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Abstract 
 

A common and difficult maintenance activity is the 
integration of existing software components or tools into a 
consistent and interoperable whole. One area in which this 
has proven particularly difficult is in the domain of 
software analysis and re-engineering tools, which have a 
relatively poor record of interoperability. This paper 
outlines our experience in facilitating interoperability 
between three such tools using OASIS, a service-sharing 
methodology that employs a domain ontology and specially 
constructed, noninvasive tool adapters.  
 
1. Introduction 
 

The program comprehension community has responded 
to the needs of practitioners involved in software 
maintenance with many tools to provide assistance in 
reverse- and re-engineering tasks. Typically each of these 
provides a specific, specialized functionality [9, 17]. While 
they can be effective as independent systems, the 
usefulness of these tools can be limited by their inability to 
interoperate with other tools [6, 20, 24]. Creation of a suite 
of tools to support software analysis and re-engineering 
requires a means for sharing the services each tool provides 
with the other tools in an integration environment. 

In the Ontological Adaptive Service-sharing Integration 
System (OASIS) [15] we have proposed a novel, non-
invasive approach to integration that uses specially 
constructed tool adapters and a domain ontology to 
facilitate tool interoperability through service sharing. This 
paper presents a first experiment using OASIS to facilitate 
integration of three diverse reverse engineering tools 
normally aimed at quite different languages and tasks. 

 
2. The OASIS Architecture 
 

OASIS provides a means for tools to work cooperatively 
to share services and assist maintainers in carrying out 
software analysis and program comprehension tasks. 
Consider two or more analysis or re-engineering tools that 
we want to cooperate in an integration. We use the term 
integration to refer to the environmental boundaries (i.e. 
the set of tools) that OASIS will operate between. A tool in 

the integration is referred to as a participant. Each 
participant offers a set of services that are shared with the 
other participants. Note that even a tool that simply 
supplies a factbase provides such a service, namely the 
extraction of facts from source code. 

Figure 1 shows an architectural view of OASIS. 
Although an OASIS implementation may have any number 
of participants, for simplicity we show only two tools in 
this integration. The operational characteristics of each of 
the participant tools (T1 and T2) is characterized by a set of 
transactions (Q1 and Q2), a schema (S1 and S2) and a 
corresponding structured factbase instance (I1 and I2). The 
dashed line inside each tool reflects the important role the 
schema plays in defining the representation of the instance 
and the structure of the transactions that operate on it. A 
solid, bidirectional line indicates the close relationship 
between the transactions and the instance. 

The OASIS methodology involves the creation of two 
integration components: a domain ontology, representing 
the shared conceptual space of the tools, and a set of 
conceptual service adapters adapting each of the tools to it. 

Domain Ontology (O). The domain ontology stores the 
knowledge required to support service sharing between the 
tools as a tabularized, cross-referenced compilation of the 
representational concepts and services offered by each 
integration participant. Together, the representational 
concepts define a conceptual space consisting of a set of 
conceptual ‘slots’ that fact instances may fit into. A fact 
instance fits into a slot only when the concept it represents 
matches a concept in the domain ontology. We say that a 
tool has concept support when this occurs. We discuss 
concept support in more detail in a previous paper [13]. 
Shared services only operate on fact instances that can fit 
into these conceptual slots. A service offered by a tool 
participating in an OASIS integration can be shared only 
when the concepts it requires intersect with the concepts 
supported by the other tool.   

Conceptual Service Adapters (A1,A2). Conceptual service 
adapters act as integration facilitators for participating 
tools. Each tool is associated with a single conceptual 
service adapter that uses the domain ontology to provide 
the information needed to regulate the integration process. 
Conceptual service adapters perform three main functions: 



(a) Shared Service and Concept Support Identification. 
Making use of the knowledge stored in the domain 
ontology, each conceptual service adapter identifies 
requests for shared services and determines the 
concepts each service requires. 

(b) Factbase Filtering. Depending on the mode of 
operation invoked, conceptual service adapters map 
fact instances into and out of the conceptual space 
defined by the domain ontology. This process is 
known as filtering [14]. Mapping fact instances into 
the conceptual space is performed by an inFilter, and 
mapping from the conceptual space is performed by 
an outFilter. Both filters are tailored to work with the 
factbase representation and semantics of the particular 
tool the conceptual service adapter is associated with. 

(c) Shared Service Execution. Each conceptual service 
adapter manages requests from other conceptual 
service adapters for the execution of shared services 
of the tool they are associated with.  

Although all conceptual service adapters have the same 
basic architecture and operating characteristics, each is 
specially tailored to handle the functional and information 
filtering aspects required to facilitate interoperability with 
its corresponding tool.  The access and communication 
links between the domain ontology, the conceptual service 
adapters and the tools they are associated with are shown as 
solid black lines in Figure 1. 

 
3. Proof of Concept Experiment 
 

The goal of our experiment was to demonstrate the 
feasibility of OASIS through development of a functional 
integration of a small set of diverse software analysis tools. 
The following steps outline our implementation process: 

1. Tool Requirements Analysis. A tool must exhibit a 
number of characteristics in order to be successfully 
brought into an OASIS implementation. In relation to 
accessibility, a tool must store fact instances in a way 
that is accessible to the conceptual service adapters. 
Tools must have definable service transactions and a 
clear separation of fact instances from the transactions 
that operate on them (service-factbase separation). In 
this stage, an assessment of a candidate tool in relation 
to these requirements is made. 

2. Ontology Development and Augmentation. This step 
involves identifying and organizing into a domain 
ontology all the representational and service related 
concepts for the tools participating in the integration. 
When a new tool is integrated, new representational and 
service concepts are added to the ontology.  

3. Conceptual Service Adapter Construction. One 
conceptual service adapter for each tool participant is 
created. Each adapter manages all aspects of the 
integration as it relates to its corresponding tool.  

4. Testing and Incorporation. All components created to 
enable the tool to participate in the integration are unit 
tested individually, followed by system testing, in 
which the tool is brought into the existing OASIS 
implementation and tested online with other tools. If no 
problems are identified in testing then the tool is 
considered integrated into the OASIS implementation. 

 
4. Domain Ontology 
 

The domain ontology constructed for our experiment is 
shown in Tables 1 to 3. Table 1 informally defines the 
representational concepts shared by the integration 
participants. These relational concepts are augmented with 
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Figure 1. The OASIS architecture 

 

Each tool (Tx) consists of a factbase instance (Ix) whose form is dictated by a schema (Sx). A set of transactions (Qx) conform to the 
schema and operate on the instance. OASIS uses a domain ontology (O) and tool-specific conceptual service adapters (Ax) to 
facilitate service sharing among the tools participating in the integration. 
 



tool and service information specific to our OASIS 
implementation. The Services Dictionary (Table 2) outlines 
the relationship between services, the tools that offer them 
and the concepts they require. The Tools Dictionary (Table 
3) indicates the relationship between the tools participating 
in the integration and the concepts they support. Together 
these three components succinctly represent all the 
knowledge related to our OASIS implementation. The term 
program object in the ontology refers to active elements 
such as procedures, and data object refers to data elements 
such as variables. The concept Variable includes all data 
objects. These distinctions come from the tools involved in 
the integration. One of the most difficult problems in an 
integration is the semantic mapping (filtering) between 
concepts in the shared ontology and those in the integrated 
tools. In a previous paper [14] we discuss these issues in 
detail, noting that even subtle differences can yield 
counterintuitive results.   
 
5. Participant Tools 
 

Three tools were chosen to participate in our OASIS 
proof of concept implementation: 

Advanced Software Design Technology (ASDT) Tool. 
Developed in 1991 as part of a collaboration between 
Queen’s University and the IBM Center for Advanced 
Studies [5, 16], ASDT provides design recovery and 
analysis of source code written in Turing Plus [10, 11].  
ASDT has two main phases. In the design recovery phase, 
Turing Plus code is analyzed to produce a factbase of raw 
design facts expressed in a proprietary Prolog-like notation. 
In the design analysis phase, the user explores detailed 
information about entities and their relationships to other 
entities using the factbase. ASDT provides two tool 
services that are of interest to our integration efforts: 
• Query. Given the name of an entity, the service outputs 

all relevant facts about the entity. Relevant facts include 
direct and indirect relationships of the entity to others in 
the system. Indirect relationships are synthesized by 
transitive closure of relations associated with the entity. 

• Slice. Given the name of an entity in the system, the 
service produces a file that contains all fact instances 
sliced from the direct and indirect relationships 
identified in the query service. 

Fahmy Tool. Hoda Fahmy and colleagues explored the use 
of graph transformations to support maintenance tasks 
related to software architectures [7]. The Fahmy Tool 
implements three of these transformations in a tool 
executed from the command line: 
• High Level Use. An architecture recovery analysis that 

promotes low-level use relations to higher levels of 
abstraction in the representation of a software system. 

• Hide Interior. This service collapses the details of a 
selected subsystem, hiding its interior components. 
Relationships among components in the subsystem 
to/from external entities are preserved.  

Table 1. Domain ontology: concepts    

System 
 Represents an entity that organizes or consists of a 

collection of program objects. 
Module 
 Represents an entity that is a distinct, typically self-

contained, program object. 
SubProgram 
 Represents an entity, typically not self-contained, that is 

stored for use by another program object. 
Variable 
 Represents a data object. 
Containment 
 Represents the relational concept of a program object 

being contained in another program object. 
Use 
 Represents the relational concept of a program object 

making use of another program object. 

Table 2. Domain ontology: services dictionary 

Service Offered By Requires Concept 

Hide Exterior 
Hide Interior 

High Level Use 
Fahmy Tool 

System 
Module 

SubProgram 
Containment 

Use 

Query 
Slice ASDT 

System 
Module 

SubProgram 
Variable 

Containment 
Use 

Spring Layout 
Sugiyama Layout 

Visualize 
Rigi <entity> 

<relationship> 

Table 3. Domain ontology: tools dictionary 

 Tool Supports Concept 
 

ASDT 

System 
Module 

SubProgram 
Variable 

Containment 
Use 

 

Fahmy Tool 

System 
Module 

SubProgram 
Variable 

Containment 
Use 

 Rigi - 



Table 4. Characteristics of the OASIS implementation participants 

 Reengineering Tool 

 ASDT Fahmy Tool Rigi 
Programming 

Language Domain Turing Plus PLIX 
C - 

Schema 
Characteristics 

10 Entities 
13 Relationships 
98 Constraints 

3 Entities 
4 Relationships 
10 Constraints 

Graph schema 
defined in proprietary 

domain file. 

Factbase Syntax Proprietary 
(Prolog-like) RSF RSF 

Services Offered Query 
Slice 

High Level Use 
Hide Interior 
Hide Exterior 

Visualization 
Spring Layout 

Sugiyama Layout 

• Hide Exterior. This service focuses on one selected 
subsystem, hiding all exterior components. External 
relationships are preserved as links to external entities. 

Rigi Tool.  The legacy analysis tool Rigi [1, 18] is the 
product of more than ten years of research and 
development at the University of Victoria. While Rigi is a 
very general tool, our primary reason for including it in our 
integration experiment was to take advantage of the 
following services: 
• Visualization. This service provides the user with a 

graphical view of a factbase provided. Entities are 
displayed as square nodes and relationships are shown 
as arcs (lines) connecting two nodes together. Once the 
graph has been loaded into Rigi, the user can 
manipulate it and invoke layout options that Rigi 
provides. 

• Sugiyama Layout. This is a preconfigured graph 
manipulation procedure that arranges the nodes in the 
graph into a hierarchical, tree-like form that reduces the 
crossing of arcs as much as possible. 

• Spring Layout. This is a preconfigured graph 
manipulation procedure that arranges the nodes of a 
graph based on a measure of the connectedness that 
each node has with other nodes. Highly connected 
nodes are arranged closer together, while nodes with 
low connectivity are arranged further apart. 
Table 4 summarizes the characteristics of each of the 

tools chosen to participate in our proof-of-concept 
experiment. For each tool the following aspects are shown: 
• Programming Language Domain. Programming 

language(s) supported by the tool’s native parser. 
• Schema Characteristics. Number of kinds of entities, 

relationships and constraints in the tool’s factbases. 
• Factbase Syntax. Physical representation of factbases 

supported by the tool. 
• Services Offered.  Services provided by the tool that 

are shared in the experimental integration.  
Table 4 provides a good indication of the diversity of 

the tools in our integration experiment. Three different 

programming language domains are represented: Turing 
Plus, PLIX and C. The factbase representation of ASDT is 
detailed and highly constrained, whereas the Fahmy Tool 
has a much simpler schema with many fewer constraints. 
ASDT’s Prolog-like factbase syntax is completely different 
from the RSF used by Rigi and the Fahmy Tool. 

 
6. A Step-By-Step Example: Sharing the 
Fahmy Tool Hide Exterior Service 
 

Software maintenance tasks often focus on a particular 
component in a complex software system. In this example, 
we use the Hide Exterior service shared by Fahmy Tool to 
provide support for this kind of analysis on an ASDT 
factbase. The flow through the OASIS components for 
each of the steps below is shown in Figure 2. Consider a 
newly hired software maintainer who has been given the 
responsibility for updating the parser subsystem of the TXL 
processor [2], which is written entirely in Turing Plus. 
 Step  In order to understand the source code better, 
she begins by using ASDT to perform a design recovery, 
producing an ASDT factbase. 
 Step  To take a first look at the factbase, she calls the 
conceptual service adapter (CSA) for ASDT requesting that 
it perform the Visualize service on the ASDT factbase. The 
ASDT CSA communicates this request to the Rigi CSA, 
which creates the domain files required by Rigi and 
produces the graph shown in Figure 3. Unfortunately, the 
structure of the parser and even the TXL system itself is 
lost in the jumble of nodes and edges in this visualization. 
 Step  In order to focus on the parser subsystem, she 
decides to use the Hide Exterior service provided by the 
Fahmy Tool. To accomplish this task, she calls the ASDT 
CSA again, this time requesting that it perform the Hide 
Exterior service on the ASDT factbase.  
 Step  The ASDT CSA queries the domain ontology, 
identifies the Hide Exterior service and verifies that ASDT 
supports the concepts that the service requires. The ASDT 
factbase is mapped to the conceptual space by the ASDT 



CSA inFilter and a message is sent to the Fahmy Tool CSA 
requesting the Hide Exterior service.  
 Step  The Fahmy Tool CSA receives the message and 
uses its outFilter to map the required conceptual space facts 
to a Fahmy Tool factbase. 
 Step  The Hide Exterior service is invoked by the 
Fahmy Tool CSA to produce a new Fahmy Tool factbase.  
 Step  The Fahmy Tool CSA uses its inFilter to map 
the results to the conceptual space and sends a message to 
the ASDT CSA indicating that the results are ready. 
 Step  The ASDT CSA receives this message and uses 
its outFilter to map from the conceptual space to an ASDT 
factbase containing the results.  
 Step  Hoping for a more reasonable visualization, the 
TXL software maintainer invokes Rigi’s Sugiyama Layout 
service on the results returned from the Hide Exterior 
service. The result is shown in Figure 4. Now a much 
clearer picture of the structure of the parser can be seen. 

This example demonstrates the technique in an analysis 
of the TXL language processor v6.0 (just over 9,000 
Turing Plus source lines, 6,780 ASDT design facts). In 
other runs we have made use of all of the shared services 
offered by all three of the tools in our OASIS integration, 
and we have applied the system to the analysis of larger 
production software systems such as the Linux Kernel 
(14,338 Fahmy Tool architecture facts) and the Tobey code 
generator (over 250,000 PLIX lines, 11,066 Fahmy Tool 
architecture facts).  

7. Related Work 
 

Software analysis tool integration is a difficult problem 
that has been studied by many groups using many different 
methods. Most, such as the Software Bookshelf [8], use a 
central repository and shared schema. The Telos 
knowledge representation language [19] has been used to 
implement a common repository at the conceptual level [4], 
describing a shared global schema in some ways similar to 
our inferred ontology. GARDEN [21] and FIELD [22] 
provided integration of tools using the a central message 
server with ‘wrappers’ much like our conceptual adapters, 
and IDL [23] hid representation issues behind a high level 
interface and a language-independent API for accessing 
shared data. The problem of differences in factbase format 
has been widely discussed [6, 20] and attacked by attempts 
to standardize software exchange notations such as GXL 
[12].  

Our work differs from all these efforts in that we 
provide a constructive method for building a shared 
conceptual ontology from the observed concepts used by 
the tools to be integrated, and a noninvasive method for 
integrating the tools using conceptual adapters that do not 
require any reprogramming of the tools themselves. Since 
integration participants can be off-the-shelf black boxes, 
our method is well suited to the “COTS” problem [3]. Like 
IDL, it is independent of schema, technology, environment 
and system and provides method for integration 
independent of the nature of the tools. But unlike IDL, it 
does not require reprogramming to use a shared API. 

Figure 2. Sharing the Fahmy Tool hide exterior service 
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8. Conclusion 
 

In this paper we have presented a first experiment in 
applying the Ontological Adaptive Service-Sharing 
Integration System (OASIS) integration methodology to 
the non-invasive integration of services provided by three 
diverse software reverse engineering tools. Using the 
integrated system, each tool can invoke shared services on 
its own native factbase to carry out analyses and 
visualizations provided by the other tools using different 
schemas, representations and technologies. 
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