Factbase Filtering Issues in an Ontology-Based Reverse Engineering Tool
Integration System

Dean Jin James R. Cordy
Dept. of Computer Science School of Computing
University of Manitoba Queen’s University
Winnipeg, Canada Kingston, Canada
djin@cs.umanitoba.ca cordy@cs.queensu.ca

1. Introduction

The Ontological Adaptive Service-Sharing Integration System (OASIS) provides a means for reverse engineering tools to
work cooperatively to share services and assist maintainers in carrying out software analysis and program comprehension
tasks. OASIS makes use of specially constructed, external tool adapters and a domain ontology to facilitate integration among
a set of reverse engineering tools. A proof of concept implementation of OASIS was recently carried out by researchers
involved in the Software Design Ontology Project at Queen’s University. This implementation was successful in sharing
services among three reverse engineering tools: ASDT [4, 2], Fahmy Tool [3] and Rigi [5][1].

This paper provides an overview of OASIS and focuses on three issues that arise from the use of factbase filtering in the
integration process.

2. OASIS Overview

In an OASIS implementation, a set of reverse engineering tools are selected to participate in an integration. Each tool
offers a set of services to the integration that are shared among the other participants.

Figure 1 provides an architectural overview of OASIS. The components in an integration consisting of two participant
tools (71 and T5) are shown. An actual OASIS implementation can have any number of participants. Each tool consists of a
factbase instance (11 and I3) containing software facts whose form is dictated by a schema (51 and Ss). A set of transactions
(@1 and Q2) conform to the schema and operate on the instance. An OASIS implementation involves the construction of a
domain ontology (O) and tool-specific conceptual service adapters (A1 and As).

All the knowledge required to support service-sharing among each of the tools participating in the integration is stored
in the domain ontology. It is essentially a tabularized, cross-referenced compilation of shared representational concepts and
services offered by each participant in the integration. Only one domain ontology is constructed for an OASIS implementa-
tion. The conceptual service adapters (CSAs) operate as integration facilitators. One CSA is affiliated with each integration
participant. Although all the CSAs have the same architecture and operational characteristics, each is tailored to handle the
functional and information filtering aspects of it’s corresponding tool that are required to facilitate interoperability. A service
offered by a tool participating in the integration can be shared only when the concepts required by the service intersect with
the concepts supported by another participant tool.

3. Factbase Filtering

As we mentioned, the domain ontology has knowledge of the concepts that are shared among all the tools participating
in the integration. Taken together, these concepts define a constraint-free conceptual space, consisting of conceptual ‘slots’
that factbase instances fit into. Shared services only operate on fact instances that actually fit into these conceptual slots.
When a service is being shared, the CSAs for the two tools involved map all factbase instances into and out of the conceptual



"""" > QI A1 A2 QZ

Figure 1. The OASIS Architecture

space. We call this process of mapping to and from the conceptual space filtering. An inFilter maps factbase instances to the
conceptual space. An outFilter maps conceptually represented facts in the conceptual space back to a tool factbase instance.
The inFilter and outFilter used by each CSA is specially tailored to work with the representation supported by the tool the
CSA corresponds to. The relationship between a factbase instance, an inFilter, an outFilter and the conceptual space is shown
in Figure 2.

It is important to understand the actual filtering that is performed by each of the inFilters and outFilters. Figures 3 and 4
show the filtering that occurs for ASDT and Fahmy Tool. In each of these figures, the left column indicates the entities and
relationships from the schema for the tool that take part in the filtering process. The right column shows the domain ontology
concepts that make up the conceptual space. The arrows between the two columns indicate the mapping the inFilters and
outFilters perform. The inFilters map from the left column to the right. The outFilters map from the right column to the
left. For example, in Figure 4 the module entity from the Fahmy Tool schema is mapped to the concept SubProgram
in the conceptual space. Likewise, in Figure 3 Containment from the conceptual space is mapped to ASDT’s contains
relationship.

A number of issues related to factbase filtering are apparent in Figures 3 and 4. In particular, we discuss representational
correspondence, loss of precision and information dilution in the following sections.

3.1. Representational Correspondence

Representational correspondence is a significant consideration that relates to the mapping of factbase instances to the
conceptual space. There are three ways that these mappings can occur:

e One-To-One. This mapping occurs when a tool natively represents a concept found in the conceptual space. There
is no loss in representational detail in either direction as the factbase instance passes through the conceptual space.
For example, ‘contains’ is commonly represented in the schema for reverse engineering tools and can be considered a
one-to-one mapping to the Containment concept in the conceptual space.

e Fanning Out. When a single tool schema entry corresponds to multiple conceptual space concepts, we refer to the
mapping as fanning out. A good example is the usevar relationship in Fahmy Tool (see Figure 4) which corresponds
to a Variable entity and a Containment and Use relationship in the conceptual space. We call such a representation
‘conceptually rich’. The mapping itself is constructive, as it yields three concepts for every usevar factbase instance
encountered.

e Fanning In. In this case, multiple entities or relationships combine together to correspond to a single conceptual space
concept. Fanning in is apparent in the ASDT tool (see Figure 3), where the function and procedure representations
together constitute SubProgram in the conceptual space. This mapping is lossy because representational detail is lost
in the mapping from ASDT to the conceptual space.



Conceptual Space

- conceptual facts represented
- unconstrained
- schema-free

outFilter
maps conceptually
represented facts to local
factbase instance

inFilter
maps local factbase
instance to conceptual
space

Factbase Instance

- tool relevant facts represented
- constrained
- schema strictly enforced

Figure 2. inFilters, outFilters and the Conceptual Space

3.2. Loss of Precision

Loss of Precision is the converse of ‘fanning in’ representational correspondence discussed in Section 3.1. It occurs when
conceptually represented facts correspond to more than one representation in a local tool factbase instance. A single mapping
without loss of representational detail is not possible. In this situation the OASIS implementor must decide which local tool
representation more closely matches the conceptually represented fact. The outFilter for the tool must be programmed to
map those conceptually represented facts to the local representation chosen.

Three examples of loss of precision can be observed in the ASDT outFilter shown in Figure 3. The SubProgram entity is
reconciled to procedure, resulting in the loss of the function representation. The Variable entity is reconciled to variable,
resulting in the loss of four entity representations: constant, const parameter, pervasive constant and var parameter.
Finally, the Use relationship between an <entity> and <Variable> is reconciled to read ref, resulting in the loss of
the write_ref relationship representation.

The negative effects of loss of precision may be minimal. For example, loss of precision for fact instances being brought
into a tool for shared-service execution is generally not a problem. The service operates only on the ‘lower precision’ facts
anyway. Nevertheless, results returned from a shared-service may not make sense.

The loss of precision in an OASIS implementation may be an indicator of the need to reevaluate the domain ontology. It
may be necessary to differentiate an important concept from another so that the distinction is not lost when it is mapped from
the conceptual space.

3.3. Information Dilution

A very important consideration when facilitating shared-services in an OASIS implementation is the problem of Infor-
mation Dilution. It is often the case that the user of a particular tool has expectations of a shared-service that go beyond
what the service is capable of providing. Often there are very subtle differences in the representations supported by tools
participating in an OASIS implementation. These representational differences affect the fact instances that get forwarded
through the conceptual space to a shared-service and ultimately lead to unexpected results.

Consider the High Level Use service offered by Fahmy Tool. In Figure 5 (a) we see the ASDT representation of a
hypothetical software system. Executing Fahmy Tool’s High Level Use service on this representation yields the results
shown in Figure 5 (b). The calls relation between the functions foo and bar is ‘lifted’ to indicate a high level use relation
(labelled hlu) between module 1 and module A.

Now consider a similar ASDT representation shown in Figure 5 (c). Here module 3 calls function foo. Since ASDT
supports this representation, we can assume that this representation is not at all uncommon in the software representations



asdt.inFilter.grk
N

Cd
ASDT . Ontology Concepts
asdt.outFilter.grk
ya
)
(S+) program « > System
(m) module < 4 Module
. ] (
function —— — — — ——
(s) > SubProgram
procedure
constant
const_parameter 2
, <« - = _
(v) pervasive_constant > Variable
variable
var_parameter
contains
S+ m
S+ s
S+ v Containment
m m < > <entity> <entity>
m S
m v
S v
calls
calls_indirect (%) < ®
S+ s Use
m s > <entity> <entity>
S S
read_ref
read_ref_indirect
S+ v
m v (4)
s v - — — — —
> <entity> <Variable>
write_ref
write_ref_indirect (%)
S+ v
m \4
S A4

(1) Loss of Precision: SubProgram is reconciled to procedure

(2) Loss of Precision: Variable is reconciled to variable

(3) Loss of Precision: Use is reconciled to calls

(4) Loss of Precision: Use is reconciled to read_ref

(5) The relationships calls_indirect, read_ref_indirect and write_ref_indirect are produced by the Slice service. The ASDT
outFilter does not map conceptually represented facts from the conceptual space into these relationships.

Figure 3. In and Out Filtering ASDT Schema to the Conceptual Space



fahmytool.inFilter.grk

A
7
Fahmy Tool ) Ontology Concepts
fahmytool.outFilter.grk
€
(5+) system « > System
(m) subsystem « > Module
(s) module « > SubProgram
2
no representation _— —()— — > Variable
contain
S+ m Containment
m m < > <entity> <entity>
m S
2 . .
no representation B —p <entity> <Variable>
hiu® >
m m Use
<entity> <entity>
useproc « >
S S
m S (3)
s m (3)
(2)
usevar _— Y — —» . .
s s <entity> <Variable>
<
m S (3 (1)
s (3)

(1) This is a special case of Use where each Variable in the range is expressed in terms of the SubProgram that contains it.

(2) Although Fahmy Tool does not support the representation of variables, we are able to induce them from the usevar represen-
tation. Unique Variable instances are generated based on the name of the entity where the variable is contained. These instances
are identifiable in the range of the usevar relationship. Each usevar instance generates a Variable and Containment and Use
relationships in the conceptual space.

(3) These constraints exist in the results of the Hide Interior service. The Fahmy Tool outFilter does not map conceptually
represented facts from the conceptual space into these relationship constraints. The inFilter does map these fact instances into the
conceptual space.

(4) The relationship hlu is produced by the High Level Use service. The Fahmy Tool outFilter does not map conceptually
represented facts from the conceptual space into this relationship.

Figure 4. In and Out Filtering Fahmy Tool Schema to the Conceptual Space



contains

contains

contains

contains

module module module | hlu N module module module
1 A 1 L A 1 A
contains contains contains contains contains contains
module module module module module module
2 B 2 B 2 B

contains

contains

function calls function function calls function module | calls function
foo bar foo bar 3 foo

(a) (b) (c)

Figure 5. High Level Use Service (Fahmy Tool)

supported by the tool. Nevertheless, executing Fahmy Tool’s High Level Use service on this representation yields no lifted
hlu relation.

In this situation, the reasons why the results are not as expected are clear. Figure 3 shows that ASDT supports the
representation of calls relationships between module and function entities. This representation is preserved when the ASDT
inFilter maps them into the conceptual space. Figure 4 shows that Fahmy Tool only supports useproc relationships from
module to module entities. The Fahmy Tool outFilter will not map into Fahmy Tool all the facts in the conceptual space
originally from ASDT. It is at this point that information dilution occurs. As a result, the High Level Use service yields
results that the user does not expect.

Information dilution is problematic because it appears that the integration ‘works’, but the results do not appear correct,
even though they are. More troublesome is the possibility that no realization is made that information dilution has occurred.
The real problem in the scenario we provide above is that the ASDT user was not warned that information dilution had
occurred and consequently the results might not be as expected.

4. Conclusion

The OASIS proof of concept implementation successfully demonstrated the feasibility of service-sharing as a means to
facilitate the integration of information and services among a set of reverse engineering tools. It has also provided the
opportunity to examine issues that arise as a result of the way an OASIS implementation is constructed. In this paper we have
examined three areas of concern related to the factbase filtering process used by OASIS to manage the flow of information
through the system. It is our hope that this paper will lead to further analysis and discussion of the strengths and weaknesses
of the service-sharing approach used by OASIS to enable interoperability among reverse engineering tools.

References

[1] Rigi Group Home Page. URL: http://www.rigi.csc.uvic.ca/.

[2] J.R. Cordy and K. A. Schneider. “Architectural Design Recovery Using Source Transformation”. In CASE’95 Workshop on Software
Architecture, Toronto, July 1995.

[3] H.M. Fahmy, R. C. Holt, and J. R. Cordy. “Wins and Losses of Algebraic Transformations of Software Architectures”. In Proceedings
of the 16th IEEE International Conference on Automated Software Engineering (ASE’2001), San Diego, California, November 2001.

[4] D. A. Lamb and K. A. Schneider. “Formalization of Information Hiding Design Methods”. In J. Botsford, A. Ryman, J. Slonim, and
D. Taylor, editors, Proceedings of the 1992 Centre for Advanced Studies Conference (CASCON’92), pages 201-214, Toronto, Ontairo,
November 1992.

[5] H. A. Miiller and K. Klashinsky. “Rigi — A system for Programming-in-the-Large”. In Proceedings of the International Conference
on Software Engineering (ICSE’88), pages 80-86, 1988.



