
Integrating Reverse Engineering Tools Using a Service-Sharing Methodology

Dean Jin
Department of Computer Science

University of Manitoba, Winnipeg, Canada
djin@cs.umanitoba.ca

James R. Cordy
School of Computing

Queen’s University, Kingston, Canada
cordy@cs.queensu.ca

Abstract

A common and difficult maintenance activity is the
integration of existing software components or tools into a
consistent and interoperable whole. One area in which this
has proven particularly difficult is in the domain of
software analysis and re-engineering tools, which have a
relatively poor record of interoperability. This paper
outlines our experience in facilitating interoperability
between three such tools using OASIS, a service-sharing
methodology that employs a domain ontology and specially
constructed, noninvasive tool adapters.

1. Introduction

The program comprehension community has responded
to the needs of practitioners involved in software
maintenance with many tools to provide assistance in
reverse- and re-engineering tasks. Typically each of these
provides a specific, specialized functionality [9, 17]. While
they can be effective as independent systems, the
usefulness of these tools can be limited by their inability to
interoperate with other tools [6, 20, 24]. Creation of a suite
of tools to support software analysis and re-engineering
requires a means for sharing the services each tool provides
with the other tools in an integration environment.

In the Ontological Adaptive Service-sharing Integration
System (OASIS) [15] we have proposed a novel, non-
invasive approach to integration that uses specially
constructed tool adapters and a domain ontology to
facilitate tool interoperability through service sharing. This
paper presents a first experiment using OASIS to facilitate
integration of three diverse reverse engineering tools
normally aimed at quite different languages and tasks.

2. The OASIS Architecture

OASIS provides a means for tools to work cooperatively
to share services and assist maintainers in carrying out
software analysis and program comprehension tasks.
Consider two or more analysis or re-engineering tools that
we want to cooperate in an integration. We use the term
integration to refer to the environmental boundaries (i.e.
the set of tools) that OASIS will operate between. A tool in

the integration is referred to as a participant. Each
participant offers a set of services that are shared with the
other participants. Note that even a tool that simply
supplies a factbase provides such a service, namely the
extraction of facts from source code.

Figure 1 shows an architectural view of OASIS.
Although an OASIS implementation may have any number
of participants, for simplicity we show only two tools in
this integration. The operational characteristics of each of
the participant tools (T1 and T2) is characterized by a set of
transactions (Q1 and Q2), a schema (S1 and S2) and a
corresponding structured factbase instance (I1 and I2). The
dashed line inside each tool reflects the important role the
schema plays in defining the representation of the instance
and the structure of the transactions that operate on it. A
solid, bidirectional line indicates the close relationship
between the transactions and the instance.

The OASIS methodology involves the creation of two
integration components: a domain ontology, representing
the shared conceptual space of the tools, and a set of
conceptual service adapters adapting each of the tools to it.

Domain Ontology (O). The domain ontology stores the
knowledge required to support service sharing between the
tools as a tabularized, cross-referenced compilation of the
representational concepts and services offered by each
integration participant. Together, the representational
concepts define a conceptual space consisting of a set of
conceptual ‘slots’ that fact instances may fit into. A fact
instance fits into a slot only when the concept it represents
matches a concept in the domain ontology. We say that a
tool has concept support when this occurs. We discuss
concept support in more detail in a previous paper [13].
Shared services only operate on fact instances that can fit
into these conceptual slots. A service offered by a tool
participating in an OASIS integration can be shared only
when the concepts it requires intersect with the concepts
supported by the other tool.

Conceptual Service Adapters (A1,A2). Conceptual service
adapters act as integration facilitators for participating
tools. Each tool is associated with a single conceptual
service adapter that uses the domain ontology to provide
the information needed to regulate the integration process.
Conceptual service adapters perform three main functions:

(a) Shared Service and Concept Support Identification.
Making use of the knowledge stored in the domain
ontology, each conceptual service adapter identifies
requests for shared services and determines the
concepts each service requires.

(b) Factbase Filtering. Depending on the mode of
operation invoked, conceptual service adapters map
fact instances into and out of the conceptual space
defined by the domain ontology. This process is
known as filtering [14]. Mapping fact instances into
the conceptual space is performed by an inFilter, and
mapping from the conceptual space is performed by
an outFilter. Both filters are tailored to work with the
factbase representation and semantics of the particular
tool the conceptual service adapter is associated with.

(c) Shared Service Execution. Each conceptual service
adapter manages requests from other conceptual
service adapters for the execution of shared services
of the tool they are associated with.

Although all conceptual service adapters have the same
basic architecture and operating characteristics, each is
specially tailored to handle the functional and information
filtering aspects required to facilitate interoperability with
its corresponding tool. The access and communication
links between the domain ontology, the conceptual service
adapters and the tools they are associated with are shown as
solid black lines in Figure 1.

3. Proof of Concept Experiment

The goal of our experiment was to demonstrate the
feasibility of OASIS through development of a functional
integration of a small set of diverse software analysis tools.
The following steps outline our implementation process:

1. Tool Requirements Analysis. A tool must exhibit a
number of characteristics in order to be successfully
brought into an OASIS implementation. In relation to
accessibility, a tool must store fact instances in a way
that is accessible to the conceptual service adapters.
Tools must have definable service transactions and a
clear separation of fact instances from the transactions
that operate on them (service-factbase separation). In
this stage, an assessment of a candidate tool in relation
to these requirements is made.

2. Ontology Development and Augmentation. This step
involves identifying and organizing into a domain
ontology all the representational and service related
concepts for the tools participating in the integration.
When a new tool is integrated, new representational and
service concepts are added to the ontology.

3. Conceptual Service Adapter Construction. One
conceptual service adapter for each tool participant is
created. Each adapter manages all aspects of the
integration as it relates to its corresponding tool.

4. Testing and Incorporation. All components created to
enable the tool to participate in the integration are unit
tested individually, followed by system testing, in
which the tool is brought into the existing OASIS
implementation and tested online with other tools. If no
problems are identified in testing then the tool is
considered integrated into the OASIS implementation.

4. Domain Ontology

The domain ontology constructed for our experiment is
shown in Tables 1 to 3. Table 1 informally defines the
representational concepts shared by the integration
participants. These relational concepts are augmented with

1A

1T 2T

2A

O

2I

2S

2Q

1S

1I

1Q

 Ax = Conceptual Service Adapter Ix = Factbase Instance O = Domain Ontology
 Qx = Transaction Set Sx = Schema Tx = Tool Participant

Figure 1. The OASIS architecture

Each tool (Tx) consists of a factbase instance (Ix) whose form is dictated by a schema (Sx). A set of transactions (Qx) conform to the
schema and operate on the instance. OASIS uses a domain ontology (O) and tool-specific conceptual service adapters (Ax) to
facilitate service sharing among the tools participating in the integration.

tool and service information specific to our OASIS
implementation. The Services Dictionary (Table 2) outlines
the relationship between services, the tools that offer them
and the concepts they require. The Tools Dictionary (Table
3) indicates the relationship between the tools participating
in the integration and the concepts they support. Together
these three components succinctly represent all the
knowledge related to our OASIS implementation. The term
program object in the ontology refers to active elements
such as procedures, and data object refers to data elements
such as variables. The concept Variable includes all data
objects. These distinctions come from the tools involved in
the integration. One of the most difficult problems in an
integration is the semantic mapping (filtering) between
concepts in the shared ontology and those in the integrated
tools. In a previous paper [14] we discuss these issues in
detail, noting that even subtle differences can yield
counterintuitive results.

5. Participant Tools

Three tools were chosen to participate in our OASIS
proof of concept implementation:

Advanced Software Design Technology (ASDT) Tool.
Developed in 1991 as part of a collaboration between
Queen’s University and the IBM Center for Advanced
Studies [5, 16], ASDT provides design recovery and
analysis of source code written in Turing Plus [10, 11].
ASDT has two main phases. In the design recovery phase,
Turing Plus code is analyzed to produce a factbase of raw
design facts expressed in a proprietary Prolog-like notation.
In the design analysis phase, the user explores detailed
information about entities and their relationships to other
entities using the factbase. ASDT provides two tool
services that are of interest to our integration efforts:
• Query. Given the name of an entity, the service outputs

all relevant facts about the entity. Relevant facts include
direct and indirect relationships of the entity to others in
the system. Indirect relationships are synthesized by
transitive closure of relations associated with the entity.

• Slice. Given the name of an entity in the system, the
service produces a file that contains all fact instances
sliced from the direct and indirect relationships
identified in the query service.

Fahmy Tool. Hoda Fahmy and colleagues explored the use
of graph transformations to support maintenance tasks
related to software architectures [7]. The Fahmy Tool
implements three of these transformations in a tool
executed from the command line:
• High Level Use. An architecture recovery analysis that

promotes low-level use relations to higher levels of
abstraction in the representation of a software system.

• Hide Interior. This service collapses the details of a
selected subsystem, hiding its interior components.
Relationships among components in the subsystem
to/from external entities are preserved.

Table 1. Domain ontology: concepts

System
 Represents an entity that organizes or consists of a

collection of program objects.
Module
 Represents an entity that is a distinct, typically self-

contained, program object.
SubProgram
 Represents an entity, typically not self-contained, that is

stored for use by another program object.
Variable
 Represents a data object.
Containment
 Represents the relational concept of a program object

being contained in another program object.
Use
 Represents the relational concept of a program object

making use of another program object.

Table 2. Domain ontology: services dictionary

Service Offered By Requires Concept

Hide Exterior
Hide Interior

High Level Use
Fahmy Tool

System
Module

SubProgram
Containment

Use

Query
Slice ASDT

System
Module

SubProgram
Variable

Containment
Use

Spring Layout
Sugiyama Layout

Visualize
Rigi <entity>

<relationship>

Table 3. Domain ontology: tools dictionary

 Tool Supports Concept

ASDT

System
Module

SubProgram
Variable

Containment
Use

Fahmy Tool

System
Module

SubProgram
Variable

Containment
Use

 Rigi -

Table 4. Characteristics of the OASIS implementation participants

 Reengineering Tool

 ASDT Fahmy Tool Rigi
Programming

Language Domain Turing Plus PLIX
C -

Schema
Characteristics

10 Entities
13 Relationships
98 Constraints

3 Entities
4 Relationships
10 Constraints

Graph schema
defined in proprietary

domain file.

Factbase Syntax Proprietary
(Prolog-like) RSF RSF

Services Offered Query
Slice

High Level Use
Hide Interior
Hide Exterior

Visualization
Spring Layout

Sugiyama Layout

• Hide Exterior. This service focuses on one selected
subsystem, hiding all exterior components. External
relationships are preserved as links to external entities.

Rigi Tool. The legacy analysis tool Rigi [1, 18] is the
product of more than ten years of research and
development at the University of Victoria. While Rigi is a
very general tool, our primary reason for including it in our
integration experiment was to take advantage of the
following services:
• Visualization. This service provides the user with a

graphical view of a factbase provided. Entities are
displayed as square nodes and relationships are shown
as arcs (lines) connecting two nodes together. Once the
graph has been loaded into Rigi, the user can
manipulate it and invoke layout options that Rigi
provides.

• Sugiyama Layout. This is a preconfigured graph
manipulation procedure that arranges the nodes in the
graph into a hierarchical, tree-like form that reduces the
crossing of arcs as much as possible.

• Spring Layout. This is a preconfigured graph
manipulation procedure that arranges the nodes of a
graph based on a measure of the connectedness that
each node has with other nodes. Highly connected
nodes are arranged closer together, while nodes with
low connectivity are arranged further apart.
Table 4 summarizes the characteristics of each of the

tools chosen to participate in our proof-of-concept
experiment. For each tool the following aspects are shown:
• Programming Language Domain. Programming

language(s) supported by the tool’s native parser.
• Schema Characteristics. Number of kinds of entities,

relationships and constraints in the tool’s factbases.
• Factbase Syntax. Physical representation of factbases

supported by the tool.
• Services Offered. Services provided by the tool that

are shared in the experimental integration.
Table 4 provides a good indication of the diversity of

the tools in our integration experiment. Three different

programming language domains are represented: Turing
Plus, PLIX and C. The factbase representation of ASDT is
detailed and highly constrained, whereas the Fahmy Tool
has a much simpler schema with many fewer constraints.
ASDT’s Prolog-like factbase syntax is completely different
from the RSF used by Rigi and the Fahmy Tool.

6. A Step-By-Step Example: Sharing the
Fahmy Tool Hide Exterior Service

Software maintenance tasks often focus on a particular
component in a complex software system. In this example,
we use the Hide Exterior service shared by Fahmy Tool to
provide support for this kind of analysis on an ASDT
factbase. The flow through the OASIS components for
each of the steps below is shown in Figure 2. Consider a
newly hired software maintainer who has been given the
responsibility for updating the parser subsystem of the TXL
processor [2], which is written entirely in Turing Plus.
 Step In order to understand the source code better,
she begins by using ASDT to perform a design recovery,
producing an ASDT factbase.
 Step To take a first look at the factbase, she calls the
conceptual service adapter (CSA) for ASDT requesting that
it perform the Visualize service on the ASDT factbase. The
ASDT CSA communicates this request to the Rigi CSA,
which creates the domain files required by Rigi and
produces the graph shown in Figure 3. Unfortunately, the
structure of the parser and even the TXL system itself is
lost in the jumble of nodes and edges in this visualization.
 Step In order to focus on the parser subsystem, she
decides to use the Hide Exterior service provided by the
Fahmy Tool. To accomplish this task, she calls the ASDT
CSA again, this time requesting that it perform the Hide
Exterior service on the ASDT factbase.
 Step The ASDT CSA queries the domain ontology,
identifies the Hide Exterior service and verifies that ASDT
supports the concepts that the service requires. The ASDT
factbase is mapped to the conceptual space by the ASDT

CSA inFilter and a message is sent to the Fahmy Tool CSA
requesting the Hide Exterior service.
 Step The Fahmy Tool CSA receives the message and
uses its outFilter to map the required conceptual space facts
to a Fahmy Tool factbase.
 Step The Hide Exterior service is invoked by the
Fahmy Tool CSA to produce a new Fahmy Tool factbase.
 Step The Fahmy Tool CSA uses its inFilter to map
the results to the conceptual space and sends a message to
the ASDT CSA indicating that the results are ready.
 Step The ASDT CSA receives this message and uses
its outFilter to map from the conceptual space to an ASDT
factbase containing the results.
 Step Hoping for a more reasonable visualization, the
TXL software maintainer invokes Rigi’s Sugiyama Layout
service on the results returned from the Hide Exterior
service. The result is shown in Figure 4. Now a much
clearer picture of the structure of the parser can be seen.

This example demonstrates the technique in an analysis
of the TXL language processor v6.0 (just over 9,000
Turing Plus source lines, 6,780 ASDT design facts). In
other runs we have made use of all of the shared services
offered by all three of the tools in our OASIS integration,
and we have applied the system to the analysis of larger
production software systems such as the Linux Kernel
(14,338 Fahmy Tool architecture facts) and the Tobey code
generator (over 250,000 PLIX lines, 11,066 Fahmy Tool
architecture facts).

7. Related Work

Software analysis tool integration is a difficult problem
that has been studied by many groups using many different
methods. Most, such as the Software Bookshelf [8], use a
central repository and shared schema. The Telos
knowledge representation language [19] has been used to
implement a common repository at the conceptual level [4],
describing a shared global schema in some ways similar to
our inferred ontology. GARDEN [21] and FIELD [22]
provided integration of tools using the a central message
server with ‘wrappers’ much like our conceptual adapters,
and IDL [23] hid representation issues behind a high level
interface and a language-independent API for accessing
shared data. The problem of differences in factbase format
has been widely discussed [6, 20] and attacked by attempts
to standardize software exchange notations such as GXL
[12].

Our work differs from all these efforts in that we
provide a constructive method for building a shared
conceptual ontology from the observed concepts used by
the tools to be integrated, and a noninvasive method for
integrating the tools using conceptual adapters that do not
require any reprogramming of the tools themselves. Since
integration participants can be off-the-shelf black boxes,
our method is well suited to the “COTS” problem [3]. Like
IDL, it is independent of schema, technology, environment
and system and provides method for integration
independent of the nature of the tools. But unlike IDL, it
does not require reprogramming to use a shared API.

Figure 2. Sharing the Fahmy Tool hide exterior service

TXL
Source
Code

Results
Fahmy Tool

Factbase

ASDT CSA
outFilter

Fahmy Tool
factbase

Fahmy Tool CSA
inFilter

Conceptual
Space

Fahmy Tool CSA
outFilter

Results
ASDT

Factbase

ASDT CSA
inFilter

ASDT
factbase

Rigi
Visualization

ASDT Design
Recovery

Rigi CSA

Rigi
Domain

Files

Sugiyama
Layout
Service

Hide
Exterior
Service

8. Conclusion

In this paper we have presented a first experiment in
applying the Ontological Adaptive Service-Sharing
Integration System (OASIS) integration methodology to
the non-invasive integration of services provided by three
diverse software reverse engineering tools. Using the
integrated system, each tool can invoke shared services on
its own native factbase to carry out analyses and
visualizations provided by the other tools using different
schemas, representations and technologies.

References

[1] Rigi Home Page. http://www.rigi.csc.uvic.ca/.
[2] TXL Home Page. http://www.txl.ca.
[3] Boehm, B.W. and Abts, C. “COTS Integration: Plug and

Pray?” IEEE Computer, 32(1): 135–138, 1999.
[4] Buss, E. et al. “Investigating reverse engineering

technologies for the CAS program understanding project.”
IBM Systems Journal, 33(3): 477–500, 1994.

[5] Cordy, J.R. and Schneider, K.A. “Architectural Design
Recovery Using Source Transformation”. CASE’95
Workshop on Software Architecture, July 1995.

[6] Ebert, J., Kullbach, B. and Winter, A. “GraX – An
Interchange Format for Reengineering Tools”. Proc.
WCRE’99, pp. 89-98, Feb. 1999.

[7] Fahmy, H.M., Holt, R.C. and Cordy, J.R. “Wins and Losses
of Algebraic Transformations of Software Architectures”.
Proc. ASE 2001, pp. 51-60, Nov. 2001.

[8] Finnigan, P. et al. “The Software Bookshelf”. IBM Systems
Journal, 36(4): 564–593, Nov. 1997.

[9] Guo, G.Y., Atlee, J.M. and Kazman, R. “A Software
Architecture Reconstruction Method”. Proc. WICSA 1999,
pp. 15-33, Feb. 1999.

[10] Holt, R.C. and Cordy, J.R. The Turing Plus Report. Comp.
Systems Research Group, University of Toronto, Feb. 1987.

[11] Holt, R.C. and Cordy, J.R. “The Turing Programming
Language”. Comm. ACM, 31(12): 1410-1423, Dec. 1988.

[12] Holt, R.C., Winter, A. and Schürr, A. “GXL: Toward a
Standard Exchange Format” Proc. WCRE’00, pp. 162-171,
Nov. 2000.

[13] Jin, D., Cordy, J.R. and Dean, T.R. “Transparent Reverse
Engineering Tool Integration Using a Conceptual Trans-
action Adapter”. Proc. CSMR 2003, pp. 399-408, Mar. 2003.

[14] Jin, D. and Cordy, J.R. “Factbase Filtering Issues in an
Ontology-based Reverse Engineering Tool Integration
System” Proc. ATEM 2004, pp. 65-75, Oct. 2004.

[15] Jin, D. and Cordy, J.R. “Ontology-based Software Analysis
and Reeng. Tool Integration: The OASIS Service-sharing
Methodology” Proc. ICSM 2005, pp. 613-616, Sep. 2005.

[16] Lamb, D.A. and Schneider, K.A. “Formalization of
Information Hiding Design Methods”. Proc. CASCON’92,
pp. 201–214, Nov. 1992.

[17] Lethbridge, T.C. Requirements and Proposal for a Software
Information Exchange Format Standard. Draft manuscript,
Nov. 1998. http://www.site.uottawa.ca/~tcl/
papers/sief/standardProposal.html.

[18] Müller, H.A. and Klashinsky, K. “Rigi - A system for Prog-
ramming-in-the-Large”. Proc. ICSE’88, pp. 80–86, 1988.

[19] Mylopoulos, J., Borgida, A., Jarke, M. and Koubarakis, M.
“Telos: Representing Knowledge About Information
Systems.” ACM Trans. Info. Systems, 8(4): 325–362, 1990.

[20] Perelgut, S.G. “The Case for a Single Data Exchange
Format”. Proc. WCRE’00, pp. 281-283, Nov. 2000.

[21] Reiss, S.P. “GARDEN Tools: Support for Graphical
Programming”. Proc. Int.. Workshop on Advanced Prog.
Environments, pp. 59–72, Trondheim, Norway, 1986.

[22] Reiss, S.P. FIELD: The Friendly Integrated Environment for
Learning and Development. Kluwer Press, 1994.

[23] Snodgrass, R., and Shannon, K. “Supporting flexible and
efficient tool integration”. Proc. Int. Workshop on Advanced
Prog. Environments, pp. 290-313, Trondheim, Norway,
1986.

[24] Woods, S., O’Brien, L., Lin, T., Gallagher, K., and
Quilici,A. “An Architecture for Interoperable Program
Understanding Tools”. Proc. IWPC’98, pp. 54–63, Ischia,
Italy, June, 1998.

Figure 4. Hide exterior results viewed with
Sugiyama layout

Figure 3. Visualizing the ASDT factbase

