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Abstract 
 

Buffer overflows have been the most common form of 
security vulnerability in the past decade.  A number of 
techniques have been proposed to address such attacks.  
Some are limited to protecting the return address on the 
stack; others are more general, but have undesirable 
properties such as large overhead and  false warnings.  
The approach described in this paper uses legality as-
sertions, source code assertions inserted before each 
subscript and pointer dereference that explicitly check 
that the referencing expression actually specifies a loca-
tion within the array or object pointed at run time.  A 
transformation system is developed to analyze a pro-
gram and annotate it with appropriate assertions auto-
matically.  This approach detects buffer vulnerabilities 
in both stack and heap memory as well as potential 
buffer overflows in library functions.  Runtime checking 
through using automatically inferred assertions consid-
erably enhances the accuracy and efficiency of buffer 
overflow detection.  A number of example buffer over-
flow-exploiting C programs are used to demonstrate the 
effectiveness of this approach. 
 
1. Introduction 
 
     With the combined nature of both high-level and 
assembly languages, C is a popular programming lan-
guage widely used for software development, especially 
systems programming.  While it provides programmers 
with the potential to accomplish tasks with flexibility 
and efficiency, the absence of run-time error checking 
poses some difficulty in programming and calls for care 
and responsibility on the part of programmers.  One of 
the run-time error checks that C does not perform is 
bounds checking, which has led to the notorious buffer 
overflow problem.  
     Buffer overflows have been the most common form 
of security vulnerability in the past decade [1].  A com-
mon example is the remote network penetration vulner-
ability [15] where an anonymous Internet user exploits 
buffer overflows to gain partial or total control of a host.  

Since buffer overflows provide an easy way for attack-
ers to inject and execute malicious code, buffer over-
flow attacks constitute a substantial portion of all secu-
rity attacks.  For instance, 9 of 13 CERT advisories from 
1998 involved buffer overflows [1] and in 1999, they 
accounted for at least 50% of advisories issued by 
CERT [2]. Several papers presenting reverse engineer-
ing and transformations that relate to security have been 
presented at recent WCRE conferences [22,24,25,26,27].   
     Considerable research has been conducted to investi-
gate the buffer overflows and seek solutions to detect 
and prevent them [3,4,5,6,7,8,9,10,11,12,22,30]. How-
ever, these solutions attack the problem from different 
perspectives and are usually effective only against cer-
tain kinds of attacks and vulnerabilities.  Some ap-
proaches also suffer from significant performance pen-
alties or imprecision. 
     In this paper, we propose to use legality assertions 
[13] to enhance the security of C programs.  Legality 
assertions implement dynamic checking of restrictions 
on legal programs written in a certain language.  They 
are most suited in cases where some conditions are dif-
ficult to check statically.  Legality assertions were origi-
nally used by the Euclid compiler to check if source 
programs obey the semantic restrictions of the Euclid 
language [13].  In our approach, they are used as anno-
tations on the source program to check if array indices 
and pointers are in the legitimate range. 
      We have developed a transformation system using 
TXL [14] to automatically insert legality assertions in 
the source program where array elements are accessed 
or pointers are dereferenced.  Valid ranges of buffers are 
dynamically maintained in additional integer variables.  
In each assertion, an array subscript or pointer derefer-
ence is checked against its valid range at the particular 
point in the program execution.  This approach has sev-
eral advantages: (1) Legality assertions are annotated in 
the source program automatically. (2) It does not change 
the original representation of arrays and pointers and 
also detects the potential buffer overflows in library 
functions without any modification to their representa-
tion. (3) It provides protection against a wide range of 



attacks, including both stack and heap smashing exploits. 
(4) Since the assertions check buffer range at run time, 
checking is more accurate and there are no false warn-
ings. 
     The remainder of this paper is organized as follows.  
Section 2 gives some background and introduces related 
research.  Section 3 presents our legality assertions for 
buffers in C programs.  Section 4 describes our trans-
formation process using simple examples.   Section 5 
describes our early experiments with the transformation 
system.  Finally, Sections 6 and 7 discuss future work 
and conclusions. 
 
2. Background and Related Research 
 
     This section introduces the notion of legality asser-
tions, and the source transformation tool TXL that we 
use in our research.  We examine the nature of buffer 
overflows in C and review related research in buffer 
overflow security. 
 
2.1 Legality Assertions 
 
     A legality assertion, by definition, is “a Boolean ex-
pression that has the value true if a specific restriction 
is met when the assertion is executed” [13].  Legality 
assertions implement dynamic checking of language 
restrictions in legal programs and is used in cases where 
some conditions are difficult or impossible to check 
statically.  Legality assertions, originally generated by 
the Euclid compiler, are based on the semantic restric-
tions of the language and are used to check language 
restrictions on values of non-manifest (run-time) con-
stants, integer subranges, overflow in arithmetic expres-
sions, boolean expressions,  expressions in non-
statement contexts (e.g. conditional expressions in if 
statement), assignment statements, array and collection 
(pointer) indices and parameter values.  In our approach, 
we use assertions to check the legality of array indices 
and pointer dereferences.  For example, Figure 1 shows 
the legality assertion for an array index in a C program. 
 
 
 
 

 
 

Figure 1. An example C program with assertion 
 
2.2 Source Transformation using TXL 
 
     TXL [14] is a programming language designed to 
support software transformation tasks.  It combines fea-
tures of both functional and rule-based programming, 
and supports unification, implied iteration and deep 

pattern match.  A TXL program consists of two parts: a 
context-free, possibly ambiguous grammar describing 
the syntactic structure of the artifacts to be transformed, 
and a set of by-example formal transformation rules that 
use pattern-replacement pairs to describe the desired 
transformations.  TXL has been used in a range of ap-
plications from design recovery to artificial intelligence, 
in both academic and industrial contexts [14].  
     In our project, source transformations in TXL are 
used to implement a static analysis of arrays and point-
ers in the C source code and to generate the augmenta-
tion of the source code with appropriate legality asser-
tions. 
 

2.3 Buffer overflows 
 
     A buffer is a contiguous allocated region of memory, 
such as an array in C.  Since C provides the programmer 
with direct low-level memory access and pointer arith-
metic without automatic bounds checking, a user can 
potentially write beyond the allocated memory for the 
buffer, which may result in unexpected behavior.  Figure 
2 depicts the general arrangement of the stack when a C 
function is called. In general, the stack grows downward 
(towards lower memory addresses) from right to left. 
 

    ← Stack growth 
 Locals FP RA Parameters  

Data growth → 
Figure 2. Stack frame for a C function call 

 
     In the case of a buffer overflow, when a fixed-sized 
memory allocation is used to store a variable-sized data 
entry in a local variable, the space allocated for the 
saved frame pointer (FP, the base address for local stor-
age) and the return address (RA, the code address for 
the function to return to) can possibly be overwritten, 
which in turn can alter the program’s execution path to 
execute malicious code input to the buffer [16].  A simi-
lar (but more complex) situation can occur on the heap, 
which may corrupt data on the heap to point to mali-
cious code from a saved exception handler or function 
address [17]. 
     In addition, the standard C library itself provides 
many unsafe functions that can write an unbounded 
amount of user input into a fixed-size buffer without 
any bounds checking.  Examples of such functions in-
clude strcpy, strcat, read, write, fgets and gets. 
 
2.4 Buffer Overflow Defenses 
 
     A number of techniques have been proposed to ad-
dress buffer overflow vulnerabilities.  Static analysis 
tools such as FlawFinder [3], RATS [4] and ITS4 [5] 
attempt to locate potential buffer overflows based on a 
lexical analysis of the program.  These tools provide a 

int main(){ 
    int x = 3; 
    char A[5] = {'1','2','3','4','5'}; 
    assert ((x+2)>=0 && (x+2)<5); 
    A[x+2] = 'j'; 
} 



fast and simple means for programmers to write more 
secure code.  However, since they only operate on the 
lexical level of the program, the information they can 
provide is limited and imprecise.  The LCLint Extension 
[6] and the integer analysis tool developed by Wagner et. 
al. [7], offer more advanced functionality.  However, 
they have been found to generate a large number of 
false positives and the LCLint Extension requires pro-
grammers to manually add annotations to the source 
programs. 
     A more general technique to attack the buffer over-
flow problem is to add bounds checking in C programs 
[8, 9, 10, 11, 30]. At run time, extra information is 
maintained for every pointer: the address and size of the 
object to which it points. Every pointer dereference is 
instrumented to use the information to check whether 
the current value of the pointer is in bounds; if not, an 
error is reported.  However, this approach has some 
serious drawbacks: It requires a change of data repre-
sentation, which can be unacceptable in many applica-
tions, particularly systems programs and it adds high 
runtime overheads.  
     StackGuard [12] adds code to a compiled program to 
detect attacks on the return address.  The advantages of 
this approach are that it requires no changes to the 
source code and introduces very little overhead; how-
ever, it does not address attacks on other vulnerable 
locations such as the heap. 
     Gemini [22], a tool presented by Chris Dahn and 
Spiros Mancoridis of Drexel University at WCRE 2003, 
uses TXL to secure C programs against the run-time 
stack buffer overflows by transforming stack allocated 
arrays into heap allocated arrays automatically at com-
pile time.  This approach eliminates the problem of 
stack buffer overflows by repositioning the buffers on 
the heap. However, this leaves the program vulnerable 
to heap exploits [28]. 
 
3. Legality Assertions for Buffers in C 
 
     In this section, we introduce our legality assertions 
for arrays and pointers in C. While Euclid was designed 
for expressing legality assertions, in C it is a much more 
challenging matter.  For arrays, legality assertions are 
used to check the legal range of array indices.  C array 
indices are zero-based, i.e. the index of the first element 
is 0.  Therefore, the legal range for an array index is 0 
through size-1.  The general form of the legality asser-
tion for an array index is 
   assert (index >= a.lowerBound &&  

     index < a.upperBound) 
The lower bound of an array index in C is always 0 and 
the upper bound of an array index is the maximum 
number of elements the array can hold. 
     A pointer is a variable that holds the memory address 

of another object, which we can refer to as the pointee, 
which can be referenced through the pointer using 
pointer dereferencing.  When a pointer is initialized to 
the address of a pointee, it is usually assigned the lowest 
(starting) memory address of the pointee.  Thus, the 
legal range for dereferencing through the pointer is be-
tween the lowest and highest memory address of the 
pointee.  The general form of the legality assertion for a 
pointer dereference will therefore be: 

assert ((int)p >= p.lowerBound &&  
(int)p < p.upperBound) 

Since a pointer is simply the numerical value of the ad-
dress of a memory area, to simplify the comparison, we 
cast pointers into their corresponding integer values.  
Both lower and upper bounds are also integers.  Unlike 
array boundaries, both the lower and upper bounds need 
to be calculated from the pointee.  As pointers are most 
dangerous when the values they point to are accessed, 
legality assertions will be inserted where pointers are 
dereferenced usually using the “*” operation. 
     Many library functions in C take pointers as parame-
ters and can be dangerous without bounds checking.  
Legality assertions can be used to check the state of 
buffers to ensure that no overflow will occur while the 
function is executed.  Since each function takes differ-
ent types and numbers of parameters, it is difficult to 
generalize a common assertion which applies to all 
functions.  In the following, we introduce assertions for 
several library functions as a demonstration. 
 
(1) strcpy (char *s1, const char *s2) 
      assert((s1.ubound-s1.lbound)>=  

  (s2.ubound-s2.lbound));   
(2) strcat (char *s1, const char *s2)  
      assert((s1.ubound-s1.lbound)> 

   strlen(s2)+ strlen(s1));  
(3) read/write (int fd, void * buf, unsigned count)  
      assert (count <= buf.ubound-buf.lbound);  
(4) fgets(char *str, int num, FILE * stream)  
      assert((str.ubound-str.lbound)>=num);  
 

4. The Legality Transformation Process 
 
     Our legality assertion transformation process is com-
posed of six phases: Preprocess, Mark up library, 
Unique rename, Add assertions, Remove markups and 
Unname (shown in Figure 3).  GCC is used to preproc-
ess the source code in the first phase.  When invoked 
with the ‘-E’ flag, GCC resolves preprocessor state-
ments without validating the input as C source code.  
The other five phases are all implemented using TXL 
[14].   
 

4.1 Preprocess 
 
     C allows programmers to include various instruc-
tions to the compilers in the source code through pre-



processors, such as macros, file inclusion and condi-
tional compilation directives, which will be resolved at 
compile time.  The use of preprocessors expands the 
scope of the C programming environment and enhances 
flexibility of the language.  However, it also adds com-
plication to source code analysis and transformation in 
that precise information may not be obtained unless the 
source code is preprocessed.  Therefore, source code 
normally needs to be preprocessed by the C compiler 
before it is analyzed or transformed.   
     This is the case for our process also, and we use the 
GCC preprocessor as the first step in our process.  
However, unlike many analysis and transformation ap-
plications, automated legality assertions must be regen-
erated whenever the program is changed.  Thus they are 
only of interest to the compiler, and preprocessing be-
fore analysis does not in any way limit or inconvenience 
the programmer using our system. 
 

4.2 Markup Library Files 
 
     Because in general we do not have access to internal 
system library source, our transformation is mainly in-
terested in programmer-written source code.  While 
preprocessed code includes both standard files from the 
C library and user defined files, the included library 
files are separated from other code using markups and 
ignored during the transformation.  A markup strategy, 
similar to that used to specify source code hot spots for 
the year 2000 problem [18], was adopted to mark and 
ignore the library contents. 
     Figure 4 shows an excerpt of preprocessed code.  
The code following “# 1 "/usr/include 

/bits/sys_errlist.h" 1 3” is included from the 
standard library files and the code following “# 2 
"exer1.c" 2” is written by the programmer.  Any 
code following preprocessor statements that contains 
“/usr/include” is marked with the XML tag <lib> 
</lib>.  The markup process begins by finding all the 
library preprocessors includes and marking them with 
tags, after which the contents between a library preproc-
essor include and the next non-library statement is lo-
cated and marked up. 
 

4.3 Unique Naming C Variables 
 
     Based on C’s namespace and scope rules, identifiers 
in different scopes and namespaces may have the same 

name.  Compilers usually use a scope stack to keep 
track of the variables in different scopes and variables 
with same names will not be confused with each other.  
However, these variables may create ambiguity in static 
analysis.  For example, it is possible that all of the fol-
lowing components in a C program could use the same 
name: structure tags, member variables in different 
structures, global variables, local variables, function 
parameters. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Example of output of markup phase 
 
     A simple legal C program is shown in Figure 5.  In 
this program there are seven entities with the same 
name a.  Item 1 is a global variable.  Item 2 is a struc-
ture tag.  Items 3 and 4 are members of different struc-
tures.  Item 5 is a local variable in main() that will 
mask the global variable a.  Item 6 is a local variable in 
the if statement that will mask Item 5 in the scope of 
the if statement.  Item 7 is a function parameter and 
will also mask the global variable a inside function f().  
     To distinguish between these entities, a scope-based 
unique naming transformation [19] is used to give each 
variable identifier a unique name.  Each unique name 
consists of the variable name and the name of the scope 
where the variable is visible.  The scope name is pre-
pended to the original variable name, separated with 
“S$”, which is rarely used in C variable names.  For 

<lib> # 1 "/usr/include/bits/sys_errlist.h" 1 3  
</lib> 
<lib> # 27 "/usr/include/bits/sys_errlist.h" 3  
</lib> 
<lib> extern int sys_nerr;  
</lib> 
<lib> extern __const char* __const sys_errlist[]; 
</lib> 
… 
<lib> # 686 "/usr/lib/gcc-lib/i586-mandrake-
linux-gnu/3.2.2/include/stdio.h" 3 
</lib> 
# 2 "exer1.c" 2 
int main () { 
    … 
} 

int a;  //1. global variable 
struct a { //2. structure tag 
  int aS$a;    //3. member in structure a 
}; 
struct b { 
  int bS$a;    //4. member in structure b 
}; 
int main () { 
  int mainS$a =0;  //5. local variable 
  if (mainS$a < 0){ 

int main2S$a = 3;  //6. local variable  
  } 
} 
void f (int fS$a) {  //7. function parameter 
} 

Figure 5. Example of renaming variables 
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Figure 3. Transformation process 



example, after unique naming, the function parameter a, 
Item 7 in Figure 5, becomes fS$a.  No scope names are 
added to global variables since they are unambiguous 
once all other items are uniquely named.  To clearly 
present the remaining examples, we show the original 
names (i.e. not unique names). 
 
4.4 Annotate Program with Legality Assertions 
 
     Now we are ready to do the real work.  In this phase, 
information about arrays and pointers is collected 
through program analysis and for each array or pointer 
in the input program, two new limit variables (4 bytes 
each on 32 bit machines) are created to store boundary 
information.  The boundary values are represented as 
integers and will be updated whenever the array or 
pointer is changed.  Legality assertions are inserted in 
all places where buffers are accessed.  In the assertions, 
the corresponding limit variables are used for boundary 
checking.  
 
4.4.1 Annotation for Arrays.  Adding assertions to 
array indices uses several steps: 
     (1) Add missing array sizes.  The limit for an array 
index is between 0 and the size of the array.  The size of 
an array can usually be obtained from the array declara-
tion, where the size is given in square brackets ([]).  
However, C allows the size of an initialized array to be 
calculated from the number of initializers.  Therefore, a 
normalization transformation is required to change the 
implicitly sized arrays into arrays with an explicit size 
by inserting the size in the square brackets ([]).  If it is 
a character array, the size is the length of the string plus 
one more character for the null byte at the end of the 

string.  Figure 6 shows a transformation rule to add 
missing array size in declarations as well as the input 
and output of this transformation rule. 
     (2) Add limit variable declarations to arrays.  For 
each array, two new integer variables are created to 
store the lower and upper bound of the array.  The lower 
bound is initialized to 0 and the upper bound to the size 
of the array as given in the declaration.  The new vari-
able names take the form of “arrayName$lower” and 
“arrayName$upper”, so as to be distinguished from 
other variables.  For external array variables, the bound-
ary variables are declared as external without initializa-
tion. Values will be set in the file where they are defined 
and initialized.  
     (3) Add limit variable declarations to arrays in 
structures.  The transformation in this step addresses  
arrays inside structure declarations.  Similarly to the 
transformation in the previous step, boundary variables 
are added immediately after the array declaration in the 
structure.  However, they will not be initialized until an 
instance of the structure is declared, since no initializa-
tion is allowed inside the structure declaration.  Figure 7 
shows transformation steps (2) and (3). 
 
 
 
 
 
 

Figure 7. Add limit variables to arrays 
 

     (4) Create temporary variables to store array 
subscripts.  Legality assertions for arrays are added in 
places where an array is indexed.  An array index can be 
a constant, such as A[2], an expression, such as 
A[x+1], A[x++], or even a function call A[f(x)].  If 
the whole subscript expression is used in the assertion, 
for example, “assert ((x++)>=0 && 

(x++)<A$upper));”, the value of x will be incre-
mented two times.  The same thing happens if a function 
call f(x) used as index has some side-effects.  There-
fore, to preserve the semantics of the input program, a 
new variable is created for each array subscript to hold 
the value of the subscript expression and the index is 
replaced by the new variable.  The names of generated 
index variables are all in the form of “i$N”, where N is 
a unique number.   
     The assignment statement to set the index variable is 
inserted just before the statement where the index ap-
pears.  Due to the complexity of statement types, differ-
ent rules have been composed to match the different 
patterns of if, for, while, do-while and switch 
statements.  A simple optimization is performed at this 
step.  If a subscript is a constant and is in the valid range, 
no new variable will be created for it and no legality 

int A [5] = {1, 2, 3, 4, 5}; 
int A$lower = 0;   int A$upper = 5; 
struct S { 
    int C [5]; 
    int C$lower;   int C$upper; 
}; 

Transformation rule: 
rule addSubscripts 
    skipping [markup] 
    replace [init_declarator] 
 RP [repeat ptr_operator] var [id] 
 DE [declarator_extension]  

rest [repeat declarator_extension] 
 IN [opt initialization] 
    deconstruct DE 
        '[ '] 
    deconstruct * [list  

designated_initializer] IN 
        L [list designated_initializer] 
    construct N [number] 
        _ [length L] 
    construct newDE [declarator_extension] 
        '[ N '] 
    by  RP var newDE rest IN 
end rule 
 

Input: int A[] = {1,2,3,4,5}; 
 
Output: int A[5] = {1,2,3,4,5}; 
 

Figure 6. Add missing array size in declaration



assertions will be generated in the end. 
     (5) Create declarations for temporary index vari-
ables.  Since new variables are introduced to hold index 
values, declarations for these new variables need to be 
added to the program.  This transformation step finds all 
the new index variables in each scope, creates declara-
tions and places them at the beginning of the scope, 
before the original declarations. 
    (6) Add assertions to array indices.  Finally we are 
ready to generate the legality assertions themselves.  In 
this step, the transformation system finds each array 
index in program statements and generates and inserts 
the actual assertions in the appropriate places.  For ex-
ample, assertions appear immediately before each sim-
ple statement that contains array indices (see Figure 8).  
For if and switch statements, the transformation must 
ensure that the assertions for array indices appearing in 
the conditional expressions are placed before the entire 
statements.  However, in for and while statements, the 
assertions to arrays in conditional expressions must be 
placed before the statement and repeated inside the loop 
so that the indices will be checked in each cycle of the 
loop.  In a do statement, the assertions for conditional 
expression are only needed inside the loop.  Figure 8 
shows the entire transformation output for arrays of an 
example program. 

Figure 8. Assertions to array indices 
 
4.4.2 Annotation for Pointers.  In the legality assertion 
for a pointer dereference, the pointer expression is 
checked against its valid boundaries.  As before, code 

for maintaining runtime boundaries is generated through 
static analysis.  Similarly to array bounds, two limit 
variables are created for each pointer to store the valid 
pointer range.  The limit variable names are the pointer 
name suffixed with “$lower” and “$upper”.  The limit 
variables are initialized according to the initial value of 
the pointer and updated whenever the value of the 
pointer changes. 
     Assertions for pointers are inserted in places where a 
pointer is dereferenced.  In the assertion, the integer 
value of the pointer is checked against its limit variables, 
which provides the latest valid range for this particular 
pointer.  Since pointers are widely used, the transforma-
tion process is much more complicated than for arrays.  
Steps for transforming pointers are as follows. 
     (1) Create limit variables for each pointer.  Limit 
variables are created for each pointer.  If the pointer is 
initialized, the limit variables are initialized accordingly. 
For pointers in structures, only the limit variable decla-
rations are inserted.  The following examples show 
some cases of pointer initialization, for which the limit 
variables are initialized in different ways.  
 

1) A pointer declared with no initialization.  The 
limit variables declarations are created with no 
initialization. 

e.g. int * p;  
   int p$lower;  
   int p$upper; 

2) A pointer initialized to null.  The limit variables 
are initialized to zero. 

e.g. int * p = null;  
   int p$lower = 0;  
   int p$upper = 0; 

3) A pointer initialized to an array or a structure.  
The limit variables are initialized to the start and 
end of the construct respectively. 

e.g. int a[3]; int * p = a;  
   int p$lower = (int)&a;  
   int p$upper = (int)&a+sizeof(a); 

4) A pointer initialized to another pointer.  
e.g. int * p;   
   int * q = p;  
   int q$lower = p$lower;   
   int q$upper = p$upper; 

5) A pointer initialized to a string 
e.g. char * s = “hello”;  
   int s$lower = (int)&s;    
   int s$upper = (int)&s + 5 + 1; 

6) A pointer array declaration.  Two arrays are cre-
ated to hold the limit values for each pointer in 
the array. 

e.g. int * a [10]; 
   int a$lowerArry [10];  
   int a$upperArry [10]; 
 

#include <assert.h> 
int main () { 
    long int i$1;   
    long int i$2;  
    long int i$3; 
    int D [5] = {2, 4, 6, 8, 10}; 
    int D$lower = 0; 
    int D$upper = 5; 
    char str [6] = "hello"; 
    int str$lower = 0; 
    int str$upper = 6; 
    int n, m = 0; 
    i$1 = m ++; 
    assert (i$1 >= 0 && i$1 < D$upper); 
    n = D [i$1]; 
    i$2 = n + 1; 
    assert (i$2 >= 0 && i$2 < D$upper); 
    if (D [i$2] > 0) { 
        long int i$4;  
        i$4 = i$2; 
        assert (i$4 >= 0 && i$4 < D$upper); 
        D [i$4] = D [1];} 
    i$3 = m + 1; 
    assert (i$3 >= 0 && i$3 < D$upper); 
    while (D [i$3] < 0) { 
        m ++; 
        assert (i$3 >= 0 && i$3 < D$upper); 
    } 
} 



7) A pointer initialized by malloc(). 
e.g  int * p = (int*) malloc(100); 
   int p$lower = (int) p; 
   int p$upper = (int) p + 100; 

8) A pointer initialized by calloc(). 
e.g. int * p = (int*) calloc(2, 100); 
   int p$lower = (int) p; 
   int p$upper = (int) p + 2*100; 

9) A pointer initialized by realloc(). 
e.g. int * p = (int*) realloc(p, 100); 
   int p$lower = (int)p; 
   int p$upper = (int)p + 100; 

10) A pointer initialized by a user defined function.  
The limit variables will be inserted before pointer 
declaration and passed to the function, which ini-
tializes the limit variables inside the function. 

e.g. int p$lower;  
   int p$upper;  
   int * p = f(&p$lower, &p$upper); 
 

     (2) Update limit variables in statements.  A pro-
gram, can change the object a pointer points to; when 
this happens, its limit variables must be updated accord-
ingly.  The assignment of a value to a pointer is essen-
tially the same as in pointer initialization (but without 
the type name).  Hence, this step includes almost the 
same cases as listed in the previous step.  Limit vari-
ables are also updated in the same way.  In general, for 
each pointer assignment, update statements are inserted 
following the assignment of the pointer.  However, there 
are two special situations that must be treated separately.  
They are pointer reassignments in the conditions of if 
and for statements.  For an if statement, the assign-
ment of a pointer in the conditional expression is ex-
tracted and moved before the if statement as a separate 
statement and then pointer limits are updated as for 
other pointer assignments. For pointer assignments in 
for statement, update statements are inserted inside the 
subscopes. 
     (3) Add limit variables to pointer arguments in 
user defined functions.  For pointers passed as argu-
ments in user defined functions, the corresponding limit 
variables need to be passed to the function as well, as 
they may be used for pointer boundary checking inside 
the function.  In this step, the transformation process 
checks all the arguments in user defined functions and 
adds the corresponding limit variables after each pointer 
argument.  In order to keep the consistency and seman-
tics of the program, transformation must be done consis-
tently to arguments in function declarations, function 
definitions and function calls (a “coupled” transforma-
tion).   An example is shown in Figure 9. 
     (4) Create new variables for each pointer re-
turned in user defined functions.  In the array trans-
formation, new variables were created to store array 
subscripts to avoid side-effects, when the subscripts are 

arithmetic expressions or function calls.  This same 
technique is used for pointers to be returned in user de-
fined functions, since the pointer to be returned in a 
function may be a function call or an expression instead 
of a simple pointer variable.  The new variable created 
for the returned pointer takes the form of “ret$Var”.  
The new variable declaration is added to the beginning 
of the function definition.  Before each return state-
ment, the new variable is assigned to the returning 
pointer expression.  The limits of this new pointer vari-
able are computed as described in Step (2). 
 
 
 
 
 
 
 
 
 
Figure 9. Add limit variables for pointer arguments 
 

     (5) Add limit arguments in functions returning 
pointers.  For functions that return a pointer, two addi-
tional integer pointer parameters, int * ret$lower, 
int * ret$upper, are appended to the end of the 
parameter list.  In the call to these functions, the addi-
tional formal parameters will be replaced by the ad-
dresses of the limit variables of the pointer that will be 
assigned the returned value.  In this way, the limit vari-
ables can be updated from the value assigned inside the 
function.  Figure 10 illustrates this transformation step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 10. Add limits to functions returning pointers 
 

     (6) Add annotations to pointers.  Finally, the actual 
legality assertions for pointer expressions are generated 
and inserted before the statements which contain the 
pointer dereferences.  The general form of a pointer 
assertion is “assert ((int) ptr>= ptr$lower && 
(int) ptr < ptr$upper”, where the current integer 

int i = 5; 
int * p = & i; 
int p$lower = (int) & i; 
int p$upper = (int) & i + sizeof (i); 
void foo (int *, int, int); //declaration 
void foo (int * p, int p$lower, int p$upper) { 
} //function definition 
int main () { 
    foo (p, p$lower, p$upper); //function call 
} 

int * foo (int i, int * ret$lower, int *  
   ret$upper) { 

    int * ret$Var; 
    int ret$Var$lower;  int ret$Var$upper; 
    int * p = (int *) malloc (i); 
    int p$lower = (int) p;    
    int p$upper = i + (int) p; 
    ret$Var = p; 
    ret$Var$lower = p$lower;    
    ret$Var$upper = p$upper; 
    { 
        * ret$lower = ret$Var$lower; 
        * ret$upper = ret$Var$upper; 
        return ret$Var; 
    }} 
int main () { 
    int p$lower;  int p$upper; 
    int * p = foo (10, & p$lower, & p$upper);} 



value of the pointer is checked against its valid bounda-
ries.  Similarly to assertions for array buffers, the trans-
formation inserts the assertions in the appropriate place 
for each different type of statement.  Special attention 
has been given to pointer deferencing combined with 
pointer increment and decrement, e.g. *(++p) and *(-
-p).  In these cases, the pointer must be incremented or 
decremented before it is dereferenced.  The assertion 
that goes before it must therefore check its validity after 
the change.  Figure 11 shows a simple example of 
pointer transformation and bounds checking. 
 
 
 
 
 
 
 
 
 
 
 

Figure 11. Example of pointer bounds checking 
 

4.4.3 Library functions.  Since the implementation of 
library functions is inaccessible, no change can be made 
to the function prototypes.  Instead, buffer checking 
assertions are added as preconditions to library function 
calls.  The following table summarizes the assertions 
created for some specific functions.  
 
Table 1: Assertions to some library functions 

Library Functions Assertions  

strcpy (d,s) assert ((d$upper - d$lower) 
>= (s$upper - s$lower)); 

strcat (d,s) assert ((d$upper - d$lower) 
>= (strlen(d) + 
strlen(s))); 

read/write 
(f,b,c) 

assert (c <= (b$upper – 
b$lower)); 

fgets (s,n,fd) assert (n <= (s$upper – 
s$lower)); 

 
4.5 Remove Markup and Unname 
 
     After annotating legality assertions for all the buffers 
in the program, unique names in the program are re-
verted to their original names by a simple TXL program 
which removes the scope names that have been added to 
each variable.  Finally, markup tags are removed from 
the included library files, yielding a compilable result. 
 

5. Case Studies 
 
     To demonstrate the effectiveness of using legality 
assertions to detect buffer overflow in C, the transfor-
mation system has first been applied to example C pro-
grams from the security community with a variety of 
known stack and heap exploits.   
 
5.1 CESG Vulnerability Code 
 
     The first example is a set of small security vulnerab-
lility programs used as demonstration code by U.K. 
Government, Communications-Electronics Security 
Group (CESG), Network Defence Team [20]. The dem-
onstration code from CESG consists of three small vul-
nerable programs, which present three different types of 
buffer overflow problems. 
     The first program reads a message from the first ar-
gument, copies it to a character array with a fixed size 
of 128 bytes through the library function strcpy() and 
then prints the message to the standard output.  A stack 
buffer overflow will occur when the argument is larger 
than the character array.  The transformation program 
inserts the legality assertion which checks the sizes of 
the message and the buffer.  When the message is big-
ger than the buffer, the program aborts with an error 
message as shown as follows. 
 
 
 
 
     Program 2 is a reimplementation of the first program 
with programmer’s own bounded copy instead of using 
the library function.  However, there is an off-by-one 
error in the programmer’s bounds checking.  The legal-
ity assertion checks the array index between 0 and 127 
and the following error message is produced when the 
index is beyond its valid range. 
 
 
 
     Program 3 takes two arguments and uses heap mem-
ory, which is allocated by malloc(), to store the argu-
ments.  The transformation program adds the boundary 
variables in the appropriate places and records the 

#include <assert.h> 
int main () { 
    int a [3] = {1, 2, 3}; 
    int a$lower = 0; 
    int a$upper = 3; 
    int * p = a; 
    int p$lower = (int) & a; 
    int p$upper = (int) & a + sizeof (a); 
    assert ((int) p >= p$lower && (int) p < 
p$upper); 
    * p = 4; 
} 

a.out: ex1.c:17: echo: Assertion `((int) 
buf$upper - (int) buf$lower) >= ((int) 
msg$upper - (int) msg$lower)' failed. 
Aborted 

a.out: ex2.c:22: echo: Assertion `i$1 >= 0 
&& i$1 < buf$upper' failed. 
Aborted 

Error message for buffer 1 overflow: 
a.out: ex3.c:52: main: Assertion `((int) 
buf1$upper - (int) buf1$lower) >= ((int) 
argv$upperArry [i$1] - (int) argv$lowerArry 
[i$1])' failed. 
Aborted 
Error message for buffer 2 overflow: 
a.out: ex3.c:58: main: Assertion `((int) 
buf2$upper - (int) buf2$lower) >= ((int) 
argv$upperArry [i$7] - (int) argv$lowerArry 
[i$7])' failed. 
Hello Aborted 



boundary value based on the pointer initialization.  Le-
gality assertions are inserted before the strcpy() func-
tions.  The assertions successfully detect the buffer 
overflow problem in either copying the first argument or 
the second argument 
 

5.2 Server Example  
 
     The second example is a vulnerable server program, 
designed by Dr. Thomas Dean for his Operating System 
course offered at Department of Electrical and Comput-
ing Engineering, Queen’s University.  It contains a stack 
buffer overflow problem which may occur when an 
fgets() function attempts to write 129 bytes to a 100-
byte buffer.  The transformed program successfully de-
tected the problem and produced the following error 
message. 
 
 
 
 
 
 
 
 
 

6. Future Work 
 
     Besides the examples discussed in Section 5, we are 
applying this method to a much more complicated ap-
plication system Ospfd in Zebra, an advanced routing 
software package that provides TCP/IP based routing 
protocols, which has been found to have heap overflow 
problems [23].  Up till now, the transformation has been 
conducted on 24 files in Ospfd and 32 files in the Zebra 
library.  The total number of lines of code to be trans-
formed is over 500,000 lines after preprocessing.     
     Our current system has transformed all of the pro-
grams necessary to get a successful compile of the pro-
gram, indicating that the approach will scale to large 
programs.  However, these programs are significantly 
more complex than the example programs, exercising 
many of the ways in which C can manipulate memory.  
Our system has grown, but we do not yet cover every 
feature of the C language.  Transformations are needed 
to handle the different forms of pointers including those 
made by typedefs, and the various forms of structure 
initialization. 
     While as our system matures, we are confident that 
these forms can be handled, this situation highlights are 
potential weakness in our method – it must accurately 
recognize all variants of deferencing and indexing in C 
programs, and C is notoriously inconsistent in its 
pointer handling syntax. 

     The particular C grammar specification we use for 
transformation also suffers from some ambiguities that 
we have not resolved.  A clearer grammar definition 
will make the transformation process simpler and more 
efficient. 
     The Euclid compiler is able to remove many of the 
legality assertions using static analysis and a logic sim-
plification algorithm. As a result, the runtime overhead 
of legality assertions in Euclid programs was less than 
10%.  Our current transformation system inserts legality 
assertions at every buffer access, such as array index 
and pointer dereference.  Some of these generated asser-
tions are clearly redundant. Our current examples are 
too small to obtain a good measure of the overhead and 
we do not yet eliminate unnecessary assertions. We in-
tend to continue this work by adapting the Euclid ap-
proach along with more recent research in static analysis. 
Once we can eliminate the redundant assertions, we can 
then characterize the overhead of our approach in time 
and space. 
     A similar approach is explored by Beyer et al. [29]. 
They use model checking to improve on the approach 
taken by CCured [30].  CCured uses fat pointers and 
dynamic checking to implement pointer safety in C.  
Static analysis is used by CCured to determine which 
pointer variables must use fat pointers and if some dy-
namic checks can be removed. 
 

7. Conclusion 
 
     Buffer overflows have ranked high among security 
vulnerabilities in the past decade.  The most common 
attacks use an unchecked string copy to cause a buffer 
overrun, thereby overwriting the return address.  When 
the function returns, control is likely transferred to the 
attacker’s code.  A number of techniques have been pro-
posed to address such attacks.  Some are limited to pro-
tecting the return address on the stack only; others are 
more general, but have undesirable properties such as 
large overhead, false positives or negatives. 
     Adding legality assertions to code does not remove 
the need for testing, and can be used in conjunction with 
testing.  Penetration testing can be used to evaluate the 
effectiveness of the transformations, and the legality 
assertions can also be used to help with penetration test-
ing.  For example a test case that overflows a large 
buffer, but not sufficiently to cause an observable error 
will be flagged by the legality assertion associated with 
the buffer use. 
     The approach described in this paper uses legality 
assertions to check buffer overflows at run time.  A 
transformation system has been developed to analyze 
the input program and annotate it with appropriate as-
sertions automatically.  It saves programmer effort in 
adding assertions manually and provides a fast and con-

$ ./server 1234567 2345 
Student Number  1234567 
Port Number  2345 
Stack = bfffed6c 
server waiting 
socket = 4 
1234567 
server: getline.c:11: GetLine: Assertion 
`130 <= buffer$upper - buffer$lower' failed. 
Aborted 



venient way to help check the correctness of the pro-
gram with respect to buffer vulnerabilities.  The pro-
posed approach has been proven to be able to detect 
examples of known buffer vulnerabilities in both the 
stack and heap memory.  It has also demonstrated its 
ability to detect potential buffer overflows in library 
functions without any modification to their representa-
tion.  Runtime checking through legality assertions also 
considerably enhances the accuracy and efficiency of 
buffer overflow detection.  When an error is detected, 
the program terminates immediately, which prevents it 
from being exploited by attackers. 
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