Common culprits for outliers that match very poorly
with other methods are usually large singular functions that
could arguably benefit from being refactored themselves. It
is not the case that overuse of tokens in a method will result
in high similarity scores to other methods; rather, the ab-
sence of tokens shared between two methods will adversely
affect the distance score.

5. Related Work
ICA has been used successfully in natural language topic

detection, by considering each extracted signal as a topic
[2, 10]. In previous work we have used the technique
successfully to segment large document sets in the same
way, identifying major topics [7]. Recently we have ex-
perimented with using ICA for concept analysis in software
systems [6], leading to the present work.

Clone detection is a popular area with a wide range of
methods proposed [1, 11, 16]. The work closest to our is
possibly that of Marcus and Maletic [13, 14] who have ap-
plied latent semantic indexing (LSI) to find similar code
segments. However, their approach limits the tokens to
identifiers and comments, ignoring keywords and structural
symbols, whereas ours ignores comments and depends on
keywords, yielding a more structure-oriented result.

The cleaned and pretty-printed function/method source
documents used in our work are taken from a repository cre-
ated by Roy and Cordy in their work on analysis of function
clones in large scale open source systems [15].

6. Conclusion and Future Work
Using a technique like ICA appears to work well at iden-

tifying similar methods in source code, without any required
built-in knowledge about program language or syntax. By
mapping the methods to vectors using a method-token ma-
trix and applying ICA to extract the statistically indepen-
dent components that correspond to the original dataset, we
can use a distance metric to determine how similar the origi-
nal methods are to each other. Further, this gives us a way to
estimate the possibility that these methods might be clones
of one another.

The size of the matrices determined has been problem-
atic, and running ICA on a matrix with several hundreds of
thousands of methods can be prohibitive. We are looking at
ways to reduce the size of the data in a meaningful way in
order to tackle the problem of extremely large sets of data.

Additionally, in this work we have focused on a raw dis-
tance metric rather than cosine similarity; looking at the
vector space using the cosine distance might help isolate
similar features found in methods, as opposed to the overall

similarity of each document. We have used a similar ap-
proach previously in order to identify conceptually-related
methods [6, 7].
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