Applying Compiler Techniques to Diagram Recognition

D. Blostein, J. Cordy, R. Zanibbi
Department of Computing and Information Science
Queen's University, Kingston, Ontario, Canada
{ blostein, cordy, zanibbi }@cs.queensu.ca

Abstract

Compiler techniques are effective and efficient in
processing textual programming languages. These
techniques can be adapted to recognition and processing of
two-dimensional languages (diagrams). Already, grammars
and parsers have been used in a variety of diagram-
recognition and diagram-processing tasks. Here we explore
the use of two other compiler techniques in pattern
recognition systems. The first is compiler-style use of
trees and tree transformation. The second is a multi-pass
control structure, with a clear separation between layout,
lexical, syntactic, and semantic analysis. Our proposal is
illustrated on a case study involving recognition of hand-
drawn mathematics notation.

1. Introduction

The technology for compiler writing is mature and
highly successful [1]. The adaptation of compiler
techniques has had strong influence on syntactic pattern
recognition [13] and visual language research [25].
Techniques which were imported include the use of
grammars (array grammars [26], tree grammars [2] [13],
set grammars [3] [15], graph grammars [29]), and parsing
technologies (for example, CYK and Early algorithms for
context free grammars [13], and linear-time LR and LL
parsing algorithms for more restricted languages [11]).
Attributes and attribute-computation rules are used with all
types of grammars [13]. For example, Anderson uses
numeric attributes for bounding box coordinates, and string
attributes to record the meaning of the interpreted math
notation [3].

There are further possibilities for exploiting compiler
technology in diagram recognition. We begin by briefly
reviewing the software organizations used in diagram
recognition and compiler writing. These differ markedly,
in part due to differences in the problem domain, and in
part due to tradition and historical accident. Two major
differences in the problem domain are that compilers
process one-dimensional input whereas diagram recogni-
tion systems process two-dimensional input, and that
compilers have noise-free input, whereas diagram
recognition systems must handle noise and variability.

In this paper, we make the following recommendations
regarding the structuring of a diagram recognition system.
We illustrate this through a case study on recognition of
mathematics notation. The extent to which these ideas can
be applied to other pattern recognition problems remains
to be determined.

¢ Find linear structures in the input. Use these as a basis
for finding secondary linear structures. In our case

study, the linear structures are baselines in mathematics
notation. Intelligent search functions and symbol-
specific definitions of image sub-regions are used to
locate symbols within a baseline. Early extraction of
linear structures makes subsequent processing efficient
and easy to reason about.

* Organize the linear structures into a tree. This arises
naturally when linear structures are recursively extracted
from the input. The tree forms the basis for subsequent,
compiler-style processing. In our case study, a single
tree (of baselines) suffices. In more complex domains,
such as music notation, multiple trees could be used to
capture various ways of organizing the input.

* Divide processing into passes for layout, for lexical
analysis within and across linear structures, for syntax,
and for semantics. This provides for robust processing
of input — early passes process all input, even if there
are syntax errors or unknown constructs. Also, dialects
of the diagram notation can be supported more easily:
early passes are the same for all dialects.

» Use a simple, fixed control structure. In our case study,
a sequence of passes suffices.

e Use attributed trees and tree transformation technology.
Trees provide a natural and convenient method for
representing grammar-based processes. For this reason,
compiler writers have developed a range of highly
efficient techniques for manipulating trees. Tree
transformation systems express these manipulations in a
concise and easy to understand high-level form.

2. Software architectures

A variety of software organizations have been used in
diagram recognition systems, as is briefly reviewed here.
Efforts are underway to provide reusable code for
recognition systems [28] [32] [34].

The blackboard architecture is a general and flexible
framework for combining diverse knowledge sources;
applications include recognition of engineering drawings
[35], mail pieces [36], and text [31], as well as
construction of a drawing-interpretation kernel [28].
Knowledge sources communicate via a blackboard data
structure. The blackboard represents multiple, conflicting
recognition hypotheses, divided into levels of abstraction
(e.g., raw image, thresholded image, labeled image, text-
line, and block [36]). The blackboard contents trigger
invocation of knowledge sources, thus allowing evidence
to be accumulated from diverse knowledge sources in an
adaptive manner.

Schema-based systems use schema classes to define
prototypical drawing constructs, using class and instance
hierarchies for specialization and composition. Schemata

have been used with constraint satisfaction for
interpretation of sketch maps [27], and with a control
grammar for interpretation of engineering drawings [19].

A grammar defines a language via a start symbol and a
set of productions (rewrite rules). A parser determines
whether a given input is a member of this language [13].
In contrast, a transformational grammar does not define a
language; instead productions and a control structure are
used to rewrite the input to produce a desired output [6]
[13]. In most pattern-recognition applications involving
grammars, symbol recognition is performed separately,
with the grammar used to process the resulting symbols
(e.g. [3]). In contrast, Chou’s stochastic grammar [§]
describes the image down to the pixel level.

Some diagram recognition systems contain explicit
models of document generation. Kopec and Chou use a
Hidden Markov Model of the document generator in order
to find the maximum likelihood interpretation of the
document image [22] [23]. A descriptive (rather than
generative) model of the domain is used in the recognition
framework proposed in [33].

3. Compiler technology

Techniques used in compiler construction include the
following [1]. Firstly, language analysis is separated into
passes (Figure 1). The primary division is into lexical,
syntax, and semantic passes. Pattern recognition systems
generally do not use this division. Instead, layout, lexical,
and syntactic processing are closely integrated, in order to
use higher level constraints to help disambiguate symbol
recognition (e.g. [22]).

A second compiler construction technique is the
intensive use of grammars, both for parsing and for
syntax-directed translation. Virtually all processes in a
compiler are driven by grammatically-based techniques —
lexical analysis is specified and implemented using regular
grammars [24], creation of the parse tree is driven by a
context-free grammar [18], semantic analysis is achieved
using attribute grammars [21], and code generation is often
specified using a transformational grammar [14].

A third compiler-construction technique is tree
transformation. Highly efficient tree manipulation is
provided by ordered attribute grammars [20], by the TXL
system [9] and the Gentle system [30]. Tree manipulations
provide a convenient and efficient way to implement a
wide range of language-based tasks such as translation,
design recovery from source code, and automatic
programming [10].

4. Case Study: Math Recognition

As a case study, we compare two approaches to
mathematics recognition; others are surveyed in [4] [7].
The input to both systems consists of a set of symbols,
annotated by bounding box coordinates.

Handwritten mathematics notation poses many
challenges. Symbol recognition must cope with a large
character set, a range of font sizes, and small symbols such
as commas and accents, which are easily confused with
noise. Spatial relations are difficult to define precisely;
e.g., the gradual transition from multiplication to
exponentiation in 2x 2x 2X 2X 2X_ This problem is

exacerbated by inexact symbol placement and irregular
symbol sizes, which are common in handwritten notation
(Figure 2). The meaning of spatial relations depends on
context; consider, for example, the pattern X;j in contexts
x;jy; and aXi. Mathematics notation is compact, with little
redindancy that might aid recognition.

Text [cHoHs HCHTHAHZ|H) HHx]

Tokens
Syntax Pass
expr
I
Parse Tree _-term
tCI"IIl
factor
prithary
ex:pr
ter"m
factor
fa"lt/"f \ factor
prinllary prinllary primary
COS (T A 2)/ X

PUSHT

Code for PUSH 2
an abstract EXP
X COS

machine PUSH X
DIV

Figure 1. Compiler passes, for the input “cos(T"2)/x”".

@%ﬂ
2

Figure 2. Example of inexact symbol placement: the
“3+” is placed higher than it would be in typeset notation.

The first system in our case study uses graph transfor-
mation rules organized into four phases [16]. The initial
graph contains one node per symbol, attributed with
bounding box coordinates. The Build phase adds edges to
represent Above, Below, Left, Sub, and Super relations.
The Constrain phase removes contradictory edges, and
determines the role of dots and horizontal lines. The Rank
phase assigns operator precedences, and the Incorporate
phase replaces subexpressions by single nodes. In a
second implementation, using the PROGRES language,
Build, Constrain, and Parse phases are used [5]. Positive
aspects of this system include the following. On the
positive side, (1) these small prototype systems were the
first recognition systems capable of handling irregular
symbol placement in handwritten math notation, and (2)
we found that graph transformation was a natural and
convenient style of computation. On the negative side,
scaling up of the system is difficult. It is true that a
division into phases helps structure the recognition (see
also [12]). Nevertheless, it is difficult to extend the

system to recognize an additional math-notation construct:
it is hard to find the right places where code must be added.
In retrospect, one source of difficulty may be that the
phases are not divided along layout, syntax and semantics
lines. Also, the generality of the graph structure may be a
source of difficulty. Graph edges easily and naturally
represent any number of relations, but this generality can
make it difficult to reason about the state of the graph. If
the input can be represented as a tree, as is done below, it
is easier to reason about the state of the computation.

The second system in our case study, DRACULAE
[37] [38], adapts compiler techniques to mathematics
recognition. The input to a compiler is a string; this is
tokenized by the Lexical Pass, and converted to a tree by
the Syntax Pass (Figure 1). The input to diagram
recognition is two-dimensional. Processing options
include:

* Translate the diagram into a string, and then apply
compiler methods directly. This approach is impractical
because it is unwieldy to represent and manipulate
spatial relations encoded in a string.

» Translate the diagram into a graph, and then apply graph
transformation rules, as discussed above. This is a very
general approach. Tree-based compiler technology is not
easily applicable.

* Translate the diagram into a tree, and then apply
compiler-style tree transformation. Translation to a tree
proceeds by repeatedly finding linear sub-structures in
the diagram, as discussed next.

The passes used in DRACULAE are illustrated in
Figure 3. Most of the system design effort was directed at
the Layout Pass, which converts the set of input symbols
into a tree. The remaining passes were relatively easy to
construct due to the ease of adapting compiler tools and
technology. As described in [38], the Layout Pass uses
search functions: Start() locates the first symbol in a
baseline, and Hor() finds the next symbol in a baseline.
Image subregions are defined around baseline symbols, and
the search functions are recursively applied in these
subregions. The initial inspiration for this approach came
from Positional Grammars [11]; significant extensions
were needed to handle the inexact symbol placement
common in handwritten math expressions.

We now compare the compiler passes (Figure 1) to the
passes DRACULAE uses for math notation (Figure 3).
DRACULAE's Layout Pass converts the set of symbols to
a tree. A compiler has no counterpart to the Layout Pass.
The output of the Layout Pass is a Baseline Structure
Tree, which captures the spatial structure of the input.
This tree is produced for any input, even if it contains
syntax errors (e.g., mismatched parentheses) or novel math
constructs. DRACULAE operates without backtracking.
The linear sub-structures captured in the Baseline Structure
Tree are exploited to achieve this efficiency.

A compiler's Lexical Pass operates on linear input and
produces linear output. DRACULAE's two Lexical Passes
operate on tree input and produce tree output. The Lexical
Pass for Tokens performs lexing within one baseline
(combine “c" “0” “s” into “cos”). The Lexical Pass for
Relations performs lexing between baselines. It handles
explicit operators (e.g. division bars) and implicit
operators (e.g. exponentiation). If the input expression

conforms to correct math syntax, all spatial relations
(ABOVE, SUPER, etc.) are replaced by operation labels.

Attributed

Symbols [

ABOVE] BELOW
=@’@|i

Partially Tokenized Fl
Baseline Structure Tree

777777777777777777777777777 MathML
= (presentation
x

Fully Tokenized 7\ encodin.
Baseline Structure Tree /D &)
S

\

,,,,,,,,,,,,,,,,,,,,,,,,,,, Description of

Expression Syntax Pass <&— the math dialect:
*************************** function names

LaTeX

term .
faclfor Fraction facltor
primary primary
Vs |
cos CXPr X

term
/factO{
) fgctor primary
primary \
T Superscript 2
Description of
Expression Semantic Pass <€—the math dialect:
*************************** domain types

Toating Point
Operator Tree Divide Maple
4 N
MathML
[Floating Point Exponent] (content
/ N\ encoding)

Figure 3. Overview of DRACULAE, a math recognition
system which adapts compiler techniques [37] [38].

A compiler’s Syntax Pass (with linear input and tree
output), corresponds to DRACULAE’s Expression Syntax
Pass (with tree input and tree output). The Expression
Syntax Pass replaces operation labels by explicit math
operators. This requires external information which is not
present in the expression itself. For example, function
names are needed, to decide whether “a(b)” means “apply
function a to operand »” or “multiply a by b”. Similarly,
type information is needed by the Expression Semantic
Pass, to determine if the math operations refer to real
numbers, vectors, or matrices. A compiler obtains
corresponding information from declarations located in
other parts of the source code.

5. Conclusion

The application of compiler technology to diagram
recognition has been illustrated on a case study:
recognition of math notation. We believe that these ideas
can be adapted to recognizers for other notations,
particularly those which have a reading order, such as
music notation. The input symbols are converted to a
tree, by repeatedly finding linear substructures. Layout
information is processed completely, before moving on to
lexical and syntactic processing. This results in an
efficient, extensible system.

Acknowledgement
This research is supported by the Natural Sciences and
Engineering Research Council of Canada.

References

[1] A. Aho, R. Sethi, J. Ullman, Compilers: Principles,
Techniques and Tools, Addison Wesley, 1986.

[2] O. Akindele, A. Belaid, “Construction of Generic Models
of Document Structure using Inference of Tree Grammars,”
Proc. ICDAR '95, 206-209.

[3] R. Anderson, “Two Dimensional Mathematical Notation,”
in Syntactic Pattern Recognition, Applications, Ed. K. S.
Fu, Springer 1977, 147-177.

[4] D. Blostein, A. Grbavec, “Recognition of Mathematical
Notation,” Handbook of Character Recognition and DIA,
Eds. Bunke, Wang, World Scientific, 1997, 557-582.

[5] D. Blostein, A. Schurr, “Computing with Graphs and
Graph Transformation,” Software — Practice and Experience,
29(3), 1999, 197-217.

[6] H. Bunke, “Attributed Programmed Graph Grammars and
Their Application to Schematic Diagram Interpretation,”
IEEE PAMI 4(6), Nov. 1982, 574-582.

[7] K. Chan, D. Yeung, “Mathematics Expression Recogni-
tion: a Survey,” Intl. J. Document Analysis and
Recognition, 3(1), Aug. 2000, 3-15.

[8] P. Chou, “Recognition of Equations Using a Two-
Dimensional Stochastic Context-Free Grammar,” SPIE
Proceedings Series Vol. 1199, 1989, 852-863.

[9] J. Cordy, C. Halpern, E. Promislow, “TXL: A Rapid
Prototyping System For Programming Language Dialects,”
Computer Languages,16(1), 1991, 97-107.

[10] J. Cordy, T. Dean, A. Malton, K. Schneider, “Software
Engineering by Source Transformation - Experience with
TXL,” Proc. SCAM'01, Nov. 2001, 168-178.

[11] G. Costagliola et al., “Positional Grammars: A
Formalism for LR-Like Parsing of Visual Languages,” in
Visual Language Theory, Springer, 1998, 171-191.

[12] H. Fahmy, D. Blostein, “A Graph Grammar Programming
Style for Recognition of Music Notation,” Machine Vision
and Applications, 6(2), 1993, 83-99.

[13] K. S. Fu, Syntactic Pattern Recognition and
Applications, Prentice Hall 1982.

[14] M. Ganapathi, C. Fischer, “Affix Grammar Driven Code
Generation,” ACM Trans. Programming Languages and
Systems, 7(4), 1985, 560-599.

[15] E. Golin, S. Reiss, “The Specification of Visual Language
Syntax,” J. Visual Langs.&Comput.,1(2), 1990, 141-157.

[16] A. Grbavec, D. Blostein, “Mathematics Rec. Using Graph
Rewriting,” Proc. ICDAR '95, 417-421.

[17] O. Hitz, L. Robadey, R. Ingold, “Analysis of Synthetic
Document Images,” Proc. ICDAR '99, 374-377.

[18] S. Johnson, “YACC - Yet Another CompilerCompiler,”
Computing Science Technical Report 32, AT&T Bell
Laboratories, Murray Hill, NJ 07974, 1975.

[19] S. Joseph, T. Pridmore, “Knowledge-Directed
Interpretation of Mechanical Engineering Drawings,” IEEE
PAMI, 14(9), Sept. 1992, 928-940.

[20] U. Kastens, “Ordered Attribute Grammars,” Acta
Informatica, 13, 1980, 229-256.

[21] U. Kastens, B. Hutt, E. Zimmermann, GAG: A Practical
Compiler Generator, LNCS 141, Springer, Berlin, 1982.
[22] G. Kopec, P. Chou, “Doc. Image Decoding Using Markov

Source Models,” IEEE PAMI, 16(6), 1994, 602-617.

[23] G. Kopec, P. Chou, D. Maltz, “Markov Source Model for
Printed Music Decoding,” J. Electronic Imaging,5(1), Jan.
1996, 7-14.

[24] M. Lesk, E. Schmidt, “Lex-A Lexical Analyzer
Generator,” Computing Science Technical Report 39, AT&T
Bell Laboratories, Murray Hill, NJ 07974, 1975.

[25] K. Marriott, B. Meyer, K. Wittenburg, “A Survey of
Visual Language Specification and Recognition,” in Visual
Langu-age Theory, Springer, 1998, 5-85.

[26] A. Mercer, A. Rosenfeld, “An Array Grammar
Programming System,” CACM, 16(5), 1973, 299-305.

[27] 1. Mulder, A. Mackworth, W. Havens, “Knowledge
Structuring and Constraint Satisfaction: The Mapsee
Approach,” IEEE PAMI, 10(6), Nov. 1988, 866-879.

[28] B. Pasternak, “Processing Imprecise and Structural
Distorted Line Drawings by an Adaptable Drawing Interpre-
tation Kernel,” Proc. DAS '94, 349-363.

[29] Proc. Intl. Workshops Theory and Application of Graph
Transformations (was Graph Grammars and Their Applic. to
CS). LNCS Vols. 73, 153, 291, 532, 1073, 1764, Springer.

[30] F. Schroer, The GENTLE Compiler Construction System,
Oldenbourg, 1997.

[31] R. Sennhauser, “Integration of Contextual Knowledge
Sources Into a Blackboard-based Text Recognition
System,” Proc. DAS '94, 211-228.

[32] A. Smeulders, T. ten Kate, “Software System Design for
Paper Map Conversion,” LNCS 1072, Springer, 1996,
204-211.

[33] M. Stuckelberg, D. Doermann, “Model-Based Graphics
Recognition,” LNCS 1941, Springer, 2000, 121-132.

[34] K. Tombre, C. Ah-Soon, P. Dosch, A. Habed, G. Masini,
“Stable, Robust and Off-the-Shelf Methods for Graphics
Recognition,” Proc. 14th ICPR, 1998, 1, 406-408.

[35] P. Vaxiviere, K. Tombre, “Knowledge Organization and
Interpretation Process in Engineering Drawing Interpreta-
tion,” Proc. DAS '94, 313-321.

[36] C. Wang, S. Srihari, “A Framework for Object
Recognition in a Visually Complex Environment...,” Intl.
J. Computer Vision,2, 1989, 125-151.

[37] R. Zanibbi, D. Blostein, J. Cordy, “Baseline Structure
Analysis of Handwritten Mathematics Notation,” Proc.
ICDAR 2001, 768-773.

[38] R. Zanibbi, D. Blostein, J. Cordy, “Recognizing
Handwritten Mathematical Expressions Using Tree
Transformation,” IEEE PAMI, to appear.

