Evolution of Model Clones in Simulink

Matthew Stephan, Manar H. Alalfi, James R. Cordy, and Andrew Stevenson

Queen’s University,
Kingston, Ontario, Canada
{stephan, alalfi, cordy, andrews}@cs.queensu.ca

Abstract. A growing and important area of Model-Based Development
(MBD) is model evolution. Despite this, very little research on the evo-
lution of Simulink models has been conducted. This is in contrast to the
notable amount of research on UML models, which differ significantly
from Simulink. Code clones and their evolution across system versions
have been used to learn about source-code evolution. We postulate that
the same idea can be applied to model clones and model evolution. In
this paper, we explore this notion and apply it to Simulink models. We
detect model clones in successive versions of MBD projects and, with
a new tool, track the evolution of model clones with respect to their
containing clone classes. When there is a change in classification of a
model-clone, we investigate what specifically evolved in the model to
cause this classification change.

Keywords: model evolution, model clone detection, model clone evolu-
tion, Simulink

1 Introduction

Understanding software model evolution in Model-Based Development
(MBD) is important as it can improve our ability to adapt to change, allows us
to refactor more efficiently, and increases the quality and amount of analysis we
can do on MBD projects. While still a relatively young area, there is a notable
amount of work that discusses the evolution of UML models [5, 8, 10]. In contrast,
there is very little research related to the evolution of Simulink models, a data-
flow modeling language that is widely used in the automotive and communication
industries, as well as other embedded areas. Simulink models differ significantly
from anything in UML, with the most analogous diagram being a UML activity
diagram, which is still quite different.

Asnoted in [13], there are a number of instances where code clones are used in
order to perform source-code evolution analysis. Specifically, once a relationship
can be established between two versions of a system, it can be employed as a
means to understand the evolution of the system. Such a relationship can be
realized by extracting code clones from different versions and then identifying
and analyzing similar groups and how they have changed. We believe the same
holds true for models. Thus, as a first step towards understanding Simulink

2 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

model evolution, we introduce the notion and use of Simulink model clone
evolution (MCE). We focus on Simulink because there is sparse research on its
evolution, it is of interest to our industrial partners, and Simulink model clone
detection (MCD) is the most mature form of MCD.

In this paper, we use our near-miss MCD tool, SIMONEF [1], to detect clones
from successive versions of both industrial and publicly available models. Using
a new tool we develop, we are able to track the evolution of a model-clone class’
clone instances throughout multiple versions. When there is a change in the
classification of the model-clone instance, we then delve deeper into the model
itself to see and illustrate what exactly has evolved that caused this change
and then explain it. The paper begins by providing background in Sect. 2 and
defining key terms in Sect. 3. We then present the tool we developed for this
work in Sect. 4 and our experiments with it, along with examples of models and
their evolution, in Sect. 5. We present related and future work in Sect. 6 and
conclude in Sect. 7.

2 Background

2.1 Simulink

Simulink models consist of 3 levels of granularity: whole models, (sub) systems,
and blocks. Models contain systems, and systems contain other (sub) systems
and blocks. This is similar to source files: models are like programs; systems
are like methods, functions, and classes; and blocks are like statements in tradi-
tional programming languages. An important characteristic of Simulink models
is “All block names in a model must be unique and must contain at least one
character.” !

2.2 Clone Genealogies

Kim et al. [9] define the notion of genealogy for code clone groups as the way in
which a collection of clones evolves over multiple versions of a system. The clone
group evolution they describe is in terms of code snippets, which are comprised
of both text and location. For Kim et al.’s genealogies, each code clone group
contains identical (exact) code clones which are matched to other clone groups
based on textual similarity. Saha et al. [14] later consider clone groups contain-
ing non-identical (near-miss) code clones and match them to other groups by
matching functions (code blocks) containing the code clones. We extend and
modify the concepts and approaches from these works in order to apply them to
Simulink models.

2.3 Model Clone Detection

Much like its counterpart, code clone detection, model clone detection entails
discovering identical or similar fragments of model elements [4]. We recently

! http://www.mathworks.com/help/simulink /ug/changing-a-blocks-appearance.html

Evolution of Model Clones in Simulink 3

developed a model clone detector, called SIMONE, that is capable of detect-
ing both exact and near-miss clones in Simulink models [1]. Its clone detection
algorithm uses a sorted and filtered version of the underlying internal textual
representation of the models stored in the Simulink MDL files. This is in contrast
to CloneDetective [4], which treats Simulink models as graphs. Both techniques
identify clones and group them together into clone classes, however, in SIMONE,
a user-specified similarity threshold can be specified, such as 70% for near-miss
and 100% for exact clones. There are other less-mature MCD techniques as
well [17].

3 Definitions

A Simulink clone is essentially a similar subgraph of a larger Simulink system and
is comprised of Simulink blocks (including sub-system blocks) and the lines that
connect them. The basic units in our model-clone genealogy are these subgraphs,
which we term model clone instances (MCIs). The attributes of an MCI are its
list of blocks and lines, and its location. Location refers to the specific Simulink
model and system(s) the MCI is contained in. For example, both CloneDetective
and SIMONE produce XML clone reports that contain this information in some
form. A model clone class (MCC) is a collection of MCIs grouped together by
a model clone detector based on some measure of classification. All the Simulink
MCD tools we have encountered thus far identify clone classes explicitly.

In order to trace a specific MCI across different versions, we can use the
combination of (1) the model containing the MCI, and (2) the fully qualified
path to the system (or sets of systems, for clones that span systems) comprising
the MCI, that is, the trail of enclosing Simulink (sub) systems that contain the
MCT’s blocks and lines. Because all blocks, including those of type “subsystem”
must have unique names in a Simulink model, this is a suitable source of clone
traceability. This is analogous with Saha et al.’s code clone mapping where they
determine if a code clone fragment is located within a function.

As Saha et al. have noted, with near-miss clones it is not possible to simply
map one class to another in successive versions [14]. Analogously to what they
do with functions and code clone classes, we extend their ideas to the modeling
domain by taking a specific MCC, say MCC,, from version v, and seeing what
MCC:s in future versions contain MCIs from MCC,,. In contrast, however, while
they are interested primarily with counting occurrences of code-clone evolution
patterns, we are concerned mainly with how individual model clone instances
evolve to cause a change in MCC classification. As such, we need to identify only
if MCC,, yields one MCC in a future version, v+1; multiple MCCs in version
v+1; or no MCCs in version v+1; and focus on the specific evolution of the MCIs
involved in each case.

4 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

4 Tool Description

For the first step of our analysis, we developed a tool, called Simulink Clone
Class Tracker (SIMCCT), that allows a user to select a specific MCC from
one version of a system in order to display, in a GUI, what MCCs in future
versions contain its MCIs. As input, the program takes in an ordered set of
MCD results in XML form, with each XML file representing a different version
in the evolution. We used a TXL [3] source transformation to change the XML
output of SIMONE to a form more conducive to evolution analysis. The same
can be done for CloneDetective. As demonstrated in a simplified version of the
input in Fig. 1, the file contains a list of clones, sorted by classes. Each class
contains sources, which correspond to the MCIs. As mentioned previously, these
are comprised of blocks and lines, each with their own attributes of interest.

In brief, SIMCCT begins by parsing the input XML file we describe above
and extracting the required information, treating each file as a version. It then
identifies unique MCIs across all versions using our earlier definition and assigns
each a unique ID number. This ID number is used in the GUI to represent
the MCI, as a textual ID would be too long and unwieldy. Each time an MCC
from the first version is selected by a user, related MCCs for successive versions
are discovered and displayed by searching for the MCCs in future versions that
contain the MClIs belonging to the selected MCC. So, for example, let us consider
an MCC with class ID 4 from a first version, MCC,1.4. It is selected and contains
a set of MCls, MCly1c4. In future version 'x’ and class ’y’, MCC, 4y is displayed
if MCl, 4, contains any element from MClLy1c4.

5 Experiment

We ran SIMCCT on both publicly available models and private models from
our industrial partners. The public models include the Automotive Power

<clones>
<class classid="#" nclones="#" similarity="#" ...>
<source file="..."subsystem="..." ... >
<block path="..." type="..." ...Block attributes.../>
...More Blocks...
<line ...Line attributes"/>
...More Lines...
</source>
...More Sources...
</class>
...More Classes...
</clones>

Fig. 1: General form of SIMCCT input

Evolution of Model Clones in Simulink 5

Window (PW) System that comes with the Simulink example set and a large
open-source Advanced Vehicle Simulator(AVS) 2.

To start, we analyzed the 3 systems using SIMONE with our best-fit [1]
settings of 70% similarity and blind-renaming. Table 1 displays statistics about
the results. The PW system is a smaller, compact, and simple system. AVS is
quite large and complex, and has more clone pairs and MCCs than our industrial
system set. Thus, we believe it is a fairly representative and rich system.

After transforming the MCD results into the SIMCCT format, we execute
SIMCCT. As mentioned, we are looking specifically to note what MCCs in future
versions contain MCIs from a user-selected MCC in an earlier/earliest version,
vy. For each MCC in vy, its relation to future MCCs with respect to another
version can be classified in one of five ways: (1) 1 to 1; (2) 1 to 1%, which
is the same as “1 to 1”7 except there are additional MCIs, missing MClIs, or a
combination of both; (3) 1 to many, which has no additional or missing elements
in future MCCs; (4) 1 to many*, which has additional or missing elements in
future MCCs; and (5) 1 to 0, meaning the MCIs from the original MCC are no
longer in any MCC. We can then use this information as grounds to investigate
what model evolution has transpired on the MCIs to cause this relation.

Table 2 classifies the MCC evolution we observed in the three systems as
it pertains to each MCC’s MClIs in each system’s first version. In our sample
systems, we found no instances of “1 to many”, that is, every time an MCC later
had its constituent MCIs split into multiple MCCs, there were always additional
elements present. For “l1-to-many™” relationships, the AVS system had a “1 to
2” and our industrial set had a “1 to 2” and a “1 to 4”.

5.1 Examples

We now showcase a set of examples from our experiment demonstrating different
cases. We illustrate the examples by extending the representation Géde used for

2 http://sourceforge.net /projects/adv-vehicle-sim/?source=dlp

Table 1: Systems Analyzed by SIMCCT

System Name|Version #|Model Files|SubSystems|Clone Pairs| MCCs
1 1 18 7 5
2 1 29 15 5
PW 3 1 33 23 6
4 1 25 13 4
5 1 45 39 6
r0000 69 861 1916 18
AVS r0080 69 1621 5693 35
r0116 72 1714 5951 38
55 9 977 600 20
Industrial Set 56 9 977 618 21
57 9 986 624 23

6 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Table 2: Relationship Classifications of MCCs w.r.t. Earliest Versions

System Name|Version|1 to 1|1 to 1*|1 to many|1 to many*|1 to 0
2 1 4 0 0 0
3 1 4 0 0 0
PW 4 1 3 0 0 1
5 1 2 0 0 2
r0080 | 12 5 0 1 0
AVS r0116 | 9 8 0 1 0
56 14 4 0 2 0
Industrial Set| 57 14 4 0 2 0

the evolution of type-1 code clones [6], with MCCs being rectangles and MCls
being circles. In addition, we provide figures of some of the examples showcasing
the specific evolution that has transpired. This is in order to highlight samples
of changes that form various evolutionary MCC relationships.

We choose examples from public models as they adequately exhibit the cases
and are available to all. We then investigate what evolution has taken place on
the models themselves that caused the observed MCE. A reminder, each number
within a circle refers to a uniquely identified key that corresponds to a unique
MCT across all versions.

Power Window - Model Clone Class 3: This example is presented in Figs. 2
and 3. It contains MCC3, which begins with two MCIs, 5 and 6, that are 81%
similar. In version 2, represented by the part underneath the dashed line in Fig. 3,
MCI6 has 2 additional blocks and no longer belongs to any MCC. Conversely,
MCT5 is simplified by replacing three blocks with one and is now 71% similar to
MCIT7 and other MClIs, causing a reclassification with them. Starting in version 4,
MCI5 is simplified even further by removing more blocks and no longer belongs
to any MCC. As such, MCC3 has a “1-to-0" relation to versions 4 and 5.

vi (?@
- (000000
00000000

& Does not belongto any MCC
V5

Fig.2: PW MCC3 SIMCCT Trace

Evolution of Model Clones in Simulink 7

Check_UP Detect_Endstop Detect_Obstacle

D7 ID5 D6
1 bl
| =
:
= |
i I Break maete
H ‘* J Dependency

\l' (o)

action i ~
@ rrmmuafmnem) i
NoT sllow_sction cheded_acton 3 N | e 7
‘ L PEEO

3 curert_imit “ J »

reset
overule

Fig. 3: Sample Models from PW MCC3

Power Window - Model Clone Class 2: We demonstrate, in Figs. 4 and 6,
a “l1-to-1*” variant where a single MCI is removed from MCC2 in version 1 while
the remaining MClIs remain grouped together. In version 1, the three MCIs; 2,3,
and 4; are 74% similar to each other with MCIs 3 and 4 being identical in this
case. Fig. 6 shows the evolution of MCI2, the Window_System. As shown, it was
changed significantly from version 1 to 2 in terms of its ports, the amount and
types of blocks, and its lines. This was done in order to include power electronics
and to incorporate bodies, joints, and actuators. It changed again in version 4,
albeit it not as radically, but it was not enough to reunite it with the original
MCIs from MCC2 from version 1.

Advanced Vehicle Simulator - Model Clone Class 7: Fig. 5 presents
an example of a “lI-to-many®™” MCC trace. In version 1, MCI17, which is the
system “Energy Storage <ess> RC”, is 71% similar to MCIs 16,18,19. In the next
version, MCI17 becomes 76% similar to MCI325 and is reclassified with that.

+ OOQ
- @@@ il Q0010
- 0O © QY
o0 @O
V5 Does not belong to any MCC Fig.5: AVS MCC7 SIMCCT Trace

Fig.4: PW MCC2 SIMCCT Trace

V3

\Z

8 Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Version 1

Version 283

Fig. 6: Evolution of the PW Window_System

MCI17’s evolution involved many low-level structural changes, and as such, is
not worth showing a diagram of. So, while the model remained the same in
terms of layout, there were some key non-visual changes including modification
of block types, the addition or explication of ports, and changing a block’s key
parameters, for example, changing a Gain block’s multiplication mode.

6 Related and Future Work

6.1 Related Work

As mentioned already, Saha et al. [14] are focused on counting the occurrences
of code clone genealogies. In contrast, we are more interested in reasoning about
the changes to models that cause MCE and use the genealogy of the MCCs as
the starting point only.

There are some language-agnostic model and metamodel evolution
approaches [7,12] that can track both evolution and co-evolution. However, in
order to use techniques like this for MCE, we would essentially have to create
a system containing only the clones of interest. As such, we developed a tool
explicitly intended to perform model clone class evolution analysis.

There are some model comparison approaches [16,17] that can find simi-
larities and differences among models for versioning and other purposes, but
there are no attempts to explicate the structural evolution of Simulink models.
That is, to define what are the potential structural changes that can occur to
a Simulink model and their prevalence. Model evolution and MCE are strongly
related to model comparison and versioning, but can be viewed as a longer-term
analysis over multiple versions with a focus on how a specific artifact or clone
has changed. None of the model comparison techniques we surveyed previously
were ideal for tracking MCE.

Evolution of Model Clones in Simulink 9

The only work that deals with any form of Simulink evolution is from Tran
and Kreuz, who focus on refactoring Simulink [11]. Specifically, they look at
forms of antipatterns in Simulink and discuss tool support for correcting them.

6.2 Future Work

One area of future work is providing better differencing and visualization of dif-
ferences for Simulink models. So far, we’ve been doing it relatively manually.
While there are many model comparison tools [16,17] that provide visualiza-
tion functionality, there are none well-suited for our purposes and the provided
Sitmulink XML comparison functionality is inadequate as it does not capture
the information we desire. As such, devising and automating the differencing
and visualization for MCE purposes and incorporating it into SIMCCT would
be ideal.

In addition, we are currently working on MCD for other model types, includ-
ing Stateflow and behavioral UML models [2]. We believe our work on MCE can
be applied to other model types; Specifically, as long as an MCD tool identifies
both MCCs and MCls, these concepts can be extended and an appropriate clone
class tracker can be developed. This is something that we will investigate once
our MCD techniques for these other model types are more mature.

In the long term, we plan on enumerating a set of Simulink model evolutions
as they relate to model clone evolution. The purpose in doing this is to find
a sufficient set for performing MCD evaluation in a mutation-based framework
as discussed in [15]. So, in addition to all the previously mentioned benefits of
observing model evolution, we plan on using this work to help with mutation
research intended to realize model-clone tool evaluation.

7 Conclusions

We believe MCE research is quite valuable as it can be a useful tool for better
understanding how Simulink and other data-flow models evolve. In this paper,
we took some first steps towards understanding Simulink MCE. We began by
defining key terms, including model clone classes and instances. SIMCCT is a
tool we introduced that is capable of tracking an MCI’s evolution with respect
to its containing MCCs across different system versions. We used this tool on
three systems, share our findings, and go into details for a few examples. These
examples included looking at the model evolution that transpired causing the
specific MCE observed. In the future, we plan on automating the differencing
and visualization of the model evolution for a given MCE trace as well as enu-
merating the Simulink model evolution steps that cause MCC changes. This
and other Simulink and data-flow MCE work can go a long way towards im-
proving our relatively underdeveloped understanding of the model evolution of
these technologies.

10

Matthew Stephan, Manar H. Alalfi, James R. Cordy, Andrew Stevenson

Acknowledgments

This work is supported by NSERC, the Natural Sciences and Engineering Re-
search Council of Canada, as part of the NECSIS Automotive Partnership with
General Motors, IBM Canada and Malina Software Corp.

References

10.

11.

12.

13.

14.

15.

16.

17.

. Alalfi, M.H., Cordy, J.R., Dean, T.R., Stephan, M., Stevenson, A.: Models are code

too: Near-miss clone detection for Simulink models. In: ICSM. pp. 295-304 (2012)
Antony, E., Alalfi, M., Cordy, J.: An approach to clone detection in behavioural
models. In: WCRE. p. 5 (2013), (to appear)

. Cordy, J.: The TXL source transformation language. Science of Computer Pro-

gramming 61(3), 190-210 (2006)

Deissenboeck, F., Hummel, B., Juergens, E., Schaetz, B., Wagner, S., Girard, J.F.,
Teuchart, S.: Clone detection in automotive model-based development. In: ICSE.
pp. 603-612 (2009)

France, R., Bieman, J.M.: Multi-view software evolution: a uml-based framework
for evolving object-oriented software. In: ICSM. pp. 386-395 (2001)

Gode, N.: Evolution of type-1 clones. In: SCAM. pp. 77-86 (2009)
Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope-automating coupled evolution
of metamodels and models. In: ECOOP 2009, pp. 52-76 (2009)

Keienburg, F., Rausch, A.: Using XML/XMI for tool supported evolution of UML
models. In: HICSS. vol. 9, p. 9064 (2001)

Kim, M., Sazawal, V., Notkin, D., Murphy, G.: An empirical study of code clone
genealogies. ESEC/FSE-13 30(5), 187-196 (2005)

Mens, T., Lucas, C., Steyaert, P.: Supporting disciplined reuse and evolution of
UML models. UML98: Beyond the Notation pp. 378-392 (1999)

Minh Tran, Q., Kreuz, I.: Refactoring of simulink models. In: MathWorks Auto-
motive Conference, Stuttgart (2012)

Rose, L.M., Kolovos, D.S., Paige, R.F., Polack, F.A.: Model migration with epsilon
flock. In: Theory and Practice of Model Transformations, pp. 184—-198. Springer
(2010)

Roy, C.K., Cordy, J.R.: A survey on software clone detection research. Tech. Rep.
2007-541, Queen’s University (2007)

Saha, R.K., Roy, C.K., Schneider, K.A.: An automatic framework for extracting
and classifying near-miss clone genealogies. In: ICSM. pp. 293-302 (2011)
Stephan, M., Alafi, M., Stevenson, A., Cordy, J.: Using mutation analysis for a
model-clone detector comparison framework. In: ICSE. pp. 1277-1280 (2013)
Stephan, M., Cordy, J.R.: A survey of methods and applications of model compar-
ison. Tech. Rep. 2011-582 Rev. 3, Queen’s University (2012)

Stephan, M., Cordy, J.R.: A survey of model comparison approaches and applica-
tions. In: MODELSWARD (2013)

