
Benchmarks for Software Clone Detection:
A Ten-Year Retrospective

Chanchal K. Roy
Department of Computer Science

University of Saskatchewan, Canada
chanchal.roy@usask.ca

James R. Cordy
School of Computing

Queen’s University, Canada
cordy@cs.queensu.ca

Abstract—There have been a great many methods and tools
proposed for software clone detection. While some work has been
done on assessing and comparing performance of these tools, very
little empirical evaluation has been done. In particular, accuracy
measures such as precision and recall have only been roughly
estimated, due both to problems in creating a validated clone
benchmark against which tools can be compared, and to the
manual effort required to hand check large numbers of candidate
clones. In order to cope with this issue, over the last 10 years
we have been working towards building cloning benchmarks
for objectively evaluating clone detection tools. Beginning with
our WCRE 2008 paper, where we conducted a modestly large
empirical study with the NiCad clone detection tool, over the
past ten years we have extended and grown our work to include
several languages, much larger datasets, and model clones in
languages such as Simulink. From a modest set of 15 C and Java
systems comprising a total of 7 million lines in 2008, our work
has progressed to a benchmark called BigCloneBench with eight
million manually validated clone pairs in a large inter-project
source dataset of more than 25,000 projects and 365 million
lines of code. In this paper, we present a history and overview
of software clone detection benchmarks, and review the steps of
ourselves and others to come to this stage. We outline a future for
clone detection benchmarks and hope to encourage researchers
to both use existing benchmarks and to contribute to building
the benchmarks of the future.

I. INTRODUCTION

Software clones are defined to be duplicated or similar
fragments of code in a software system [1], [2]. Copying a
code fragment and reusing it by pasting with editing changes
is a common practice in software development [3], [1], [4].
Developers in fact often intentionally practice cloning because
of the underlying benefits, such as faster development, reuse
of well-tested code, or even time limits assigned to them [1],
[5]. As a result, in a given software system there typically
could be 7% to 24% cloned code [6], and in some systems
as much as 50% [7]. On the other hand, clones are the
#1 code ”bad smell” in Fowler’s refactoring list [8]. Recent
studies with both industrial and open source software show
that while clones are not always harmful and can be useful
in many ways [9], many of them can also be detrimental to
software maintenance [9], [10], [11], [12]. Of course, reusing
a fragment containing unknown bugs may result in fault
propagation, and changes involving a cloned fragment may
require changes to all fragments similar to it, multiplying the
work to be done [1]. Additionally, inconsistent changes to the

cloned fragments during any updating processes may lead to
severe unexpected behaviour [11]. Clones are thus considered
to be one of the primary contributors to the high maintenance
cost of software, which is up to 80% of the total development
cost [9].

The era of Big Data has introduced new applications for
clone detection (e.g., [13]). For example, clone detection has
been used to find similar mobile applications [14], to intelli-
gently tag code snippets [15], to identify code examples [16],
and so on. The dual role of clones in software development
and maintenance, along with these many emerging new appli-
cations of clone detection, has led to a great many proposed
clone detection tools. Some of those techniques are simply
text-based (e.g., [17]), some are token-based (e.g., [18]), some
are tree-based (e.g., [19], [20], [21]), some are metrics-based
(e.g., [22]), some are graph-based [23], [24], and some are
hybrid, for example parser-based but with text comparison
(e.g, [25]). Scalability has become an issue, and the scalability
of clone detection tools is now a major concern.

While these tools use a variety of different technologies and
intermediate representations (e.g., text, token, tree, graph and
so on), their one thing common is that they are all information
retrieval (IR) [26] methods, since they are designed to detect
and report similar fragments in software systems. The standard
for evaluating performance of IR tools is the measurement
of their precision and recall, and clone detection tools are
no exception, particularly when dealing with large software
systems. Precision measures how accurately the subject tool
retrieves only real clones (true positives) in a software system,
whereas recall measures how comprehensively the tool finds
all of the clones in the system. For an ideal tool, both precision
and recall should be high, since we would like to detect all the
real clones. Precision can be measured by manually validating
a statistically significant sample of the clones detected by a
tool. Measuring recall on the other hand requires an oracle that
knows of all the clones in a system or corpus, and evaluation of
the subject tool’s performance in detecting all of those known
clones.

Unfortunately, when we started working in this area about
ten years ago, despite a decade of active research there had
been limited evaluation of clone detection tools in terms of
precision and recall. In some cases precision was measured,
and by only manually validating a small subset of randomly

selected clones detected by the subject tools [23], [24], [21].
Recall on the other hand had not been measured at all, possibly
because of the challenges involved in creating an oracle.
Although there had been some attempts at measuring precision
and recall, along with time and space requirements, in a few
tool comparison experiments [2], [1], [27], [28] and individual
tool evaluations [29], [26], [25], they faced several challenges.
First of all, it was challenging to create a large enough base of
reliable reference data. Secondly, it was expensive to manually
validate thousands of candidate clones. And thirdly, there was
always the serious question of the reliability and subjectivity
of the (human) judges.

Because of these challenges, experiments of the time either
used no reference data [28], considered the union of some
tools’ results as an oracle by hand validating a small sample
[2], [1], [27], [29], or detected clones in only a small software
system and then manually validated the detected clones [30],
[26]. Of course, the union results of the subject tools may
still give good relative measurements of precision and recall
of the subject tools [1]. However, as Baker [31] pointed out,
when using the union results as the reference, there is no
guarantee that even the whole set of participating tools actually
detected all of the clones in the subject systems. Manually
building an oracle for a subject system or manually validating
a large sample of the detected clones is also challenging [31].
It took 77 hours for Bellon et al. to validate only 2% of
the candidate clones in their tool comparison experiment [1].
Manually oracling a small system was possible in some cases
[27], [26]. However, even when considering a relatively small
system such as Cook, and even if we consider only function
clones, we would need to examine all pairs of functions of
that system, resulting in millions of function pairs to manually
check. Even if we had the time available to do that, it would
be impossible to do so without some level of inadvertent
human error. There is also the question of the reliability and
subjectivity of the judges, which neither these experiments
nor the individual tool authors attempted to evaluate. This is
a crucial issue in evaluating clone detection tools since even
expert judges often disagree in creating clone reference data
[32]. Another important aspect is the capability of dealing
with different types of clones, in particular, Type 3 or “near-
miss” clones, where there could be statement level differences
between the cloned fragments, where statements could be
added, modified or deleted from the reused pasted fragments.
At the time, there were no tool evaluations except Bellon et al.
and Falke et al. [29] that reported precision and recall values
for different types of clones.

In this paper, we present a retrospective view of benchmarks
for software clone detection tools over the last ten years.
We begin with our empirical study on detecting function
clones published at the 15th Working Conference on Reverse
Engineering (WCRE 2008), analyze the impact of that study
in creating benchmarks for clone detection, and then provide
a road map of how we extended and scaled the techniques of
that paper to one of the largest benchmarks in software clone
detection research today, with more than eight million man-

ually validated clone pairs in a large inter-project repository
of 25,000 Java projects. We then conclude with our vision for
creating even better benchmarks for software clone detection
in the future.

The rest of this paper is organized as follows. We begin with
clone detection and benchmark related terminology in Section
II. We then provide a summary of our WCRE 2008 paper
and its extended journal version, and demonstrate the overall
impact of that work on cloning research and benchmarking
in Section III. In Section IV we then provide how different
cloning benchmarks evolved over time to its current form.
We outline what we have learned about how benchmarks for
clone detection should be created in Section V along with our
suggestions for future research directions. Finally, Section VI
concludes the paper.

II. BACKGROUND

We begin with a basic introduction to clone detection and
benchmarking terminology [1], [2].

A. Clones

Definition 1: Clone Types. There are two main kinds of
similarity between code fragments. Fragments can be similar
based on the similarity of their program text, or they can be
similar based on their functionality (independent of their text).
The first kind of clone is often the result of copying a code
fragment and pasting into another location.

• Textual Similarity: We distinguish the following types of
textually similar clones:

– Type 1: Identical code fragments except for varia-
tions in whitespace, layout and comments.

– Type 2: Syntactically identical fragments except for
variations in identifiers, literals, types, whitespace,
layout and comments.

– Type 3: Copied fragments with further modifications
such as changed, added or removed statements, in
addition to variations in identifiers, literals, types,
whitespace, layout and comments.

• Functional Similarity: If the functionality of two code
fragments is identical or similar, we call them semantic
or Type 4 clones.

– Type 4: Two or more code fragments that perform
the same computation but are implemented by dif-
ferent syntactic variants.

B. Clone Detection

Definition 2: Clone Pair. A pair of code portions/fragments
is called a clone pair if there exists a clone-relation between
them, i.e., a clone pair is a pair of code portions/fragments
which are identical or similar to each other.

Definition 3: Clone Class. A clone class is the maximal
set of code portions/fragments in which any two of the code
portions/fragments hold a clone-relation, i.e., form a clone pair.
A clone class is therefore, the union of all clone pairs which
have code portions in common [7]. Clone classes are also
known as clone groups, or clone communities [22].

Fig. 1. Definitions for Precision and Recall in Clones

C. Benchmarking

Since clone detection is at its root an information retrieval
(IR) problem, the performance of clone detection tools is typ-
ically measured using the standard IR based metrics, namely
precision and recall. Precision reflects how well a clone
detection tool detects actual clones from a subject system. It is
the ratio of the actual clones detected by tool T from software
system S with the total number of candidate clones reported
(either true positives or false positives) by the tool, as shown in
Eq. 1. A clone detector could falsely report two code fragments
as a clone pair (false positives), and/or could indeed detect two
code fragments as a clone pair that are actually similar (true
positives). The tool could even fail to detect some actual clone
pairs (false negatives) from the subject system. Figure 1 shows
a system with many similar fragments (actual clones, indicated
by solid fragments). Given an oracle for the actual clones A
of a system S, and a set of candidate clones C detected by a
given tool T, only the common set D are accurately detected
clones.

Definition 4: Precision.

precision =
|Actual clones in S detected by T (D)|
|Candidate clones in S reported by T (C)| (1)

A tool should be sound enough that it detects only a small
number of false positives, i.e., it should find duplicated code
with high precision.

Definition 5: Recall.

recall =
|Actual clones in S detected by T (D)|
|All actual clones in system S (A)| (2)

A tool should be comprehensive enough that it detects the
great majority (or even all) of the clones in a system, i.e., it
should have a high level of recall.

Often, duplicated fragments are not directly textually simi-
lar, as editing activities on the copied fragments may disguise
their similarity to the original. Nevertheless, a clone-relation
may exist between them. A good clone detection tool will be
robust enough in identifying such hidden clone relationships

Fig. 2. Word cloud of the titles of articles citing the WCRE 2008
paper

that it can detect most or even all the clones in a subject
system. The recall measurement reflects this as the ratio of the
actual clones detected by a tool T from a software system S to
all of the actual clones of S (Eq. 2). A major challenge in the
clone detection community is the lack of a reliable benchmark
(i.e., a reliable set of actual clones A for the subject system S
in Figure 1).

III. THE WCRE 2008 PAPER AND ITS EXTENSION: AN
OVERVIEW

Our work in clones began with a comprehensive survey
of the clone detection literature in 2007 [1]. In that study
we noticed that while there had already been a great deal
of work in clone detection and analysis, there was a marked
lack of work in near-miss clone detection, benchmarking and
analysis of clone detection tools. As proposed in some earlier
studies [24], we suspected that there might be more Type 3
near-miss clones in software systems than Types 1 and 2.
Thus we first focused on developing a clone detection tool
that could accurately detect near-miss clones. In particular,
we proposed a new hybrid clone detection tool, NiCad [25],
designed to combine the strengths of both text-based and
parser-based clone detection techniques in order to overcome
their limitations. In order to evaluate our new method, we
then began exploring our second goal, the empirical evidence
of near-miss clones, concentrating in particular on near-miss
function clones in open source software, the subject of the
WCRE 2008 paper and its extended journal version.

Using our new NiCad clone detection tool, we examined
the clones of 15 open source C and Java systems, including
the entire Linux Kernel and Apache httpd. Although NiCad
was originally designed to allow extensive code normalizations
for reducing gaps between fragments, flexible filtering for
removing unnecessary code statements (e.g., declarations) and
flexible pretty-printing, in the WCRE 2008 work we intention-
ally used the basic version of NiCad. We aimed at finding exact
and near-miss intentional function clones, clones that appear
because of copy/paste followed by adaptation to context by
adding, deleting and/or modifying statements. We analyzed
the use of cloned functions in those subject systems in several
different dimensions, including language, clone size, clone
location and clone density by proportion of cloned functions.

Fig. 3. Pie chart of the most frequently used words in articles citing
the extended article

Because Bellon’s experiment [2] was the most extensive to
that point, we chose to analyze all of the C and Java systems
of his experiment, including the systems used in his test runs,
and added Apache httpd, JHotDraw, the entire Linux Kernel
and a number of small systems. We manually validated all
of the detected clones using a two-step process. First, we
used NiCad’s interactive HTML output of the detected clones
to manually examine an overall view of each of the clone
classes. Then we used NiCad’s XML output to do a pairwise
comparison of the original source of the cloned fragments
of each of the reported clone pairs using Linux diff. This
diff-based comparison helped us to relate the reported clone
pairs to the textual similarity of the original source, and we
manually checked all reported clone pairs with lower original
text similarity. With the help of the interactive HTML view and
the tool support for comparing original source, we were able
to do the validation of all NiCad’s reported clones in less than
one man-month. In order for others to use the validated clones,
we provided a complete catalogue of the detected clones in an
online repository in a variety of formats.

Since its original publication, the original WCRE 2008
article has been widely cited in the cloning community and
beyond, and it currently has more than 100 Google Scholar
citations. In order to have a quick overview of the cited articles
we extracted the titles of the papers and generated a word
cloud (Figure 2). In order to better expose words related to
the actual applications, we first removed high frequency but
common words such as “software”, “code” and “clones”.

The paper has been widely cited in different areas of cloning
research and beyond, such as clone detection [33], [34], [35],
[36], [37], [38], [39], proactive cloning and their management
[40], [41], [42], [43], clone analysis and empirical studies
[12], [44], [45], [46], [47], [48], [49], [50], evaluation of
clone detection tools [51], [52], [53], reusing of code in
Android market [54], refactoring recommendations of clones
[55], porting of scientific applications [56], code obfuscation
[57], execution trace analysis [58], process improvement [59],
porting OpenMP applications [60], fault handling in WS-
BPEL [61] and so on.

In an invited special journal article [6], we then extended the
original WCRE study with more open source systems in three
different languages, C, Java and C#. As in the original WCRE
2008 study, we manually validated all the detected clones and
provided a complete catalogue of those clones in an online
repository in a variety of formats. The extended version has
been widely cited as well. Figure 3 shows a pie chart of the
most frequently used words in the titles of the papers citing
the extended journal version.

IV. THE EVOLUTION OF CLONE DETECTION
BENCHMARKS

A. A Short History

Benchmarks are essential to objectively evaluating and
comparing clone detection tools. While the precision of a
tool can be measured by manually validating a statistically
significant sample of the detected clones, measuring recall is
more challenging, requiring an oracle with knowledge of all of
the clones in a system (see Section II). While there are many
ways that such an oracle could be created, little was available
in terms of clone oracles when we began our clone detection
research in 2007. Despite a decade of active clone detection
research, there was only one notable benchmark available, the
Bellon et. al. benchmark [2]. This benchmark provided a great
first start towards building cloning benchmarks for comparing
and evaluating clone detection tools, and has been widely used
over the years [1].

However, as noted in Section III there was a marked lack
of representative Type 3 (near-miss) clones, which motivated
us to conduct empirical studies for near-miss clones using our
NiCad clone detection tool. A result of those studies was a set
of thousands of hand-validated function clones (see Section
III for details). Unfortunately, while they included many Type
3 near-miss clones, our reference data also suffered from
limitations similar to Bellon’s [31]. Similarly to Bellon, we
used the opinion of existing clone detection tools (in our case
NiCad) to provide the clones to be validated, and the hand
validation was based solely on one individual’s judgement (the
first author of this paper).

Based partly on our observations in the WCRE 2008 ex-
periment, in 2008 we proposed a fine-grained taxonomy of
clone types based on editing operations [62] within which
differences between tools and techniques could be better
understood. We surveyed the literature to study the complete
range of patterns of detected clones, and designed a covering
set of editing operations to explain the creation of clones
from originals. This taxonomy allowed us to explain the full
range of possible intentional copy/paste clones as sequences of
editing operations, and every Type 1,2, or 3 copy/paste clone
can be explained as a combination of these operations.

This taxonomy opened up to us a new strategy for objective
evaluation of clone detection tools. By treating the editing
operations as mutation operators, we could generate any
number of pre-validated clones in a system by automatically
copying and pasting fragments of code, applying our editing
operations to generate a clone, and injecting the clone back

into the original system. Moreover, because we knew which
editing operations had created the clone, we knew exactly what
kind of clone (Type 1,2, or 3) each generated clone was.

Based on this idea, we designed a mutation/injection-based
framework for automatically evaluating the recall of clone
detection tools [52] and began experimenting with fine-grained
evaluation of NiCad and other tools. This method proved very
effective, and we conducted a number of experiments using the
technique [63], [64], including extending it for model clone
detectors using graphical edit operations [65].

While the mutation/injection method has been a great first
step towards overcoming some of the limitations of existing
benchmarks, the validated clones were artificially created, and
while they are modelled after observed edit paths for real
clones, there is no guarantee that the recall measurements
provided by this framework reflect the true recall of clone
detection tools in practice.

For this reason, there have been continuing efforts to create
new benchmarks from naturally existing clones, including
extending Bellon’s benchmarks with validated Type 3 clones,
and our own efforts to build large scale benchmarks. The
largest of these is our benchmark BigCloneBench [66], which
has more than eight million manually validated clone pairs
created using a search-based approach. In the following we
provide executive summaries of the most extensive current
benchmarks, highlight their strengths and weaknesses, suggest
ways to address these weaknesses, and outline how clone
benchmarking research has evolved over time.

B. Bellon’s Benchmark

Bellon et al. [2] were the first to propose a comprehensive
benchmark for comparing and evaluating clone detection tools.
In 2001-02, Bellon conducted a tool comparison experiment
[67] with the help of six other clone detection researchers,
each of whom had their own clone detection tool. The six
participating tools were the text-based Duploc [68], [17], the
token-based Dup [69] and CCFinder [18], the abstract syntax
tree-based CloneDr [19], the metrics-based CLAN [22], [2],
and the program dependency graph-based Duplix [24]. Bellon
provided four C and four Java programs and the tool authors
detected clones using their tools and returned the results to
Bellon. A total of 325,935 clone pairs were submitted, and
Bellon manually validated a random 2% of those clones to
build a reference corpus. From this process, he obtained 4,319
known actual clones (according to his personal judgement)
by manually examining 6,528 randomly selected clone pairs
from those submitted, spending about 77 hours. To avoid
tool bias, Bellon was unaware of which participating tools
detected which clone pairs. The precision of the tools was
then measured as the ratio of the validated actual clones of
the corpus detected by a the tool to the entire set of candidate
clones it reported. Recall was measured using all of the 4,319
validated actual clone pairs as oracle, and measuring what
proportion of those were detected by each tool. Bellon also
released all of the associated scripts and software for using

the benchmark, so that the experiement could be repeated and
the validated corpus used to evaluate new clone detection tools.

Bellon’s has been one of the most widely used benchmarks,
and there have been several extensions to it as well [70], [64].
There are however several inherent limitations of the Bellon
benchmark. For example, in another experiment, one of the
participating tools, Dup [31] was used to analyze the findings
of Bellon’s benchmark. It was found that there were significant
inconsistencies for different types of clones, and that there may
have been issues with the manual validation since the valida-
tion procedure was not exposed. It was noted that while Bellon
et al. had done a great job, an update of the reference corpus
was essential. There have been also empirical assessments of
the Bellon benchmark. For example, Charpentier et al. [71]
also found disagreements in the different types of clones when
they were judged by multiple independent judges. In a more
recent experiment [72], they also found that the judgements
of non-experts could be potentially unreliable. Of course, this
is no surprise, since subjective disagreement is an inherent
problem in clone detection.

Even with the validated corpus of known clones, measuring
precision for a new tool using the Bellon benchmark is not
straightforward. Because the set of known clones was based
only on those detected by the original set of six participating
tools, precision is relative to their capabilities and thus only
meaningful for that original six. To meaningfully measure the
precision of a new clone detection tool, one needs to extend
Bellon’s benchmark with the new clones detected by that
candidate tool, and hand validate a corresponding subset of
those. Measuring recall for a new tool is also problematic
using the Bellon framework. Since the reference corpus was
built using clones from six clone detectors, they are in a more
favourable position in the recall measurements than the new
tool. In order to have relative recall between the tools, it
is important to validate clones from the new tool and add
those validated ones to the corpus as well, so that the new
tool has some of its own representatives in the benchmark.
This would possibly give better relative recall of the tools
including the new one. In one of our recent studies [64] we
showed that this is definitely the case, and a new tool is
at a distinct disadvantage when using the Bellon framework.
We also experienced challenges in validating clones from the
new tool. Clearly the validation procedure of Bellon et al.
should be followed, but that procedure is unfortunately both
subjective and not well documented. This was also observed
in Baker’s analysis of Bellon’s study [31]. Furthermore, the
benchmark is inherently biased by the capabilities of the
original participating tools, and for that reason the reference
data have few or no representative of the types of clones that
the participating tools could not detect - in particular, certain
kinds of Type 3 clones.

In an effort to at least partly overcome some of the chal-
lenges and limitations of the Bellon benchmark, in 2009 we
designed the mutation/injection-based framework for automat-
ically evaluating clone detection tools that we describe next.

C. A Mutation/Injection-Based Framework

As explained in Section II, accurate evaluation of the
precision and recall of a clone detection tool requires an oracle
that can serve as a reference for the actual clones to be detected
in a system. This is challenging for several reasons [31]:

1) Oracling a systems is effort intensive, since it involves
manually validating all possible pairs of code fragments
of the subject system (e.g., for a system with n frag-
ments, one would need to validate n(n − 1)/2 pairs,
resulting in millions pairs to validate even for small
systems),

2) Validating one or only a few systems may not be enough,
since they may lack a sufficient number or variety of
clones,

3) The validation procedure is itself a subjective process,
and there are often disagreements [71], and

4) There is in fact no crisp definition of code clones,
which can depend on the particular use case of a clone
detection user.

Bellon’s was the first real attempt to build a benchmark,
but it suffers from all of these limitations, as discussed in
Section IV-B. In fact, it is likely impossible to have a true
clone oracle for any real system, because there will always
be subjective bias. For this reason, in 2009 we proposed the
idea of artificially generating realistic clones, using mutation
analysis to build an artificial clone benchmark [73], [52].

Our mutation/injection-based framework maps our compre-
hensive taxonomy of clone editing operations [52], [74] to a
set of code mutation operators, each of which applies a known
editing operation to generate a new clone from a given code
fragment. These artificial fragments are then injected into the
code of the original system, yielding a new set of artificial
clones of known clone type (i.e., Type 1, 2 or 3). The precision
and recall of a clone detection tool can then be evaluated, for
either all clones or each individual clone type, with respect to
its ability to detect these known, pre-validated artificial clones.

This mutation-based framework was intended to overcome
each of the challenges above. First, we attempted to overcome
the vagueness in clone definition by proposing an editing
taxonomy of clones, enumerating the different ways that
a developer could intentionally copy, paste and adapt an
original code fragment. The taxonomy essentially mimics the
copy/paste/edit behaviour of developers in software develop-
ment, which we can agree represents the creation of at least
some of the clones that all tools are interested in (addressing
challenges 1 and 4 above). Because it is automatable, the
mutation/injection-based approach can be used to generate
thousands of randomly artificial clone pairs and inject them
into the subject system one at a time, providing thousands of
pre-validated clone oracles for each of the pairs (addressing
challenges 1 and 3). Furthermore, the procedure can be au-
tomatically repeated for any system, to build any number of
artificial benchmarks automatically (addressing challenge 2).

To implement this strategy, the framework has two main
phases, Generation and the Evaluation. In the Generation

phase, we use a set of mutation operators based on the editing
taxonomy to generate a set of cloned fragments using TXL
[75]. A set of original code fragments is selected from a
code base consisting of a collection of real systems. For each
of these original code fragments, we generate a large set of
mutated fragments using the mutation operators. Each original
code fragment forms a clone pair with its mutated version. In
this way, we create thousands of mutated clone pairs, which
are then injected into the subject code base one at a time,
generating thousands of mutated versions of the original code
base each with at least one known clone pair (the injected
one). These form the oracle for evaluating the subject clone
detection tool(s) in the Evaluation phase. The current version
supports only function and block granularity clones for the
Java, C and C# languages. However, it can easily adapt to
any new language just by adding a TXL-based lightweight
grammar for the language.

While the mutation/injection-based framework does address
the major issues to some extent, it does suffer from its own
limitations. For example, while the editing taxonomy was
derived from observed real clones and validated to cover all of
the kinds of clones found in a small set of systems, it may not
describe all of the kinds of clones that we may be interested in.
In particular, it may not fully reflect real clones, and the code
fragments randomly selected for clone generation may not be
representative of those a developer may choose for cloning
in real software development. Furthermore, it cannot generate
Type 4 clones. Randomly applying editing mutations also
may not generate a realistic distribution of different kinds of
clones, which may vary widely depending on the programming
language and application domain.

The current version of the framework has been used to
evaluate several state of the art clone detectors [64]. However,
there is no guarantee that all clone detectors could be validated
using this framework. For example, the clone detectors that re-
quire fully compilable code may not work with the framework.
The framework guarantees that the mutated and injected code
is syntactically valid. However, it cannot guarantee that the
modified source files will compile. Finally, combining editing
mutations can be problematic, because we do not know how
many changes can be made before a code fragment stops being
a clone. For this reason, our evaluation framework limits each
artificial clone to a single mutation (which does however have
the advantage that we know which type of clone it is).

D. Adaptations of the Mutation/Injection Framework

The mutation/injection framework was designed to be ex-
tensible with plug-in custom mutation operators. Thus it is
possible to design any sort of mutation operators for synthe-
sizing any type of clone for recall (and possibly precision)
measurements. For example, recently we adapted the frame-
work for evaluating very large Type 3 gapped clone detectors
[76]. By very large gaps we mean that after copying a code
fragment a developer might insert a sequence of several new
code statements to adapt to the new context. This sequence
essentially creates a very large single gap in the pasted code

fragment. We found that there are many such large gapped
clones in software systems, and there have been no clone
detectors for detecting such clones. We developed such a clone
detector, CCAligner [76], and evaluated it with the extended
mutation framework. The mutation/injection framework has
also been successfully adapted to evaluating clone detectors
in software product lines [77] and Simulink models [65].

In software development, particularly in large organizations,
similar software products known as software variants can
emerge in various ways. We have extended and adapted the
original framework for generating artificial software variants
with known similarities and differences in the ForkSim [77]
tool. Using ForkSim, we can generate thousands of variants of
a software product similar to the way that we make thousands
of mutants in our mutation framework. These variants can be
used not only to automatically evaluate the recall of product
line detection tools but also to semi-automatically measure
their precision. In fact, they can be used in any research on the
detection, analysis, visualization and comprehension of code
similarity among software variants. Similarly to our original
framework, ForkSim suffers from the same limitations outlined
in Section IV-C.

Given the increasing use of model-driven engineering in
software development and maintenance, there have been sev-
eral model clone detection techniques and tools proposed
in the literature. As for source code clone detectors, there
has been also a marked lack of objective evaluation of such
tools. To help address this issue, based on an analogous
editing taxonomy and mutation operators for Simulink models,
Stephan et al. [78], [65] have proposed a mutation/injection-
based framework for objectively and quantitatively evaluating
and comparing Simulink model clone detectors. Like our
original framework, this framework is subject to the limitations
discussed in Section IV-C.

E. Adaptations of Bellon’s Benchmark for Type-3 Clones

Murakami et al. [70] proposed an updated version of
Bellon’s benchmark including location information for gap
lines. They argue that because it is missing such location
information, the benchmark can incorrectly evaluate detection
of some Type 3 clones. By adding location information for
embedded gaps, they showed that the augmented dataset can
more accurately evaluate Type 3 clone detectors. In the original
Bellon dataset, code clones are represented by file name and
the start and end line numbers of the code fragment. Murakami
et al. added line numbers for gap lines to this data, and
were able to show different and possibly better results for
three Type 3 clone detectors, namely NiCad, Scorpio [79] and
CDSW [80]. By ignoring the identified gaps in the evaluation,
they observed that for NiCad the number of detected clones
did not really change, but for CDSW, the number of clones
detected increased in nearly half of the cases, while Scorpio
produced more interesting results. They found that the number
of detected Type 3 clones also varied with the subject system -
for example, it increased for netbeans but decreased for some
others.

In another experiment [64] with Murakami’s extension, we
found that ignoring gap lines had minimal impact on the
tools’ measured Type 3 recall. With only two exceptions,
we found that participating tools’ Type 3 recall showed an
absolute change of no more than ±1.5% when ignoring gap
lines as compared to Bellon’s original metrics. Exceptions
were CPD’s Type 3 recall for Java (an absolute increase
of 7.2% in ok results), and iClones’s Type 3 recall for C
(an increase of 3.7% in good results). Like Murakami, we
observed that ignoring gap lines has little or no effect on
NiCad’s measured recall. However, we found different results
for the Type 3 recall of Scorpio and CDSW, possibly due to
differences in how Scopio’s element-list results were converted
to line numbers. Overall, Murakami et al.’s Type 3 extension
of Bellon’s benchmark had little effect on evaluation in our
experiments, although it can be used to better evaluate clone
detection tools that report gap lines in their reported clones.

F. Avoiding Subjective Bias in Benchmarks Using Real Clones

As noted in Section IV-B, one of the problems with hand
validating clones in clone benchmarks such as Bellon’s is the
potential for subjective bias of the validator [31], [71], [1],
[32]. While a mutation-based framework can partly overcome
this by automatically generating clones, the generated clones
are nevertheless artificial and may not be representative of
real clones. In our recent studies we also found that in some
cases artificial clone references actually had negative effects
on accuracy measurement [64]. In an attempt to address both
these issues, Yuki et al. [81] have proposed a reference corpus
of real clones with less subjectivity by automatically mining
intentional clones from the revision history of a software
system. In particular, they identified cloned methods that
have been removed by software developers in past revisions
using the merged method refactoring. Such refactoring is an
indication that the developers took action to merge the two
methods, a strong indication that they may have been real
clones. While there may be other clones in the revisions,since
the developers chose not to refactor them, they may not be
as important. Thus a clone benchmark capturing historically
refactored clones may reflect the importance of those clones
to software developers, and clone detection tools can be more
realistically evaluated using such a benchmark.

Since subjectivity in clone benchmarking has been a major
threat [31], [71], at least for the cases when the validators are
not the developers of the chosen subject systems [72], Yuki
et al.’s benchmark has potential. It has been objectively built
from refactored clones observed in actual practice, and thus
there can be no human subjectivity or biases involved, one
of the biggest strengths of this kind of benchmark. However,
there are concerns as well. For example, it is difficult to build
a reasonably sized benchmark using this technique. Although
they analyzed more than 15,000 revisions across three software
systems, Yuki et al. were only able to find 19 such refactored
clone pairs, which is far too few to meaningfully evaluate
clone detectors. Evaluations using such a small benchmark are
unlikely to be reliable. Moreover, the benchmark only captures

those method clones that have been refactored. There may be
many more clones in the systems that the developers are aware
of but intentionally chose not to merge because refactoring was
not possible or not needed [82], [3]. In addition, some human
judgement is still necessary to validate the similarity between
merged candidate instances and the removed pairs.

G. Benchmarks for Functionally Equivalent Clones

Since a majority of clones are not textually or even syn-
tactically identical, there is also a need for clone benchmarks
that can evaluate clone tools to detect other types of clones,
including Type 4 (functionally equivalent) clones. Krutz and
Le [83] have proposed a benchmark consisting of a set of
clones created using a mixture of human and tool verification
to provide high confidence in clone validation. They chose
three open source software systems, Apache, Python and
PostgreSQL, and randomly sampled a total of 1,536 function
pairs. Then they recruited three clone experts and four students
who have programming experience in validating function clone
pairs. In order to have further confidence in the validation, they
also made use of four clone detection tools, SimCad [84],
NiCad [25], MeCC and CCCD. In total, they validated 66
clone pairs of different types (43 Type 2 clone pairs, 14 Type 3,
and nine Type 4) to form a benchmark from the 1,536 function
pairs. This seems to be one of the best ways of creating
real clone benchmarks, since the authors selected the function
pairs randomly and validated manually several different ways,
including multiple clone judges. However, the procedure is
both time consuming and challenging. 66 clone pairs is a
very small sample, which may not be representative of the
proportion and distribution of real clones of the different types
in the software systems. Given the large amount of expert time
required, the method is also difficult to scale to the thousands
of clones required for a statistically significant benchmark.
And finally, because they used a set of existing clone detection
tools to assist in their judgements, like Bellon’s, the benchmark
could be skewed to the participating tools.

H. Automatic Approaches to Building Large Type 3 Bench-
marks

To address the scale issue, there have been attempts to
automatically build large Type 3 clone benchmarks. Lavoie
and Merlo [85] consider that a good benchmark should have a
precise definition of code clone, should be able to include large
enough systems, and should be able to be built automatically.
With these objectives in mind, they propose a Levenshtein
distance metric to automatically build Type-3 clone bench-
marks. In order to provide a precise definition, they used the
Levenstein metric as ground truth, defining only those pairs
with a normalized Levenstein distance of less than 0.3 to be
true clones. In this way the authors attempted to avoid both
the extensive human effort and the subjective bias introduced
by manual validation. Since the method is automatic, it can
scale to benchmarks built from systems with millions of lines
of code. Furthermore, since the approach can investigate all
possible pairs in a system, the precision of subject tools can be

measured automatically as well. Of course, the major threat to
this benchmark is its reliance on Levenstein distance to define
ground truth. One could argue that Levenstein distance is
simply another clone detection method, and thus not reliable. It
also suffers from some of the challenges to other benchmarks
outlined above. However, since in order to scale most clone
detection tools do not use computations as costly as Levenstein
distance, this large benchmark can be still useful for evaluating
the recall and precision of clone detection tools, at least on a
relative scale.

Tempero [86] automatically constructed a clone benchmark
of over 1.3 million method level clone pairs from the 109
different open source Java systems in the Qualitas Corpus,
totalling approximately 5.6 million LOC. A clone detection
tool, CMCD [36], was used to validate the benchmark, without
any manual evaluation. Like the Lavoie and Merlo work above,
this benchmark depends on the opinion of one clone detection
method as oracle, and thus has all the same drawbacks.
Nevertheless, this very large corpus can still be useful in
relative evaluation experiments for other tools.

I. Large Inter-project Benchmarks with Functionally Equiva-
lent Clones: BigCloneBench and BigCloneEval

The era of Big Data has spawned both new challenges and
new opportunities for clone detection, including searches for
clones across thousands of software systems. Recently Big
Data-based clone detection and search algorithms have been
proposed, but we lack for corresponding new benchmarks suit-
able to evaluate such emerging techniques. We have recently
shown that previous leading benchmarks, such as Bellon’s, can
not be appropriate for evaluating more modern clone detection
tools [64]. Our own mutation/injection-based framework also
has two major issues in the context of Big Data applications:

1) It only creates artificial clones, which may not reflect
real clones, and

2) Since it re-analyzes a subject system (with only one
injected clone pair each time) thousands of times, it may
not scale to work with truly large inter-project systems.

Thus we have built (and are still building) the Big-
CloneBench [66], [90], [89], a large inter-project clone bench-
mark, which currently has more than eight million manually
validated clone pairs in more than 25,000 Java projects (365
million LOC). In this work we have attempted to avoid one
of the major challenges in building benchmarks, the use of
clone detection tools themselves creating the benchmark for
evaluating them. Instead of using clone detection tools, we use
Big Data search techniques to mine the inter-project repository
for clones of frequently used functionalities (e.g., bubble-sort,
file-copy, and so on). We make use of search heuristics to
automatically identify code snippets in the repository that
may implement a target functionality. These candidate code
fragments are then manually tagged by clone experts either
as true or false positives for the target functionality. The
benchmark is then populated with all of those true and false
positive clones of different functionalities. Each of the clone

pairs is further classified as Type 1, 2, 3 or 4 based on their
syntactic similarity.

By construction BigCloneBench includes all four types of
clones, including Type 4 clones. Since there remain disagree-
ments on the minimum syntactic similarity of Type 3 clones, it
has been a challenge to separate Type 3 and Type 4 clone pairs
that implement the same functionality. In order to partially
address this problem, we further classified Type 3/4 clone pairs
into four different categories based on their syntactic similarity
[66]:

1) Very-Strongly Type-3, with a syntactic similarity in the
range 90% (inclusive) to 100% (exclusive),

2) Strongly Type-3, with syntactic similarity in the range
70-90%,

3) Moderately Type-3, with syntactic similarity between 50-
70%, and

4) Weakly Type-3/Type-4, with syntactic similarity below
50%.

The current (second) version of the benchmark includes
more than eight million clone pairs for 43 distinct functional-
ities. We have used the benchmark in several tool evaluation
studies [64], [87], [88], including and evaluation of tools for
large-scale clone detection [87], [88], [76]. We have released
an evaluation framework, BigCloneEval [89], which fully
automates the recall evaluation of clone detection tools using
BigCloneBench. We also released experimental artifacts that
enable the comparison of execution time and scalability [87],
[88], [90].

This benchmark has a number of strengths. It has all four
clone types, including fine-grained classifications of Type 3/4
clones, and it includes intra-project and inter-project clones
scattered across more than 25,000 software systems. This
benchmark can thus be used to evaluate both Big Data clone
detectors and classical detectors, and all different kinds of
clone detectors, including semantic (Type 4) clone detectors.
It does not use any clone detection tools in building the
benchmark, so the tool-specific bias has been overcome in this
benchmark. It also partially avoids the subjective bias of clone
validation, since the validation process is indirect and guided
by strict specifications. However, there are still limitations to
this benchmark. For example, while subjectivity is minimized,
the ultimate decision of whether two code fragments form
a clone pair is still decided by human judges, and different
judges may have different opinions, in particular because we
have a wide range of similarities. Further, the clone candidates
are limited to the 43 distinct functionalities we reported, which
may or may not be representative of all cloned functionalities.

V. DISCUSSION AND FUTURE RESEARCH DIRECTIONS

As we’ve seen in the previous section, there are many
ways one can build a clone detection benchmark, and the
limitations and strengths of each benchmark depend on how
it was created. There are also many challenges involved in
building a benchmark. One of the most popular and widely
used methods of creating benchmarks is to use the clone
detection tools themselves as oracles, as was done in Bellon’s

original benchmark. This is one of the easiest ways to create
a benchmark, since one can simply union the results of the
tools and consider the unioned results as an oracle, but it has
a number of problems. The participating tools are presumed
to have perfect precision, and thus false positive clones can
be added to the benchmark, which can hurt the recall of
the subject clone detection tools during the evaluation. The
approach can also be missing many true clones that none of
the participating tools were able to detect. For this reason,
this kind of benchmark is not suitable for measuring precision,
because the subject tool may detect some actual clones that
the benchmark considers to be false positives. Of course,
Bellon took several measures to at least partially mitigate these
issues (Section IV-B) but many of these challenges remain, as
outlined by Baker [31] and others, including our own recent
studies [64], [72].

Injection of either natural or artificial known clones into
software systems is another way of building clone benchmarks.
It is also possible to intentionally create new clones in software
systems and use those new clones for benchmarking. Instead
of mining the clones using some means (e.g., using the clone
detectors), one can create and inject new clones and thus
can make as many clones and types of clones as they want.
However, as also noted by Bellon et al., when done by hand
this process is very effort intensive and can only be used to
make small benchmarks. Instead of manual injection, one can
artificially create clones and inject them into the systems. This
however has the problem that the clones are not real, and
if too many artificial clones are injected into the systems,
inaccurate evaluation can result. In our mutation/injection-
based framework [63], [73], [52], we attempted to overcome
this using a mutation-based technology, injecting one clone at
a time into the software system and attempting to detect that
single clone pair using the subject tool, randomly repeating
the process thousands of times. However, as noted in Section
IV-C, this process has several limitations, including the lack of
real clones and potential performance problems when injecting
clones into very large systems. Of course, this limitation
depends on whether the subject tool is fast enough to rapidly
detect clones in a large code base.

Validation by manually inspecting all the possible clone
pairs of a subject system is possibly the most obvious method.
One could consider examining each and every possible clone
pair in a system and add the validated clones to the benchmark.
Since subjective bias is an issue, multiple clone experts can
also be used to validate the same clone pairs. However, as
noted earlier, this method is very effort intensive since even for
a small system which may only have 1000 code fragments of a
target granularity (e.g., functions), one would need to manually
verify (1000*999)/2, or about half a million clone pairs. One
possible solution to this is to select a statistically significant
random sample of possible clone pairs and then verify them
with multiple experts, as is done by Krutz and Le [83]. How-
ever, one may not find enough true clone pairs in the randomly
selected set. For example, Krutz and Le found only 66 clone
pairs in their experiment. Another promising solution could

be to use a functionality-based search heuristic that is distinct
from clone detectors as we have done for BigCloneBench,
and to manually verify all the detected candidates. Using a
search targeting similar intended functionalities, the validation
process is greatly simplified. However, it still has some of the
common problems, as discussed in Section IV-I.

To build future benchmarks, one could possibly begin with
combinations of these approaches, based on their context.
For example, one could begin with Bellon’s approach of
manually validating a significant sample, and possibly address
the subjective bias issue by having multiple judges, using
tool support in the manual validation process as suggested by
Baker. Making use of Levenshtein distance [85] in the manual
validation process may greatly improve efficiency and thus
more clones could be validated error-free. Since each of the
benchmarks has its own strengths and weaknesses, one could
combine the different methods to build a benchmark on the
same dataset. For example, we could use the functionality-
based search heuristics approach combined with an automated
means of validation. We have been exploring for example
using machine learning approaches [91], [92] to validate
clones. Once a large sample of clone pairs from a variety of
domains has been manually validated (as in BigCloneBench),
one could apply machine learning techniques to learn their
features and develop models for automatic classification of
new clone pairs. If this process is successful and can be made
scalable, a large sample of clone pairs could be validated
automatically using a small fraction of the required human
validation.

We also need to consider several important features of an
ideal benchmark. First and foremost, a benchmark should be
publicly available, and preferably free. This is essential not
only for adaptation of the benchmark to other languages and
systems, but also for repeatability and extension of evaluation
experiments. Another major requirement is that a benchmark
should be extensible by the community. While an ideal bench-
mark would not need such extensions, in practice such a
perfect general benchmark is impossible to create. For this
reason, it is also essential that the benchmark authors provide
good documentation and use scenarios, and demonstrate the
evaluation procedure with multiple clone detection tools. Of
course, the benchmarks themselves should also be evaluated
in order to have confidence on their accuracy. As discussed
above, for various reasons most benchmarks are possibly not
accurate. It is also important that a benchmark contain multiple
software systems of different languages, varying system sizes
including ultra large repositories, and different application
domains. A good benchmark should have clone representatives
of all four clone types, and in particular includes clones of
Types 3 and 4. Clones should be validated using a repeatable
standard procedure, either fully manually with one or more
experts, or using a combination of experts and tool support, or
using an artificial means that offers high confidence. Another
important thing to consider is the use case scenario of the
benchmark. In clone detection the right answer depends a
lot on the intended use of the results, and there is a need

for task-specific benchmarks which can discriminate between
tools designed for different use cases. Benchmarks aimed at
specific scenarios of use, for example refactoring, can also
be more easily validated. Of course, it is important that a
benchmark contains different types, sizes, granularities (e.g.,
arbitrary statements, block, functions and so on) and function-
alities of clones. For example, in BigCloneBench, we we have
millions of clones for more than 40 distinct functionalities
from thousands of subject systems, containing a wide variety
of clones of all four clone types. A wide range of clones
is essential for accurately measuring the recall of a clone
detection tool. Finally, there should be a large number of
validated clone pairs (possibly also clone classes), preferably
in the thousands or more, in order to guarantee statistical
significance of the evaluation results. Some further details can
be found elsewhere as well [93].

VI. CONCLUSION

When we began our work on benchmarking for code clone
detectors with the original WCRE 2008 paper ten years ago,
few resources were available to support objective evaluation
of clone detection tools. While Bellon’s original benchmark
represented a good first effort, it was clear that there were
many drawbacks to a benchmark based on the tools them-
selves, making it difficult to rely on the results of evaluations
using it. When we set out to create alternatives that could
be used to objectively evaluate the precision and recall of
clone detection tools, little did we know the extent of the
challenges to be faced. In this paper we have outlined those
challenges and reviewed the past decade of work by ourselves
and others to try to address them, highlighting our own path
from small sets of hand validated clones, to injection of large
sets of artificially generated mutants, and finally to the huge
corpus of validated real clones in BigCloneBench. We outlined
the many challenges that remain to be faced, and summarized
our ideas on goals for future work in hopes that more efforts
can be made to set clone detector evaluation and comparison
on a solid objective footing.

ACKNOWLEDGMENTS

The authors would like to thank Jeffrey Svajlenko for
his extensive work in building cloning benchmarks, Khaled
Saifullah and Rayhan Ferdous for some help in preparing this
document. The authors would also like to thank the many
researchers in cloning community who have helped advance
the area of clone detection benchmarking. Their work has
inspired and challenged us over these many years. Finally, the
authors wish to thank the SANER 2018 Most Influential Paper
award committee for recognizing our WCRE 2008 paper on
empirical studies of clones with this honour.

This research is supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC), by an
Ontario Research Fund Research Excellence (ORF-RE) grant,
and by a Canada First Research Excellence Fund (CFREF)
grant coordinated by the Global Institute for Food Security
(GIFS).

REFERENCES

[1] C. K. Roy and J. R. Cordy, “A survey on software clone detection
research,” School of Computing, Queen’s University, Tech. Rep. TR
2007-541, 2007, 115 pp.

[2] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo, “Com-
parison and evaluation of clone detection tools,” IEEE Trans. on Softw.
Engg., vol. 33, no. 9, pp. 577–591, 2007.

[3] M. Kim, V. Sazawal, D. Notkin, and G. C. Murphy, “An empirical study
of code clone genealogies,” in ESEC/SIGSOFT, 2005, pp. 187–196.

[4] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An ethnographic study
of copy and paste programming practices in OOPL,” in ISESE. IEEE,
2004, pp. 83–92.

[5] I. D. Baxter, M. Conradt, J. R. Cordy, and R. Koschke, “Software clone
management towards industrial application (Dagstuhl seminar 12071),”
Dagstuhl Reports, vol. 2, no. 2, pp. 21–57, 2012.

[6] C. K. Roy and J. R.Cordy, “Near-miss function clones in open source
software: an empirical study,” J. of Softw. Evolution and Process,
vol. 22, no. 3, pp. 165–189, 2010.

[7] M. Rieger, S. Ducasse, and M. Lanza, “Insights into system-wide code
duplication,” in WCRE, 2004, pp. 100–109.

[8] M. Fowler, K. Beck, J.Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code. Addison Wesley, 1999.

[9] C. Kapser and M. Godfrey, “Cloning considered harmful” considered
harmful: patterns of cloning in software,” Empirical Software Engi-
neering, vol. 13, pp. 645–692, 2008.

[10] Y. Higo, Y. Ueda, S. Kusumoto, and K. Inoue, “Simultaneous modi-
fication support based on code clone analysis,” in APSEC, 2007, pp.
262–269.

[11] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wagner, “Do code
clones matter?” in ICSE, 2009, pp. 485–495.

[12] M. Mondal, C. K. Roy, and K. A. Schneider, “An empirical study on
clone stability,” ACM Applied Comp. Review, vol. 12, no. 3, pp. 20–36,
2012.

[13] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Instant code clone
search,” in FSE, 2010, pp. 167–176.

[14] K. Chen, P. Liu, and Y. Zhang, “Achieving accuracy and scalability
simultaneously in detecting application clones on android markets,” in
ICSE, 2014, pp. 175–186.

[15] J.-w. Park, M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim, “Surfacing
code in the dark: an instant clone search approach,” Knowledge and
Information Systems, pp. 1–33, 2013.

[16] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code
examples,” in ICSE, 2014, pp. 664–675.

[17] S. Ducasse, M. Rieger, and S. Demeyer, “A language independent
approach for detecting duplicated code,” in ICSM, 1999, pp. 109
–118.

[18] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: a multilinguistic
token-based code clone detection system for large scale source code,”
IEEE Trans. Softw. Eng., vol. 28, no. 7, pp. 654–670, Jul 2002.

[19] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier, “Clone
detection using abstract syntax trees,” in ICSM, 1998, pp. 368–377.

[20] R. Koschke, R. Falke, and P. Frenzel, “Clone detection using abstract
syntax suffix trees,” in WCRE, 2006, pp. 253–262.

[21] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable
and accurate tree-based detection of code clones,” in ICSE, 2007, pp.
96–105.

[22] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment on the automatic
detection of function clones in a software system using metrics,” in
ICSM, 1996, pp. 244 –253.

[23] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of semantic
clones,” in ICSE, 2008, pp. 321–330.

[24] J. Krinke, “Identifying similar code with program dependence graphs,”
in WCRE, 2001, pp. 301 –309.

[25] C. K. Roy and J. R. Cordy, “NICAD: Accurate detection of
near-miss intentional clones using flexible pretty-printing and code
normalization,” in ICPC, 2008, pp. 172–181.

[26] K. Kontogiannis, “Evaluation experiments on the detection of
programming patterns using software metrics,” in WCRE, 1997, pp.
44 –54.

[27] J. Bailey and E. Burd, “Evaluating clone detection tools for use
during preventative maintenance,” in SCAM, 2002, pp. 36 – 43.

[28] V. Rysselberghe and S. Demeyer, “Evaluating clone detection
techniques from a refactoring perspective,” in ASE, 2004, pp. 336 –
339.

[29] R. Falke, P. Frenzel, and R. Koschke, “Empirical evaluation of clone
detection using syntax suffix trees,” Empirical Software Engineering,
vol. 13, pp. 601–643, 2008.

[30] M. Bruntink, A. van Deursen, R. van Engelen, and T. Tourwe, “On
the use of clone detection for identifying crosscutting concern code,”
IEEE Trans. Softw. Eng., vol. 31, pp. 804–818, 2005.

[31] B. S. Baker, “Finding clones with Dup: Analysis of an experiment,”
IEEE Trans. Software Eng., vol. 33, no. 9, pp. 608–621, 2007.

[32] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data,” in WCRE, 2003,
pp. 285–294.

[33] S. Grant and J. R. Cordy, “Vector space analysis of software clones,”
in ICPC, 2009, pp. 233–237.

[34] C. K. Roy and J. R. Cordy, “Are scripting languages really different?”
in IWSC, 2010, pp. 17–24.

[35] S. K. Abd-El-Hafiz, “A metrics-based data mining approach for
software clone detection,” in COMPSAC, 2012, pp. 35–41.

[36] Y. Yuan and Y. Guo, “CMCD: Count matrix based code clone
detection,” in APSEC, 2011, pp. 250–257.

[37] E. Merlo and T. Lavoie, “Computing structural types of clone syntactic
blocks,” in WCRE, 2009, pp. 274–278.

[38] A. El-Matarawy, M. El-Ramly, and R. Bahgat, “Code clone detection
using sequential pattern mining,” International Journal of Computer
Applications, vol. 127, no. 2, 2015.

[39] M. A. Nishi and K. Damevski, “Scalable code clone detection and
search based on adaptive prefix filtering,” Journal of Systems and
Software, vol. 137, pp. 130–142, 2018.

[40] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei, “Can I
clone this piece of code here?” in ASE, 2012, pp. 170–179.

[41] E. Juergens, “Why and how to control cloning in software artifacts,”
Ph.D. dissertation, Technische Universität München, 2011.

[42] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and H. Mei,
“Predicting consistency-maintenance requirement of code clonesat
copy-and-paste time,” IEEE Tran. on Soft. Engg., vol. 40, no. 8, pp.
773–794, 2014.

[43] T. Zhang and M. Kim, “Automated transplantation and differential
testing for clones,” in ICSE, 2017, pp. 665–676.

[44] W. T. Cheung, S. Ryu, and S. Kim, “Development nature matters: An
empirical study of code clones in Javascript applications,” Empirical
Software Engineering, vol. 21, no. 2, pp. 517–564, 2016.

[45] M. Asaduzzaman, “Visualization and analysis of software clones,”
Master Thesis, University of Saskatchewan, 109 pp, 2012.

[46] M. Mondal, C. K. Roy, and K. A. Schneider, “An insight into the
dispersion of changes in cloned and non-cloned code: A genealogy
based empirical study,” Science of Computer Programming, vol. 95,
pp. 445–468, 2014.

[47] A. T. Nguyen, H. A. Nguyen, and T. N. Nguyen, “A large-scale
study on repetitiveness, containment, and composability of routines in
open-source projects,” in MSR, 2016, pp. 362–373.

[48] E. Merlo, T. Lavoie, P. Potvin, and P. Busnel, “Large scale multi-
language clone analysis in a telecommunication industrial setting,” in
IWSC, 2013, pp. 69–75.

[49] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K. Roy,
“Analyzing and forecasting near-miss clones in evolving software: An
empirical study,” in ICECCS, 2011, pp. 295–304.

[50] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su, “Scalable and
systematic detection of buggy inconsistencies in source code,” ACM
Sigplan Notices, vol. 45, no. 10, pp. 175–190, 2010.

[51] J. Svajlenko and C. K. Roy, “Evaluating clone detection tools with
BigCloneBench,” in ICSME, 2015, pp. 131–140.

[52] C. K. Roy and J. R. Cordy, “A mutation/injection-based automatic
framework for evaluating code clone detection tools,” in ICST
Mutation Workshop, 2009, pp. 57–166.

[53] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching for better
configurations: a rigorous approach to clone evaluation,” in FSE,
2013, pp. 455–465.

[54] I. J. M. Ruiz, M. Nagappan, B. Adams, and A. E. Hassan,
“Understanding reuse in the Android market,” in ICPC, 2012, pp.
113–122.

[55] W. Wang and M. W. Godfrey, “Recommending clones for refactoring
using design, context, and history,” in ICSME, 2014, pp. 331–340.

[56] W. Ding, C.-H. Hsu, O. Hernandez, B. Chapman, and R. Graham,
“Klonos: Similarity-based planning tool support for porting scientific
applications,” Concurrency and Computation: Practice and Experience,
vol. 25, no. 8, pp. 1072–1088, 2013.

[57] S. Schulze and D. Meyer, “On the robustness of clone detection to
code obfuscation,” in IWSC, 2013, pp. 62–68.

[58] L. L. Silva, K. R. Paixao, S. de Amo, and M. de Almeida Maia, “On
the use of execution trace alignment for driving perfective changes,”
in CSMR, 2011, pp. 221–230.

[59] A. Imazato, Y. Sasaki, Y. Higo, and S. Kusumoto, “Improving process
of source code modification focusing on repeated code,” in PROFES,
2013, pp. 298–312.

[60] W. Ding, O. Hernandez, and B. Chapman, “A similarity-based
analysis tool for porting OpenMP applications,” in Facing the
Multicore-Challenge III. Springer, 2013, pp. 13–24.

[61] A. Kocbek and M. B. Juric, “Towards a reusable fault handling
in WS-BPEL,” International Journal of Software Engineering and
Knowledge Engineering, vol. 24, no. 02, pp. 243–267, 2014.

[62] C. K. Roy and J. R. Cordy, “Scenario-based comparison of clone
detection techniques,” in ICPC, 2008, pp. 153–162.

[63] J. Svajlenko, C. K. Roy, and J. R. Cordy, “A mutation analysis based
benchmarking framework for clone detectors,” in IWSC, 2013, pp.
8–9.

[64] J. Svajlenko and C. K. Roy, “Evaluating modern clone detection
tools,” in ICSME, 2014, p. 10.

[65] M. Stephan, M. H. Alalfi, A. Stevenson, and J. R. Cordy, “Using
mutation analysis for a model-clone detector comparison framework,”
in ICSE, 2013, pp. 1261–1264.

[66] J. Svajlenko, J. F. Islam, I. Keivanloo, C. K. Roy, and M. M. Mia,
“Towards a big data curated benchmark of inter-project code clones,”
in ICSME, 2014, pp. 476–480.

[67] S. Bellon, “Stefan bellon’s clone detector benchmark,” http:
//www.softwareclones.org/research-data.php.

[68] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the effectiveness of
clone detection by string matching,” Journal of Software Maintenance
and Evolution: Research and Practice, vol. 18, no. 1, pp. 37–58,
2006.

[69] B. S. Baker, “On finding duplication and near-duplication in large
software systems,” in WCRE, 1995, pp. 86–95.

[70] H. Murakami, Y. Higo, and S. Kusumoto, “A dataset of clone
references with gaps,” in MSR, 2014, pp. 412–415.

[71] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère, “An empirical
assessment of Bellon’s clone benchmark,” in EASE, 2015, pp.
20:1–20:10.

[72] A. Charpentier, J.-R. Falleri, F. Morandat, E. Ben Hadj Yahia, and
L. Réveillère, “Raters’ reliability in clone benchmarks construction,”
Empirical Software Engineering, vol. 22, no. 1, pp. 235–258, 2017.

[73] C. K. Roy and J. R. Cordy, “Towards a mutation-based automatic
framework for evaluating code clone detection tools,” in C3S2E, 2008,
pp. 137–140.

[74] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation
of code clone detection techniques and tools: A qualitative approach,”
Sci. Comput. Program., vol. 74, pp. 470–495, 2009.

[75] J. R. Cordy, ”The TXL source transformation language,” Science of
Computer Programming, vol. 61, no. 3, 2006, pp. 190–210.

[76] P. Wang, J. Svajlenko, Y. Wu, Y. Xu, and C. K. Roy, “CCAligner: a
token based large-gap clone detector,” in ICSE, 2018, p. 12 pp. (to
appear).

[77] J. Svajlenko, C. K. Roy, and S. Duszynski, “Forksim: Generating
software forks for evaluating cross-project similarity analysis tools,”
in SCAM, 2013, pp. 37–42.

[78] M. Stephan, “Model clone detector evaluation using mutation
analysis,” in ICSME, 2014, pp. 633–638.

[79] Y. Higo and S. Kusumoto, “Enhancing quality of code clone detection
with program dependency graph,” in WCRE, 2009, pp. 315–316.

[80] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “Gapped
code clone detection with lightweight source code analysis,” in ICPC,
pp. 93–102.

[81] Y. Yuki, Y. Higo, K. Hotta, and S. Kusumoto, “Generating clone
references with less human subjectivity,” in ICPC, 2016, pp. 1–4.

[82] M. Mondal, C. K. Roy, and K. A. Schneider, “Automatic identification
of important clones for refactoring and tracking,” in SCAM, 2014, pp.
11–20.

[83] D. E. Krutz and W. Le, “A code clone oracle,” in MSR, 2014, pp.
388–391.

[84] M. Uddin, C. Roy, and K. Schneider, “SimCad: An extensible and
faster clone detection tool for large scale software systems,” in ICPC,
pp. 236–238.

[85] T. Lavoie and E. Merlo, “Automated type-3 clone oracle using
Levenshtein metric,” in IWSC, 2011, pp. 34–40.

[86] E. Tempero, “Towards a curated collection of code clones,” in IWSC,
2013, pp. 53–59.

[87] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V. Lopes,
“SourcererCC: scaling code clone detection to big-code,” in ICSE,
2016, pp. 1157–1168.

[88] J. Svajlenko and C. K. Roy, “Fast and flexible large-scale clone
detection with CloneWorks,” in ICSE, 2017, pp. 27–30.

[89] ——, “BigCloneEval: A clone detection tool evaluation framework
with BigCloneBench,” in ICSME, 2016, pp. 596-600.

[90] J. Svajlenko and C. Roy, “The BigCloneBench tool page:,”
http://www.jeff.svajlenko.com/bigclonebench.html.

[91] J. Svajlenko and C. K. Roy, “Efficiently Measuring an Accurate and
Generalized Clone Detection Precision using Clone Clustering,” in
SEKE, 2016, pp. 426–433.

[92] J. Svajlenko and C. K. Roy, “A Machine Learning Based Approach
for Evaluating Clone Detection Tools for a Generalized and
Accurate Precision,” International Journal of Software Engineering
and Knowledge Engineering, vol. 26, no. 09–10, 2016, pp. 1399–1429.

[93] C. K. Roy, M. F. Zibran, and R. Koschke, ”The Vision of Software
Clone Management: Past, Present and Future (keynote paper)”, in
CSMR-WCRE, 2014, pp. 18-33.

