
Abstract

The year 2000 problem posed a difficult problem for many IT
shops world wide. The most difficult part of the problem was
not the actual changes to ensure compliance, but finding and
classifying the data fields that represent dates. This is a
problem well suited to design recovery. This paper presents an
overview of LS/2000, a system that used design recovery to
analyze source code for year 2000 risks and guide a source
transformation that was able to automatically remediate over
99% of the year 2000 risks in over three billion lines of
production IT source.

1. Introduction

Design Recovery is an automated approach for recovering a
design model from source code artifacts [1,2]. Legasys
Corporation was formed in 1995 to apply design recovery
techniques to very large legacy information technology systems.

The Y2K problem required information technology
departments to ensure that their software would function
correctly in the year 2000 and beyond. This was particularly an
issue when years were being represented as 2–digit numbers
(…,98,99,00,01,…) with the century being implied to be 1900.
An estimated 400 billion dollars was spent worldwide to
remediate and test hundreds of billion lines of program source
code for the Y2K problem. Over 80% of these lines were
written in COBOL.

The size and scope of the Y2K problem made it ideal for
automated design recovery techniques. Accurately identifying
and classifying the dates in a system turned out to be a complex
and subtle problem, requiring careful design-level analysis of
the source code. However, once the dates were found,
determining which dates were being used incorrectly and

making the appropriate changes was relatively straight forward.
The result of our application of design recovery techniques

to the Y2K problem was LS/2000, a highly automated process
that operated with a minimum of human intervention on
COBOL, PL/I and RPG source code. LS/2000 was licensed to
IBM Canada for exclusive use in Canada and to several other
Y2K vendors world wide. In all, more than 3.3 billion lines of
source code was remediated or independently verified and
validated with the LS/2000 process.

This paper presents presents an overview the LS/2000
solution for the Y2K problem with emphasis on its use of
automated design recovery and analysis techniques. The Y2K
problem is a well understood case that is typical of a class of
maintenance tasks. The approach discussed in this paper, with
minor modifications, was applied to several hundred million
lines of code to assist some of these other maintenance tasks in
1999 and 2000 as well.

2. System Architecture

Figure 1 shows the system architecture of the LS/2000
system using a variant of the software architecture notation of
Dean and Cordy [3]. (In this paper we use the Dean/Cordy
notation in preference to UML since it was the one actually used
in the LS/2000 project.) In this notation, boxes represent
artifacts, ovals represent processes, arrows represent data flow,
dashed arrows represent either input or output, and thatched
boxes represent tables.

The LS/2000 process is divided into five phases: Import;
Design Recovery; Date Analysis; HotSport Markup and
Transformation; and, Version Integration.

For each program, original source code is converted by the
Import phase to produce two internal forms of source. Both of
these forms have all of the copy books (i.e., include files)
inlined in the code. The first internal form, the UID factor, is a
free form version of the code suitable for automated processing.
In this form lexical details have been removed, syntax has been
normalized and all data fields in the system have been given
globally unique names (UID = Unique IDentifier). The second
internal form, the lexical factor, retains the original formatting
of the source code, but each line has been annotated with the
UIDs of the fields referred to on that line. It is used as a part of
the user interface in the Date Analysis phase. Since the Import
phase removes some information, namely the copy file

Using Design Recovery Techniques
to Transform Legacy Systems

Thomas R. Dean+ James R. Cordy* Kevin A. Schneider† Andrew J. Malton‡

Legasys Corporation, Kingston, Ontario, Canada
{dean,cordy,kas,malton}@cs.queensu.ca

This work was supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC).
 * Author’s current address: Department of Computing & Information
Science, Queen’s University, Kingston, Ontario, Canada K7L 3N6.
 + Author’s current address: Department of Electrical & Computer
Engineering, Queen’s Univ., Kingston, Ontario, Canada K7L 3N6.
 ‡ Author’s current address: Department of Computer Science,
University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
 † Author’s current address: Dept. of Computer Science, University of
Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5A9.

boundaries, it also generates some of the base facts of the design
database (i.e. the source file facts).

The Design Recovery phase generates a base design recovery
model as a Prolog-style database. Each fact in this model is
directly related to a source code artifact. For example, the
Picture fact indicates that a given data field is declared with a
given COBOL or PL/I “picture”. (“Pictures” describe
COBOL’s elementary data types).

The facts generated by Design Recovery are used by Date
Analysis to derive facts about which fields are dates and what
date format those fields use. This is an imperfect process that
requires some human intervention. The date facts are used to
guide a markup and transform of the internal form of the source
code by the Hot Spots phase. Finally, the Version Integration
phase merges the formatting and comments of the original
source code from the lexical factor to produce the final
transformed code and reports.

Each of the phases of LS/2000 is discussed in more detail in
the following sections. Although there are slight differences in
the phases for each language (COBOL, PL/I, RPG), in this
document we will focus on the COBOL version of the process.

2.1 Import

The Import phase takes the original source code and
produces two internal forms and some of the base facts. Figure
2 shows the structure of the Import phase. It, in turn, is
composed of several sub-phases. The first of these, Front End,
takes each of the source code program files and inlines all of the
copy files referred to by the program. At the same time, it
removes all of the comments, the REMARKS section (for older
dialects of COBOL), sequence numbers and maintenance
initials.

Since this removes the copy file boundaries, any data fields
that are included as a consequence of a COPY statement are
“mangled” to encode the name of the copy file, and in the case
of COPY REPLACING statement, the original unreplaced name
of the data field.

Most of the internals of the LS/2000 system were
implemented in TXL [4,5,6], a functional transformation
language that works on parse trees given by a grammar. If the
data hierarchy is to be made explicit in the parse tree, then the
languages processed by LS/2000 are not context free. For
example, in COBOL and PL/I, the subfields of a record
structure are given by the level number, where larger numbers
represent deeper nesting within the data structure.

Source
Code Import

Lexical
Factor

Design
Recovery

UID
Factor

Base
Facts

Date
Analysis

Date
FactsHotSpots

Transformed
UID Factor

HotSpot
Reports

Transformed
Source

Version
Integration

Figure 1. System Architecture

Front
End

Source
Code

Lexical
Factor

UID
Factor

Base
Facts

Backpatch

Bracket Rename

Clean

Figure 2. Structure of the Import Phase

The next phase of Import, Bracket, is responsible for the
context sensitive parse necessary to resolve this problem.
Subfields of records are “bracketed” (hence the phase name) by
the Bracket phase using square brackets [], characters that are
not part of the COBOL language definition, to explicitly
represent record structure boundaries. This results in a version
of the language where record nesting structure can be easily
recognized using a context-free parser.

The Rename phase of Import traverses the data hierarchy of
each program, and gives each data field in the system a unique
name. This unique name encodes the source file name, the
program name within the file and the record and the position of
the field within the record hierarchy. All references to data
fields in the program are modified to use the unique name given
in the data hierarchy. The form of a unique id (UID) is:

data_part – program_part `filename`

where data_part and program_part are sequences of identifiers.
The file name is enclosed in back quotes ` ` to hide any special
characters permitted by the file system that would not normally
be part of an identifier. To permit the original form of the name
to be easily recovered at the end of the transformation process,
the UID is encoded in a source code factor [7] of the form:

[uid # original_code]

For example a simple record in the program A in the file
“A.CBL” with the following declaration:

01 DATE-REC.
05 YY PIC 99.
05 MM PIC 99.
05 DD PIC 99.

would be transformed by Bracket and Rename into a record of
the following form:

01 [DATE-REC - A `A.CBL` # DATE-REC] . [
05 [YY DATE-REC - A `A.CBL` # YY] PIC 99.
05 [MM DATE-REC - A `A.CBL` # MM] PIC 99.
05 [DD DATE-REC - A `A.CBL` # DD] PIC 99.]

and a reference in the code such as:

YY OF DATE-REC

would be converted by Rename to:

[YY DATE-REC - A `A.CBL` # YY OF DATE-REC]

The Rename phase also unmangles the names for fields
imported from copy files. Each of these fields is given a CID
(Copy IDentifier) which is similar in structure to the UID. The
CID uniquely identifies the field within the copy file, and since
it includes the copy file name, within the system. The
relationship between CID and the UID is asserted in the design
database using the CopyID fact.

The Clean phase of Import is a general purpose program that
removes the data hierarchy bracketing and the UID factors from
the code. When used in the Import phase, it transforms the UID
factor into a markup of the field. This markup has the form:

{" UID" original code }" UID"

The declaration of YY in the previous example would now
appear as:

{"YY DATE-REC - A `A.CBL`" YY }"YY
DATE-REC - A `A.CBL`"

Both declarations and references to data fields are
transformed in this way.

Backpatch is also a general purpose phase used in several
places in the process. It merges the formatting of the original
source code with the cleaned free format internal code. When
used in the Import phase, it generates a version of the original
code with all copy files included in which each line is annotated
with the UID for any fields that occur on that line. This
annotation takes the form of a null byte with the high bit set
(0x80 in hexadecimal) at the end of the source code line,
followed by all of the UIDs for the identifiers on that line.
Additional markup on the line is used to indicate copy file
boundaries. This form is used later in the analysis and reporting
stages of the process.

2.2 Fact Extraction

All other base facts (other than CopyID facts) of the design
database are generated by the Design Recovery phase. Base
facts are facts that are (or can be) directly generated from the
source software artifacts. These facts represent the type and
storage allocation of data fields, and how the fields interact with
each other by data movement, comparison and so on.

Figure 3 shows the structure of the Design Recovery phase
of LS/2000. The phase reads from the uniquely named internal
format and generates Prolog-style base facts. The Data Facts
part of the phase is responsible for generating facts from the
DATA division of the program. These facts represent the data
hierarchy (parent–child, level number), the data type
(PICTURE, USAGE, and JUST clauses), initial values, array
dimensions (OCCURS clause) and other declared relationships
between the data fields (REDEFINES clauses, and file records).

The Size Facts subtask compresses the information from
several of these base facts into a FieldSize fact and an Offset
fact. The FieldSize fact gives the total number of bytes
occupied by the field, the number of digits before and after the
decimal point (for numeric data) and a code representing the
base type of the data in the field. This fact provides a concise
representation of facts representing the PICTURE, USAGE,
JUST, and OCCURS clauses of COBOL. It also provides a
somewhat language independent view of the storage of a field,
permitting a more general Date Analysis phase for all three
languages. The Offset fact gives the position of a data field
within its record. Although both the FieldSize and Offset facts
are generated from other facts and not from the source, they
convey no more information than the original source artifacts
and thus we consider them base facts.

The only facts directly extracted from the PROCEDURE
division of the program (i.e. the executable statements of the
program) are Move facts and Compare facts. These facts
abstract assignment (the MOVE statement) and comparison
between fields respectively. While there are other relationships

between fields in the PROCEDURE division, these facts proved
sufficient to discover which fields are dates and the formats of
the dates. Movement of literal values to data fields and
comparisons of data fields to literal values were also captured
by the Move and Compare facts.

Some statements other than MOVE statements were
modeled as MOVE statements in the recovered design. In
COBOL, certain special forms of the READ and WRITE
statements imply implicit moves. These implicit moves were
modeled explicitly in the design fact base. Similarly, the
ACCEPT … FROM DAY/DATE statement, which generates
the current date as a Julian day (YYDDD) or an ISO date
(YYMMDD) and assigns it to the target data field, was modeled
as a MOVE from a suitably named predefined data field
recognizable by the Date Analysis phase.

For reasons that will be explained in the next section, there
was no need in LS/2000 to recover facts for procedure calls or
facts that relate the arguments of a call to the parameters of the
called program.

2.3 Date Analysis

The Date Analysis phase is responsible for generating a set
of derived facts that identify which data fields represent dates
and what format of date is stored in them. This is a difficult and
challenging problem that is not entirely automatable. Figure 4
shows the structure of Date Analysis.

The inference of dates is seeded using Naming Convention.
This part of Date Analysis uses the declared name and size of
the data field in conjunction with a set of naming convention
tables to identify data fields that have a high probability of
representing dates. If Naming Convention can also determine
the format of the date from the name, for example if a data field
is named ACCT-YYNNN and is declared with a picture of 9(5),
that is, five numeric digits, then it also associates the date
format with the data field. The format is referred to as the date
type of the data field. In the above example, the date format is
probably a Julian date, that is, a two digit year followed by a
three digit day number within the year. If Naming Convention
believes that a data field is a date, but cannot determine the
format, then the special date type UNKNOWN is used. Fields
that are known to not be dates were given the date type
IGNORE.

The rules used in the naming convention table allowed a
variety of pattern matching primitives. Fields could be matched
based on substrings at the beginning, middle or end of the field
name. Since it is common for COBOL (and PL/I) fields to be
named as a sequence of words separated by hyphens
(underscores in PL/I), pattern matching operators to match
words within field names were also provided.

The naming convention tables specified both positive and
negative clues to look for. For example, the sequence UPDATE
in field name is not an indication that the field is a date, even
though the substring DATE appears in it. Rules were ranked

UID
Factor

Data
Facts

Base
FactsMove

Facts

Comp
Facts

Size
Facts

Figure 3. Structure of Design Recovery

Group
Tables

Lexical
Factor

Base
Facts

Naming
Convention

Date
Facts

Hand
Tags

Trace

Group

User
Interface

Naming
Tables

Trace
Tables

Conflict
Facts

Figure 4. Structure of Date Analysis

using set of priorities. The purpose of this was twofold. It
allowed for general rules that gave the UNKNOWN date type,
and more specific rules with a higher priority providing specific
formats. It also allowed us to rank different naming conventions
according to their strength. The priority system of rules, while
powerful, proved difficult to use, requiring a fair amount of
tuning. A sanity filter also prevented any name longer than 20
characters from being identified as a date.

The initial evidence collected by Naming Convention along
with the recovered design factbase is given to the trace engine.
The trace engine has two components. The first, called Trace, is
responsible for following references between data fields. Traced
references include the Move, Compare and Redefines facts.
The source code is not used, and the facts do not contain any
data flow dependencies. Thus a pure reference model is used,
not a data flow model. The algorithm begins with each of the
data fields that are currently marked as Dates, and considers all
data fields that are referenced by these fields to determine if
they might be dates, continuing until all reference chains have
been examined.

For Move and Compare facts, if a referenced data field has
the same number of digits, it is considered a trivial reference,
and the fields are considered to have the same date type. If the
two fields have different sizes, then the Date Trace Tables are
used to determine the types of the related fields.

Date trace tables contain two kinds of entries. The first kind
is a type inference entry. In this case, one of the data fields has
already been assigned a date type, and the other has not. The
table then provides the date type for the unassigned field (if
possible). The other kind of entry is a sanity check entry. These
apply when both data fields have already been given date types.
In this case the table provides a sanity check to determine if the
relation is legitimate. Sanity check entries must be much more
liberal than type inferences. For example, consider the
statement:

MOVE A-DATE TO B-YY.

Where A-DATE is a field of length 6 and B-YY is a right
justified field of length 2. If we already know that B-YY has a
date type of YY, then A-DATE may be an MMDDYY (two
digit month-day-year), or a DDMMYY (two digit day-month-
year). The trace table cannot contain a type inference rule that
infers the date type of A-DATE, because it could be either one
of the possibilities. However, the tables must contain sanity
check entries for both possibilities, since both are meaningful
assignments between date types.

The date inferences resulting from Trace as well as the
design factbase are then passed to the Group Analysis part of the
tracing algorithm. This algorithm uses another set of tables, the
Date Group Tables, to attempt to infer the date types of group
fields (i.e., records) from the types of their member fields. For
example, given the following COBOL group definition for
POST-DATE:

01 MAIN-REC.
…

10 POST-DATE.
15 POST-DATE-YY PIC 99.
15 POST-DATE-MM PIC 99.
15 POST-DATE-DD PIC 99.

…

where we already know that the date types of the subfields
POST-DATE-YY, POST-DATE-MM and POST-DATE-DD
are two digit year, month and day respectively, we can infer that
POST-DATE has the date type YYMMDD (two digit year-
month-day).

The date analysis engine of LS/2000 traced date types for the
entire application at once, in order to permit date information to
be inferred between programs. In particular, every instance of a
data field declared in a copy file included in multiple programs
is combined into a CopyID cluster that is treated as a single
entity by the date trace algorithm. This is based on the
assumption that if a data field is a date in one program, then it is
a date in all programs. This was a very strong inference method.
We performed several experiments adding facts linking the
arguments in a CALL statement to the parameters of the called
programs. None of these extra facts were found to add any
information to the trace of date types - the CopyID clusters were
sufficient to transfer date inference information from one
program to another.

The date type inference algorithm in LS/2000 was good, but
by no means perfect. Various program constructs could trip it
up, preventing data fields from being assigned consistent dates.
The imperfections showed up in one of two ways.

The first was the case where data fields that were found to be
dates could not be given a format (date type). These were given
the date type UNKNOWN. Unknown dates were not traced, so
these were the result of the Naming Convention part of Date
Analysis. In this case the system did not do well because it
could not trace the dates.

The second was the case where a program contained a move
or comparison in which the date types of the two fields were
incompatible. This resulted in the generation of Conflict facts,
which also limited the trace. Conflicts could arise for several
reasons. The first reason was that a potential date type inference
rule may not have been considered strong enough to include in
the trace or group tables. The second is that authors of the
application being analyzed may have used a temporary buffer
for both dates and other business types (such as account codes).
The last possibility is that there may be a bug in the application
code.

LS/2000 allowed human intervention to resolve both
unknown date types and date type conflicts. A web-based
interface was provided in which a human date analyst was
presented with a list of data fields whose date types were
unknown or in conflict. This interface included hyperlinks to
the data fields related to each of the questionable fields,
including their declarations and uses in the original code.

The Lexical Factor of the source contained the source code
in its original formatting. Each line was annotated with the
UIDs of the fields on the line. These annotations were used by

the user interface to present each of the fields in context to the
analyst. The annotations were invisible to the analyst, who saw
the code only in its original form.

When the analyst had made a decision on the resolution of a
field, he/she assigned a date type to the field. This assignment
was represented internally as a Hand Tag fact. These hand tags
were read by the trace engine and used to override any inference
made by Naming Convention, or inferred by the trace or group
algorithm.

In some cases, even the human date analyst could not
determine the date type of a field because there was too little
information available in the code. If the field was not involved
in any comparisons, or used as in the key to a file, merge or sort,
then the field could not possibly be a critical date and was
ignored. If it was, then it would be left as an unknown field.
All such fields were reported to the client as requiring further
application knowledge to fix.

2.4 Hot Spot Markup and Transformation

The Hot Spots phase of LS/2000 was responsible for using
the date information discovered in the Date Analysis phase and
applying it to the application code. In our experience, the vast
majority of cases where date fields were used in a Y2K sensitive
manner could be transformed automatically. The small number
of remaining cases, which require application knowledge to
properly handle, were marked as Y2K sensitive and provided in
a report along with those changes automatically made by the
system.

The strategy taken by our approach was an aggressive
markup of the Y2K risks, followed by a conservative
transformation. It was felt that having some false positives in
the reports (that would not be changed by the transform) were
better than having false negatives (missed Y2K risks).

Figure 5 shows the structure of the Hot Spots phase of
LS/2000. Extract Facts is a program used to extract a subset of
the facts from the recovered design fact base that match a given
criterion. It is invoked twice in Hot Spots. The first time it is
invoked, it is used to obtain all of the Date facts for the
application program being marked up.

The Date facts along with the UID factor of the program is
processed by Hot Spots Markup. This program identifies those
places in the code where a field that has been identified as a date
is used in a Y2K sensitive manner. It also identifies the context
of the use (the statement containing the use), the declaration of
the date field, and the group in the data hierarchy that contains
the field. This identification takes the form of a markup similar
to the UID markup used by Clean in the Import phase.

The Y2K sensitive situations that were identified by Hot
Spots Markup were comparisons between dates, comparisons
between dates and literals, use of dates as keys for indexed files
in sorts and merges, use of dates embedded in file keys, use of
dates in arithmetic, and non-trivial initial values for date fields.

Hot spots identified points of actual risk, which in our
experience was less than 0.4% of the source lines in an
application, and typically contained in less than 40% of the
programs of the application. Each hot spot fell into one of four
categories:

• Those that had already been converted by previous
maintenance

• Those that involved safe or benign side-effects
• Those that were automatically converted by LS/2000
• Those that required application knowledge to resolve

(statistically less than 1% of the hot spots, or less than
0.004% of the lines in the application)

The second time Extract Facts is run, it extracts only those
Date facts with a format that includes a year in the date type.
For example, fields that contain only the month would not be
included. These facts along with the marked up source
generated by Hot Spots Markup were passed to Hot Spots
Transform.

Hot Spots Transform performs a conservative transformation
of the code to resolve Y2K risks. For example, comparisons
between dates only makes sense if the years are the leading
digits in the transform. Using an internal list of the date types
for which transforms were supported, Hot Spots Transform
examined each of the hot spots identified by Hot Spots Markup,
and if it had a transform for that particular case, it was applied.
Several cases were handled. These included comparisons of
dates, increment and decrement of dates, use of dates as looping
constraints and sorts based on dates. The use of dates in keys in
files was not in general automatically remediated, but several

UID
Factor

Extract
Facts

Date
Facts

HotSpots
Markup

Transformed
UID Factor

Extract
Facts

HotSpots
Transform

Figure 5. Structure of Hot Spots

other transforms for I/O of dates were supported, including
removal of zero suppression from output year fields (the
COBOL picture character “Z” causes a space to be printed
instead of a 0).

All LS/2000 transforms were based on a static windowing
solution to the Y2K problem. In this solution, a given date, the
“rollover” date, is chosen as a pivot. All dates with a value
greater than the pivot date are considered to be in the previous
century and all dates less than the pivot date are considered to
be in the next century. For example, if the chosen pivot were
30, then 50 would be considered to represent 1950 and 25 would
be considered to represent 2025. There has been some objection
to this approach. The main objection is that the remediation
must be done again when the pivot year is approached in the
next century.

Our solution avoided this problem using a “sliding window’
solution, in which the pivot date and the century dates (19 and
20) are defined in a global copy file that is included by all
remediated programs. When the pivot date approaches, the
values in the copy file is changed and the application is
recompiled. Since the century dates are also included in the
copy file, when the next century change approaches, the 19 and
20 in the copy file may be changed to 20 and 21, moving the
next pivot to the middle of the 22nd century.

LS/2000 supported several different pivots in the same
remediated application. One reason why more than one pivot
might be required is to treat business dates separately from birth
dates. The LS/2000 system provided an interface to allow the
analyst to identify which pivots should be applied to each date,
and to specify the initial pivot values to be placed in the pivot
copy file.

LS/2000 transforms were designed to be applied locally at
the actual code location of the hot spot. This minimized the
amount of code changed, and localized the change to the point
of actual risk. The remediation transform designed for LS/2000
used the built in functions provided by the newest version of
COBOL (COBOL for MVS and VM), which allowed a solution
in which code was remediated directly inside the offending
comparisons. For clients that had not migrated their
applications to the latest version of COBOL (or those that
preferred a different solution), three other solutions were
provided. Each of these solutions used additional statements
inserted just before the sensitive statement to resolve the
problem, adding several temporary buffers to hold the converted
versions of the dates.

The first of these solutions used inline COBOL arithmetic
statements to convert the dates. For example, consider the
following code snippet:

01 FISC-DTE-JUL PIC S9(5) COMP-3.
77 WS-FISC-DTE-JUL PIC S9(5) COMP-3.
IF FISC-DTE-JUL > WS-FISC-DTE-JUL

PERFORM FISCAL-DATE-PROCESS.

This transform would result in the following code:

01 FISC-DTE-JUL PIC S9(5) COMP-3.
77 WS-FISC-DTE-JUL PIC S9(5) COMP-3.
77 Y2K-FISC-DTE-JUL PIC S9(5).
77 Y2K-WS-FISC-DTE-JUL PIC S9(5).
ADD ROLLDIFF-1-YYNNN FISC-DTE-JUL
 GIVING Y2K-FISC-DTE-JUL
ADD ROLLDIFF-1-YYNNN WS-FISC-DTE-JUL
 GIVING Y2K-WS-FISC-DTE-JUL
IF Y2K-FISC-DTE-JUL > Y2K-WS-FISC-DTE-JUL

PERFORM FISCAL-DATE-PROCESS.

Since both dates are in the same window (use the same pivot
date), a full conversion to 4 digit years is not necessary. Instead
a constant is added to the date (ROLLDIFF-1-YYNNN) that
will normalized the date within the window. For example, if the
first window is 30, then the ROLLDIFF-1-YYNNN will be
70000. If WS-FISC-DTE is 01313 (November 9, 2001), 71
years after the pivot date, then adding 70000 to the date gives
71313, or the location of the date within the window given by
the pivot. A date of 990101 (Jan 1, 1999) in WS-FISC-DTE-
JUL gives a result of 690101 in Y2K-WS-FISC-DTE because of
the left truncation inherent in COBOL arithmetic. Since the
date in Y2K-FISC-DTE-JUL is less than the date ins Y2K-WS-
FISC-DTE-JUL (1999 is before 2001), the paragraph FISCAL-
DATE-PROCESS is performed.

When the dates compared are in different windows (i.e.
different pivots are used), then the temporary buffers created are
large enough for a the 4 digit year version of the date and the
inserted code performs a full conversion. The full conversion is
also performed by the other two transforms provided by
LS/2000.

Instead of inserting the arithmetic code in line, the other two
solutions provided called a routine for each of the conversions.
This routine was given parameters providing the date to be
converted and the window to use for the conversion. The first of
these solutions use a PERFORM statement to call a paragraph in
the same program, which was inserted by the transform. The
other solution used the CALL statement to call an external
program that provided the conversion.

2.5. Version Integration

The Version Integration phase of LS/2000 was responsible
for merging the changes made by Hot Spots with the code
formatting from the original code. It was also responsible for
producing a set of reports that detailed the changes made and
any risks that were detected but not remediated. Figure 6 shows
the structure of the Version Integration phase. As with the
Import phase, Clean is used to remove data hierarchy bracketing
and the UID factors. The factors used to mark up hot spots and
the transformations remain in the code.

The Backpatch program, used to produce the formatted UID
in the Import phase, is used again to merge the formatting in to
the transformed source code. To do this, it applies a difference
algorithm [8,9]. The formatting for inserted code follows
standard COBOL formatting conventions, with initial
indentation based on the format of the surrounding original
code.

A set of user preferences guided the integration process. The
original code may be included as comments (which eases the
reversal of any transform that may have been applied in error).
Another option asks LS/2000 to generate new sequence
numbers for inserted lines. Comments may be added to the top
of the program giving the date of the conversion and
documenting the fact that LS/2000 was used to make the
change. If the client was upgrading all of the code to operate
with compilers later than COBOL I compilers, the obsolete
paragraphs in the identification division (AUTHOR,
REMARKS, etc.) could automatically be commented out during
remediation.

The final transformed source was merged again against the
transformed code containing the hot spot markup to produce a
set of hot spot reports. These reports took the form of elided
source code, with the hot spots elements highlighted. Figure 7
shows a sample of one such report. In the report, declarations of
fields involved in hot spots and any unremediated hot spots are
shown with a single arrow highlighting the line on the right
hand side of the report. Any changed lines are highlighted with
a double arrow. The hot spot report also identifies the source
file and the line within the source file. If requested, contextual
information can be provided, both for the definitions of the
fields and for the statements containing the hot spots. These
options are all governed by the Reporting Tables used by
Backpatch when producing the reports.

Our clients found the reports invaluable for several reasons:
• The reports provide a guide for the application programmer

when certifying each of the programs in the application
• They focus the effort of the application programmers on the

points of actual exposure
• They provide a checklist of potential failures to be tested.

3. Implementation

The original implementation of the LS/2000 system was on
Apple Power Macintosh computers using the MPW command
line environment. However, when the system had evolved to
the state that it could be licensed, a user interface was needed.
The tool set was ported to run on IBM RS/6000’s running AIX.

Rather than build a custom graphics interface, we designed a
web driven interface. This interface, generated by CGI
programs invoked by the web server, gave the analyst the ability
to run the phases of the process and to interact with the Date
Analysis engine. This proved to be an enormous win. We did
not have to deal with the details of graphical interface
programming, and our licensees were free to place whatever
platform they wished on the analyst’s desk, as long as a recent
version of Netscape Navigator was available. Any direct
interaction with the interface was implemented using JavaScript
on the web pages.

The application systems to be analyzed and remediated were
loaded onto a file server, which also ran the web server.

Reporting Tables

Transformed
UID Factor

Transformed
Source

Source
Code

HotSpot
ReportsBackpatch

Clean Backpatch

Figure 6. Structure of Version Integration

Program: XYEGPROG
Line Program Source Line HS Src File
---- ------------------- -- --------
26 002600 16 FISCAL-DATE-JULIAN PIC S9(5) COMP-3. <- XXCOPYDJ

52 005300 24 WS-FISCAL-DATE-JULIAN PIC S9(5) COMP-3. <- XYEGPROG

63 COPY LS2KROLL. <= XYEGPROG
64 77 Y2K-FISCAL-DATE-JULIAN PIC 9(5). <= XYEGPROG
65 77 Y2K-WS-FISCAL-DATE-JULIAN PIC 9(5). <= XYEGPROG

232 ADD ROLLDIFF-1-YYNNN FISCAL-DATE-JULIAN GIVING <= XYEGPROG
233 Y2K-FISCAL-DATE-JULIAN <= XYEGPROG
234 ADD ROLLDIFF-1-YYNNN WS-FISCAL-DATE-JULIAN GIVING <= XYEGPROG
235 Y2K-WS-FISCAL-DATE-JULIAN <= XYEGPROG
236 *******IF FISCAL-DATE-JULIAN IS NOT GREATER THAN <= XYEGPROG
237 ****************WS-FISCAL-DATE-JULIAN <= XYEGPROG
238 IF Y2K-FISCAL-DATE-JULIAN IS NOT GREATER THAN <= XYEGPROG
239 Y2K-WS-FISCAL-DATE-JULIAN <= XYEGPROG
240 PERFORM FISCAL-DATE-LESS. XYEGPROG

Figure 7. Sample Hot Spot Report

Additional RS/6000’s were tied together into a cluster using
IBM’s LoadLeveler software. LoadLeveler provides batch
services for clusters of UNIX based hardware. When a new
application was loaded into its own directory, located in a
particular location on the file server, the system would
automatically detect it and make it available on the analyst
interface.

The web interface and clustering software provided a
scalable system. Smaller licensees could run all of the software
on a single machine, while larger licensees, such as IBM Global
Services in Canada, built large factories with a significant
number of machines in the cluster.

The performance of the system was reasonable. The Import
and Design Recovery phases on an average sized application
(about 1,000 files with a total of about 500,000 source lines)
took between 8 and 12 hours. Each iteration of Date Analysis
typically took under 1 hour, most of which was spent reading in
the fact base and writing the results. The actual date type
reference tracing took only about 10 minutes. The Hot Spot and
Version Integration phases took about the same time as the
Import and Design Recovery phases.

Some experiments were made in using conventional
database technology to store the design recovered from the
source code.

In the later stages of the Y2K timeframe, the tool set was
used as a validation tool to check that previously converted
systems (manually converted or converted by other Y2K
vendors) were compliant. The applications were analyzed as if
they were to be transformed, but the Hot Spots Transform pass
was not run. The Hot Spot reports then contained all Y2K
sensitive locations in the code.

4. Conclusions and Lessons Learned

In this paper we have presented an overview of the use of
design recovery techniques to implement a not insignificant
design analysis and transformation task, Year 2000 remediation.
More than 3.3 billion lines of code were remediated (or
validated) using the LS/2000 tool set using fewer than 40 human
analysts world wide. Our work is by no means unique. Other
techniques have applied design recovery techniques to legacy
systems [10,11,12], but few have been proven on this scale of
application.

We have focused on the Y2K application of our design
recovery techniques since that is the problem that we had the
most experience with. The same techniques, with minor
modifications were used for other similar maintenance tasks.
Some examples of these tasks were the identification of fields of
a particular business type (e.g. credit card numbers, employee
numbers), dead (unreachable) code analysis, and error analysis
(identifying condition statements that lead to error codes).
While several hundreds of millions of lines of code were
processed solving these maintenance tasks, most individual
tasks were not large enough to warrant a transformation stage.
Hot sport markup and the generated reports were sufficient for
the client to perform manual remediation.

Several lessons were learned from this system. The first is

that the manuals for programming languages and compilers do
not tell the whole story. Compilers accept variations of
languages that are not described in the manuals, and
programmers will take advantage of anything the compiler will
give them. Early in the LS/2000 life cycle, many applications
would break the system as they were processed. Any design
recovery of operational legacy systems must be able to adapt to
the true semantics provided by the compiler, not just the subset
described by the manuals.

A similar lesson is that production code contains errors.
Programmers often develop code under pressure and take short
cuts. COBOL compilers will ignore an erroneous statement and
continue with the next recognized statement. As a result,
programs that compile and produce testable results are often left
with errors. One case we encountered was the removal of a
field from a record. Not all statements that reference that field
were removed from the program. Two move statements that
assigned values to the field were left in. Since the compiler
ignored the statements, and they had no effect on the execution
of the program, they were never removed by the programmers.
Design Analysis techniques must be prepared to adapt to errors
that remain in the application code.

One important lesson we learned, both with LS/2000, and
with several other design recovery projects since then, is that
design recovery is more effective and efficient when it is task
directed. As explained in the section on Date Analysis, in
LS/2000 we found that procedure call linkage provided no
additional information about the use of dates over and above the
CopyID facts. This allowed us to skip generation of
parameterization relations in our recovered design factbases,
and significantly speeded up our processing. Later projects
aimed at other maintenance tasks did require procedure call
analysis, but did not benefit as much from the CopyID relations.
The set and schema of the design facts required should be based
at least in part on the maintenance task at hand.

There are a variety of maintenance tasks that this type of
system can solve. The ones we believe to be most promising are
based on the migration of technology in legacy systems. Two
examples are upgrades of databases (e.g. IMS to DB2), and web
enabling of legacy systems.

The hot spot technique is an important contribution of our
work. It allows us to tie discoveries made by analyzing the
model generated by Design Recovery back to the source code.
We have generalized this technique [13], extending its
application to other design types and business rules.

Acknowledgements

The authors would like to acknowledge the contributions of the
research and development team at Legasys Corp., including
Donald Jardine, Russel Halliday, Andy Maloney, Darren
Cousineau, Jason Reynolds, Chris Walmsley, Anna Brescher
and Brent Nordin.

References

[1] T.J. Biggerstaff, “Design Recovery for Maintenance and
Reuse”, IEEE Computer, Vol. 22, No. 7, July 1989, pp. 36–49.
[2] J.R. Cordy, K.A. Schneider. “Architectural Design Recovery
Using Source Transformations”, CASE ‘95 Workshop on
Software Architecture, Toronto, Canada, July 1995.
[3] T.R. Dean, J.R. Cordy, “A Syntactic Theory of Software
Architecture”, IEEE Transactions on Software Engineering Vol.
21, No, 4, April 1995, pp 302–313.
[4] J.R. Cordy, I.H. Carmichael, R.Halliday, The TXL
Programming Language / Version 10, TXL Software Research
Inc., Kingston, Canada, 2000 (http://www.txl.ca).
[5] J.R. Cordy, C.D. Halpern, E. Promislow, “TXL - A Rapid
Prototyping System for Programming Language Dialects”,
Computer Languages 16,1 (January 1991), pp. 97-107.
[6] J.R. Cordy, T.R. Dean, A.J. Malton, K.A. Schneider,
“Software Engineering by Source Transformation - Experience
with TXL”, SCAM’01 – IEEE First International Workshop on
Source Code Analysis and Manipulation, Florence, November
2001, 10 pp.
[7] A. Malton, K. Schneider, J.R. Cordy, T. Dean, D.
Cousineau, J. Reynolds, “Processing Software Source Text in
Automated Design Recovery and Transformation”, IWPC-2001
– IEEE Ninth International Workshop on Program
Comprehension, Toronto, May 2001, pp. 127-134.
[8] J. W. Hunt and M. D. McIlroy. “An algorithm for
differential file comparison.” Computing Science TR #41, Bell
Laboratories, Murray Hill, N.J., 1975.
[9] E. Myers. “An O(ND) difference algorithm and its
variations.” Algorithmica, Vol. 1, No. 2, 1986, pp. 251–266.
[10] K. Kontogiannis, M. Bernstein, E. Merlo, and R.D. Mori,
“The Development of a Partial Design Recovery Environment
for Legacy Systems”, Proceedings of CASCON ’93, Toronto,
Canada, 1993, pp. 206–216.
[11] K. Sartipi, K.Kontogiannis, F. Mavaddat, “Architecture
Design Recovery using Data Mining Techniques”, 4th
European Conference on Software Maintenance and
Reengineering (CMSR 2000), March 2000, pp. 129–139.
[12] K. Kontogiannis, S. Tilley, R. Demori, H. Muller, “User-
Assisted Design Recovery for Legacy Software Systems”,
Workshop on Software Engineering and Artificial Intelligence at
IEEE International Conference on Software Engineering, (ICSE
16), Sorrento, Italy, May 1994.
[13] J.R. Cordy, K. Schneider, T. Dean, A. Malton, “HSML:
Design Directed Source Code Hot Spots”, IWPC-2001 – IEEE
Ninth International Workshop on Program Comprehension,
Toronto, May 2001, pp. 145–154.

	Header: Proc. ICSM 2001 - IEEE International Conference on Software Maintenance, Florence, November 2001, pp. 622-631

