
Automated Verification of Model
Transformations in the Automotive Industry?

Gehan M. K. Selim1, Fabian Büttner2, James R. Cordy1, Juergen Dingel1, and
Shige Wang3

1 School of Computing, Queen’s University, Kingston, Ontario, Canada
2 AtlanMod, École des Mines de Nantes - INRIA, LINA, Nantes, France
3 Electrical and Controls Integration Lab, General Motors Research and

Development, Warren, Michigan, USA

Abstract. Many companies have adopted MDD for developing their
software systems. Several studies have reported on such industrial expe-
riences by discussing the effects of MDD and the issues that still need
to be addressed. However, only a few studies have discussed using au-
tomated verification of industrial model transformations. We previously
demonstrated how transformations can be used to migrate GM legacy
models to AUTOSAR models. In this study, we investigate using au-
tomated verification for such industrial transformations. We report on
applying an automated verification approach to the GM-to-AUTOSAR
transformation that is based on checking the satisfiability of a relational
transformation representation, or a transformation model, with respect
to well-formedness OCL constraints. An implementation of this approach
is available as a prototype for the ATL language. We present the verifi-
cation results of this transformation and discuss the practicality of using
such tools on industrial size problems.

Keywords: Model Transformation, Automated Verification, Automotive In-
dustry

1 Introduction

Model Driven Development (MDD) has been increasingly used in the last decade
for software development and, in many cases, has replaced traditional, code-
centric approaches. In MDD, models or software abstractions are the basic build-
ing blocks in the software development life cycle and model transformations are
the technology used to map between models conforming to different metamod-
els. Transformations are used for different purposes in MDD, e.g., refactoring,
migration, and code generation. Since transformations are essential in MDD,
transformation testing and verification is essential to the success of MDD.

? This work was partially funded by the Nouvelles Équipes Program of the Pays de la
Loire Region (France), and by NSERC (Canada), as part of the NECSIS Automotive
Partnership with General Motors, IBM Canada and Malina Software Corp.

Several studies have reported on industrial experiences in adopting MDD [13,
25]. However, only a few of them have specifically discussed using model transfor-
mations in industry. Daghsen et al. [14] used transformations to map AUTOSAR
timing models to classical scheduling models to perform timing analysis. Giese
et al. [15] used triple graph grammars to synchronize SysML system engineer-
ing models with AUTOSAR software engineering models. Studies reporting on
automated verification of industrial transformations have also been limited.

In this study, we report on using a light-weight, automated verification pro-
totype to reason about the correctness of an ATL [22] transformation developed
for the automotive industry [29]. More specifically, we check the correctness of
the transformation with respect to OCL well-formedness constraints after trans-
lating the ATL transformation into a logical satisfiability problem. The basic
approach has been presented in previous work [10] but to our knowledge we are
the first reporting on its application to an industrial-sized verification problem.

While the transformation itself is not exceptionally large (in the number of
transformation rules), the corresponding metamodels are. Together, they com-
prise 1586 classes, 897 associations, and 371 multiplicity constraints. Since even
types not directly touched by the transformation are relevant for the verifica-
tion (due to constraints that relate them), we have to deal with large potential
instances. To verify our transformation, we have successfully checked models of
up to 20000 potential elements with reasonable runtimes (although all counter
examples found contained much fewer elements and were found quite quickly).
Hence we claim that the verification approach is applicable to realistic verifica-
tion scenarios.

The rest of this paper is organized as follows: Section 2 gives an overview
of the GM-to-AUTOSAR transformation previously presented in [29]; Section 3
introduces the applied verification approach and prototype; Section 4 describes
the case study conducted to verify the GM-to-AUTOSAR transformation using
the aforementioned prototype; Section 5 summarizes the results of the case study
and investigates the performance of the used approach; Section 6 discusses its
strengths and limitations; Section 7 summarizes related work in the literature
and Section 8 concludes and discusses future work.

2 Background: Model Transformation in the Automotive
Industry

We now review the GM-to-AUTOSAR transformation presented in [29] which
was used to migrate GM legacy models to the AUTOSAR standard.

2.1 Overview of the Model Transformation Problem

As one of the leading automotive companies, General Motors has been adopting
MDD for the develoment of automotive software. GM engineers have been using
a domain-specific metamodel for the development of vehicle control software
(VCS). We refer to their domain-specific metamodel as the GM metamodel.

AUTOSAR (the AUTomotive Open System ARchitecture) [2] has been de-
veloped and adopted by many organizations as an automotive industry standard
that is meant to facilitate the development and integration of software compo-
nents from different vendors. AUTOSAR specifies requirements for software that
is meant to conform to the standard. Further, AUTOSAR has its own metamodel
with a well-defined architecture and interfaces.

Since the majority of organizations in the automotive industry are migrat-
ing to AUTOSAR, transforming models conforming to the GM metamodel to
their equivalent AUTOSAR models is an important goal. Thus, we have previ-
ously developed and reported on a transformation that maps between subsets
of the GM metamodel and the AUTOSAR metamodel as its source and target
metamodels. In that work, we focused on subsets of the two metamodels that
represent the deployment and interaction of software components.

2.2 The GM Metamodel

Fig. 1 illustrates the subset of the GM metamodel that we manipulated in our
transformation in [29]1. The PhysicalNode models a physical node on which soft-

Fig. 1. Subset of the GM metamodel directly used by our transformation in [29].

ware is deployed. A PhysicalNode may contain multiple Partitions (i.e., process-
ing units or memory partitions) on which software is deployed. Multiple Modules
can be deployed on a single Partition. A Module is an atomic, deployable, and
reusable element in a product line and can contain multiple Schedulers. A Sched-
uler is the basic unit for software scheduling. It contains behavior-encapsulating
entities, and is responsible for managing services provided or required by the
behavior-encapsulating entities. Each Scheduler may provide and/or require Ser-
vices, which model the services provided or required by the Scheduler.

2.3 The AUTOSAR Metamodel

The AUTOSAR metamodel is defined as a set of templates. Each template spec-
ifies an AUTOSAR artifact such as software components. Among the defined
templates, the System template [1] models the configuration of a system or an
Electronic Component Unit (ECU). An ECU is a physical unit on which software
is deployed. When used for modeling the configuration of an ECU, the System
template is referred to as the ECU Extract. Fig. 2 shows the subset of the ECU
Extract manipulated by our transformation. The ECU extract is modeled us-
ing the System type that aggregates SoftwareComposition and SystemMapping

1 In this study, we follow the same obfuscated naming conventions that we used for
the GM metamodel in [29] for reasons of confidentiality.

Fig. 2. Subset of the AUTOSAR System Template directly used by our transformation.

elements. The SoftwareComposition type points to the CompositionType type
which eliminates any nested software components in a SoftwareComposition. The
SoftwareComposition type models the architecture of the software components
deployed on an ECU, the ports of these software components and the ports’
connectors. Each Software component is modeled using the ComponentProto-
type type, which defines the structure and attributes of a software component;
each port is modeled using the PortPrototype type (i.e., a PPortPrototypeor a
RPortPrototype) for providing or requiring data and services.

The SystemMapping type binds the software components to ECUs and
the data elements to signals and frames (not shown). The SystemMapping
type aggregates the SwcToEcuMapping type, which assigns SwcToEcuMap-
ping components to an EcuInstance. SwcToEcuMapping components in turn,
refer to ComponentPrototype elements. According to AUTOSAR, only one Swc-
ToEcuMapping should be created for each processing unit or memory partition
in an ECU.

3 Verification Methodology

We apply the automated verification approach presented in [10] to the GM-to-
AUTOSAR transformation. In short, we translate the ATL transformation T ,
its source metamodel MMsrc, and its target metamodel MMtar into a combined
model, or a transformation model, consisting of MMsrc and MMtar and addi-
tional model elements that represent the transformation rules. Additionally, a
set Sem of OCL constraints is generated for the combined model that char-
acterizes the execution semantics of the ATL rules. For declarative ATL rules
without recursion, the constraints describe the ATL semantics one-to-one, i.e.,
each valid instance of the transformation model corresponds to an execution of
the transformation and vice versa.

Using this representation we can check partial correctness of the transfor-
mation with respect to properties specified as OCL constraints over the source
and/or the target model, by checking if there exists a counterexample within
a specific scope (i.e., maximum number of objects per class). More specifically,
for a set of transformation preconditions (or assumptions) Pre1, . . . ,Pren and a
set of postconditions (or assertions) Post1, . . . ,Postm, we want to show that for

each instance M of the transformation model,(
Sem1 and Sem2 and . . . and Semk and

Pre1 and Pre2 and . . . and Pren

)
implies(

Post1 and Post2 and . . . and Postm
) (1)

holds. This can be expressed equivalently as follows: For each postcondition
Post i (1 ≤ i ≤ m), the following formula must be unsatisfiable (i.e., there is no
model M under which the formula is true):

Sem1 and . . . and Semk and Pre1 and . . . and Pren and not(Post i) (2)

Fig. 3 illustrates this using a simple example. In the upper part we have
an ATL transformation (c) over the shown source and target metamodels (a)
and (b). The transformation copies the A-B structure to the C-D structure, but
creates an additional D object when copying an ‘empty’ A object. The middle
part shows the transformation model of this transformation. In the class diagram
(d), each of the three rules is translated into a trace class and connected to the
source and target classes according to the from and to patterns of the rule. The
OCL constraints (e) capture the execution semantics of the transformation such
as the matching of rule R1, the binding of primitive and object-typed properties,
and the controlled creation of target objects. Some pre-/post- conditions are
shown in (f) and (g), respectively.

A

x : Integer

B

b*

(a) Source MM

C

x : Integer

D

d*

(b) Target MM

create OUT : Tar from IN : Src
rule R1 { from a : Src!A (a.b−>notEmpty())

to c : Tar!C (d <− a.b) }
rule R2 { from a : Src!A (a.b−>isEmpty())

to c : Tar!C (d <− Set{d1}),
d : TargetMM!D (x <− 0) }

rule R3 { from b : Src!B to d : Tar!D (x <− b.x) }

(c) ATL transformation

*

R1C A

x : Integer

B

b*R2

R3x : Integer

D

d

(d) Transformation model

context a : A inv Sem R1 match: a.b−>notEmpty() implies
R1. allInstances ()−>one(r1|r1.a = a)

context R1 inv Sem R1 cond: self .a.b−>notEmpty()
context R1 inv Sem R1 bind c:

self .d−>forAll(d | self .a.b−>exists(b | b.r2 = d) and
self .a.b−>forAll(b | self .d−>exists(b | b.r2 = d)

context R3 inv Sem R3 bind d: self .d.x = self .b.x
context C inv Sem C create:

self . r1−>size() + self . r2−>size() = 1

(e) OCL constraints for ATL semantics (excerpt)

context A inv Pre1: self .b.x−>sum() >= 0
context A inv Pre2: self .b−>size() >= 1

(f) Preconditions

context C inv Post1: self .d−>size() >= 1
context C inv Post2: self .b.x−>sum() >= 0

(g) Postconditions

Fig. 3. Transformation model example

To verify that, for example, postcondition Posti is implied by the transfor-
mation (given the preconditions), we have to check that Eq. (2) is unsatisfiable.
This can be tested using metamodel satisfiability checkers, or model finders, such
as the USE Validator [23] which is publicly available [35]. The USE Validator
translates the UML model and the OCL constraints into a relational logic for-
mula and employs the SAT-based solver Kodkod [33] to check the unsatisfiability
of Eq. (2) for each of the post-conditions Posti within a given scope. Thus, we
have four different representations of the problem space, (i) ATL + OCL, (ii)
OCL, (iii) relational logic, and (iv) propositional logic (for the SAT solver).

We have implemented the whole chain as an verification prototype (Fig. 4).
We have implemented the ATL-to-OCL transformation [10] as a higher-order
ATL transformation [32], i.e., a transformation from Ecore and ATL metamodels
to Ecore metamodels (where the Ecore model can contain OCL constraints as
annotations). Our implementation automatically generates the Sem constraints
from the ATL transformation as well as Pre and Post constraints from the
structural constraints in the source and target metamodels (further constraints
to be verified can be added manually). Since the USE validator has a proprietary
metamodel syntax, we have created a converter from Ecore to generate a USE
specification. We also generate a default search space configuration, which is
a file specifying the scopes and ranges for the attribute values. In the search
configuration, we can disable or negate individual invariants or constraints.

transformations

higher−order ATL once per

postcondition

Counterexample

Additional pre− /

(to be verified)
postconditions (OCL)

− or −

UNSAT

Source metamodel
(Ecore + OCL)

Target metamodel
(Ecore + OCL)

T
y
p
e
 c

h
e
c
k
e
r

A
T

L
−

to
−

T
M

C
o
n
v
e
rt

e
r

U
S

E
 V

a
lid

a
to

r
model

Transformation

(Ecore + OCL)

Search
configurations

USE
specification

Transformation
(ATL)

Fig. 4. The tool chain used to perform the transformation verification.

Steps to verify a postcondition using the prototype: To check Eq. (2)
for a postcondition, we have to negate the respective postcondition and disable
all other postconditions in the generated search configuration (Fig. 4) and then
run USE. If USE reports ‘unsat’, this implies that there is no input model in
the search space for which the transformation can produce an output model
that violates the postcondition. If there exists a counterexample, USE provides
the object diagram of the counterexample which can be analyzed using many
browsing features of the tool. Although the implementation is a prototype, it is
not specific to the GM-to-AUTOSAR transformation.

4 Case Study: Evaluating Transformations in the
Automotive Industry Using Automated Verification

We use the prototype described in Section 3 to verify our GM-to-AUTOSAR
transformation. However, the verification prototype can only verify ATL trans-
formations composed of declarative matched rules and non-recursive lazy rules.

Thus we have changed the implementation described in [29] to be completely
declarative and compatible with the format required by the prototype. The fi-
nal reimplementation is intended to achieve the same mapping as the original
implementation described in [29].

In this section, we describe the constructs used to re-implement our trans-
formation and the different kinds of constraints formulated for verification.

4.1 Reimplementation of the GM-to-AUTOSAR Model
Transformation

In the first implementation of the GM-to-AUTOSAR transformation, we used
two ATL matched rules, 9 functional helpers and 6 attribute helpers to imple-
ment the required mapping between the two metamodels. After reimplementing
the transformation to be completely declarative, the new transformation was
composed of three matched rules and two lazy rules. Although we had to reim-
plement the transformation to use the verification prototype, we point out that
the new declarative implementation is simpler and more readable. The rules im-
plemented are listed in Table 1 together with the types of the rules, the input
element matched by the rule, and the output elements generated by the rule.

Rule Type Rule Name Input Types Output Types

Matched Rule createComponent Module
SwCompToEcuMapping component,
ComponentPrototype

Matched Rule initSysTemp PhysicalNode
System, SystemMapping, SoftwareCom-
position, CompositionType, EcuInstance

Matched Rule initSingleSwc2EcuMapping Partition SwcToEcuMapping

Lazy Rule createPPort Scheduler PPortPrototype

Lazy Rule createRPort Scheduler RPortPrototype

Table 1. The types of ATL constructs used to reimplement the transformation, their
designated names, and their input and output element types.

As described in [29], the relationships between the outputs of the
matched rules are built using the ATL predefined function resolveTemp. The
resolveTemp function allows a rule to reference the elements that are yet
to be generated by another rule at runtime. For example, the resolveTemp

function was used to connect the SwcToEcuMapping elements created by the
initSingleSwc2EcuMapping matched rule to the SystemMapping element cre-
ated by the initSysTemp matched rule. Further, the matched rule initSysTemp

calls the two lazy rules and assigns the union of the lazy rules’ outputs to the
ports of the CompositionType produced by the initSysTemp rule.

4.2 Formulation of OCL Pre- and Postconditions

In general, the OCL postconditions in our approach can be either defined on
elements of the target metamodel only (then we call them target invariants), or
they can relate the elements of the source and target metamodels (then we call
them transformation contracts). Usually, a transformation contract specifies an

implication ‘when an input has a property then it’s corresponding output has
a property’. The OCL preconditions are propositions about the input that we
assume to always hold.

In our case study, the preconditions were given by the multiplicity and com-
position constraints automatically extracted from the GM metamodel as OCL
constraints. The formulated OCL postconditions are summarized in Table 2.
We divide the formulated postconditions into four categories: Multiplicity In-
variants, Uniqueness Contracts, Security Invariants, and Pattern Contracts. For
each constraint in Table 2, we add to the beginning of its formulation an abbre-
viation (e.g., (M1), (U2)) that will be used in the rest of the paper to refer to
the constraint. The Multiplicity Invariants were automatically generated by the
prototype. All the other postconditions were manually formulated.

Multiplicity Invariants:

– (M1) Context CompositionType inv CompositionType component: self.component→size() ≥ 1
– (M2) Context SoftwareComposition inv SoftwareComposition softwareComposition:

self.softwareComposition 6= null
– (M3) Context SwcToEcuMapping inv SwcToEcuMapping component: self.component→size() ≥ 1
– (M4) Context SwcToEcuMapping inv SwcToEcuMapping ecuInstance: self.ecuInstance 6= null
– (M5) Context System inv System softwareComposition: self.softwareComposition 6= null
– (M6) Context System inv System mapping: self.mapping 6= null

Uniqueness Contracts: Let Unique (invName, X, Y) be
Context Global inv invName: (X.allInstances()→forAll(x1:X, x2:X| x1.Name=x2.Name implies
x1=x2)) implies (Y.allInstances()→ forAll(y1:Y, y2:Y| y1.shortName = y2.shortName implies
y1=y2))

– (U1) UnqCompName= Unique (UNQCOMPNAME, Module, ComponentPrototype)
– (U2) UnqSysMName= Unique (UNQSYSMNAME, PhysicalNode, SystemMapping)
– (U3) UnqSysName= Unique (UNQSYSNAME, PhysicalNode, System)
– (U4) UnqSwcmpsName= Unique (UNQSWCMPSNAME, PhysicalNode, SoftwareComposition)
– (U5) UnqCmpstyName= Unique (UNQCMPSTYNAME, PhysicalNode, CompositionType)
– (U6) UnqEcuiName= Unique (UNQECUINAME, PhysicalNode, EcuInstance)
– (U7) UnqS2EName= Unique (UNQS2ENAME, Partition, SwcToEcuMapping)
– (U8) UnqPpName= Unique (UNQPPNAME, Scheduler, PPortPrototype)
– (U9) UnqRpName= Unique (UNQRPNAME, Scheduler, RPortPrototype)

Security Invariant:

– (S1) Context System inv Self Cont: mapping.swMapping→forAll(swc2ecumap:
SwcToEcuMapping| swc2ecumap.component → forAll(mapcomp :
SwCompToEcuMapping component| mapcomp.componentPrototype→forAll(comppro:
ComponentPrototype| softwareComposition.softwareComposition.component→ exists(c:
ComponentPrototype| c=comppro))))

Pattern Contracts:

– (P1) Context Global inv Sig2P: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd: Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.provided→notEmpty()) implies (System.allInstances()→one(sy:System|
(sy.shortName=e1.Name) and (sy.softwareComposition.softwareComposition.port→
one(pp:PortPrototype| (pp.shortName=ef.Name) and (pp.oclIsTypeOf(PPortPrototype))))))))))

– (P2) Context Global inv Sig2R: PhysicalNode.allInstances()→ forAll(e1:PhysicalNode|
e1.partition→ forAll(vd:Partition| vd.module→ forAll(di: Module| di.scheduler→
forAll(ef:Scheduler| (ef.required→notEmpty()) implies (System.allInstances()→ one(sy:System|
(sy.shortName=e1.Name) and (sy.softwareComposition.softwareComposition.port→
one(rp:PortPrototype| (rp.shortName=ef.Name) and (rp.oclIsTypeOf(RPortPrototype))))))))))

Table 2. Formulated OCL Constraints

Multiplicity Invariants ensure that the transformation does not produce an
output that violates the multiplicities in the AUTOSAR metamodel (Fig. 2).
As described in Section 3, the prototype generates a USE specification with a
multiplicity invariant for each multiplicity in the AUTOSAR metamodel. Ide-
ally, we would check the satisfiability of all the multiplicity invariants generated
for the AUTOSAR metamodel. Since our transformation manipulates a subset
of the metamodels, we only check multiplicity invariants for output elements af-
fected by our transformation. We have identified six of the generated multiplicity
invariants that are affected by our transformation. (M1) ensures that each Com-
positionType is associated to more than one ComponentPrototype through the
component association. (M2) ensures that each SoftwareComposition is associ-
ated with one CompositionType through the softwareComposition association.
The rest of the multiplicity invariants can be interpreted in a similar way.

Uniqueness Contracts require the output element (of type Y) generated by
a rule to be uniquely named (by the shortName attribute) within its respective
scope if the corresponding input element (of type X) matched by the rule is
uniquely named (by the Name attribute) within its scope too. For example, in
Section 4.1, we discussed that the matched rule createComponent maps Modules
to ComponentPrototypes. Thus, U1 mandates that the ComponentPrototypes
generated by the transformation are uniquely named, if the corresponding Mod-
ules are uniquely named too. The rest of the uniqueness contracts are similar
and ensure uniqueness of the output elements of each rule described in Section
4.1 if their corresponding input elements are unique too.

The only security invariant defined, S1, mandates that within any System ele-
ment, all its composite SwcToEcuMappings must refer to ComponentPrototypes
that are contained within the CompositionType lying under the same System
element (refer to Fig. 1). Thus, this invariant assures that any ECU configura-
tion (modeled by a System element) is self contained and does not refer to any
ComponentPrototype that is not allocated in that ECU configuration.

Pattern contracts require that if a certain pattern of elements is found in
the input model, then a corresponding pattern of elements must be found in the
output model. Pattern contracts also mandate that corresponding elements in
the input and output patterns must have the same name. P1 mandates that if a
PhysicalNode is connected to a Service through the provided association (in the
input model), then the corresponding System element will eventually be con-
nected to a PPortPrototype. P1 also ensures that the names of the PhysicalNode
and the System are equivalent and that the names of the Scheduler (containing
the Service) and the PPortPrototype are equivalent. The contract P2 is similar
to P1 but manipulates required Services and RPortPrototypes instead.

Since invariants are constraints on target metamodel elements, the Multi-
plicity and Security invariants are specified within the context of their respec-
tive AUTOSAR elements. Since contracts are constraints on the relationships
between the source and target metamodel elements, they do not relate to an
AUTOSAR element per se. Thus, we add a class to the USE specification file,
Global, which is used as the context of the Uniqueness and Pattern contracts.

Fig. 5. Counterexample generated for the mult. inv. CompositionType component.

5 Results

In this section, we discuss the results of verifying the OCL contraints defined in
Section 4.2 using the verification prototype. We show how the verification pro-
totype was able to uncover bugs in the GM-to-AUTOSAR transformation that
were fixed and re-verified. We also describe the results of a study to determine
the performance of the used verification approach.

5.1 Verifying the Formulated OCL Constraints

Using the verification prototype, we generated a USE specification and a search
configuration as shown in Fig. 4. After adding the constraints (Table 2) to the
USE specification, we ran the USE tool once for each constraint.

Out of the 18 constraints defined in Table 2, two multiplicity invariants were
found to be violated by the transformation: CompositionType component and
SwcToEcuMapping component. In other words, our transformation can generate
a CompositionType with no ComponentPrototypes and/or a SwcToEcuMapping
with no ComponentPrototypes. Both of these possible outputs violate the mul-
tiplicities defined in the AUTOSAR metamodel (Fig. 2). The counterexamples
were found by USE even within a scope of just one object per concrete class.

Due to the page limit, we only show an excerpt of the counterexample gen-
erated for the invariant CompositionType component in Fig. 5. The counterex-
ample shows that the rule initSysTemp maps a PhysicalNode to five elements,
one of which is CompositionType. Since the rule does not have any restrictions
on the generated CompositionType, it was created without associating it to any
ComponentPrototype through the component association. The counterexample
for the SwcToEcuMapping component invariant was similar showing that the
initSingleSwc2EcuMapping rule creates a SwcToEcuMapping element with-
out mandating that it is associated to any SwCompToEcuMapping component
element through the component association.

After examining the two counterexamples generated by USE for the two
violated multiplicity invariants, we identified two bugs in two rules shown in
Table 3: initSysTemp and initSingleSwc2EcuMapping. The bold, underlined
text are the updates to the rules that fix the two bugs. initSysTemp initially
mapped a PhysicalNode to many elements, including a CompositionType that
must contain at least one ComponentPrototype. If the PhysicalNode did not
have any Module in any of its Partitions, then the created CompositionType will
not contain any ComponentPrototypes. Thus we added a matching constraint

rule initSysTemp{
from ph: GM!PhysicalNode (ph.partition→exists(p|p.Module→notEmpty()))

to
. . .
compostype:autosar!CompositionType(
. . .
component ←ph.partition→collect(p|p.Module)→flatten()→collect(m|
thisModule.resolveTemp(m, ’comp’))) }

rule initSingleSwc2EcuMapping {
from p:GM!Partition((GM!PhysicalNode.allInstances()→one(ph|ph.partition→includes(p)))

and(p.module→notEmpty()))

to
mapping:autosar!SwcToEcuMapping (
shortName ← p.Name,
component ← p.Module→collect(m|thisModule.resolveTemp(m, ’mapComp’)),
ecuInstance ←thisModule.resolveTemp((GM!PhysicalNode.allInstances()→select(ph|
ph.partition→includes(p)))→first(),’EcuInst’))}

Table 3. The two rules that required updates to address the two violations of multi-
plicity invariants.

to the PhysicalNode matched by the rule to ensure that any of its Partitions
must contain at least one Module. Similarly, initSingleSwc2EcuMapping ini-
tially mapped a Partition to a SwcToEcuMapping that must contain at least one
SwCompToEcuMapping component. If the Partition did not have any Module,
then the created SwcToEcuMapping will not contain any SwCompToEcuMap-
ping component. Thus we added a matching constraint to the Partition matched
by the rule to ensure that it must contain at least one Module.

The 18 constraints were reverified on the updated transformation, and were
all found to be satisfied.

5.2 Performance of the Verification Approach

To explore the performance of our approach, we used the verification prototype
to verify the 18 constraints (Table 2) for different scopes. We ran the verification
with scopes between one and 12. We only show the results for scopes 6, 8, 10, and
12 due to the page limit. The scope determines the maximum number of objects
per concrete class in the search space. In our tests, we used the same scope for
all classes, although it could be set individually. Since our transformation model
has 1586 classes, a scope of n generates a model with 1586n potential elements
(and their corresponding links and attribute values). All experiments where run
on a standard laptop at 2.50 GHz and 16 GB of memory, using Java 7, Kodkod
2.0, and Glucose 2.1.

For each combination of constraint and scope, the prototype generates two
time values: the time the prototype takes to translate the relational logic formula
into a propositional formula (i.e., translation time) and the time the SAT solver
takes to solve the formula (i.e., constraint solving time).

We show these two time values (in seconds) in Table 4. Each column rep-
resents the time intervals for each of the 18 constraints, where the Constraint
Abbreviation is the abbreviation given to each constraint in Table 2 (e.g., (M1)
and (U5)). Each row represents the time intervals for a different scope. Thus,

each cell within the table shows the translation time and the constraint solving
time of a certain constraint at a specific scope.

Constraint Abbreviation (from Table 2)

U1 U2 U3 U4 U5 U6 U7 U8 U9

S
co

p
e
 6 76 \ 25 76 \ 19 76 \ 22 76 \ 7 77 \ 19 76 \ 24 76 \ 7 76 \ 7 74 \ 5

8 169 \ 74 165 \ 79 168 \ 106 165 \ 37 168 \ 85 171 \ 68 167 \ 38 166 \ 57 169 \ 45

10 279 \ 165 280 \ 188 279 \ 210 281 \ 114 277 \ 211 280 \ 207 281 \ 147 282 \ 170 279 \ 206

12 455 \ 976 434 \ 643 431 \ 623 428 \ 322 426 \ 827 428 \ 616 425 \ 584 427 \ 604 430 \ 501

Constraint Abbreviation (from Table 2)

M1 M2 M3 M4 M5 M6 S1 P1 P2

S
co

p
e

6 74 \ 2 73 \ 0.4 74 \ 1 74 \ 1 75 \ 0.5 74 \ 0.5 74 \ 40 242 \ 14 244 \ 7

8 162 \ 2 162 \ 1 164 \ 2 163 \ 2 164 \ 1 166 \ 1 168 \ 429 1453 \ 37 1422 \ 65

10 280 \ 12 281 \ 1 277 \ 6 281 \ 3 275 \ 1 274 \ 1 277 \ 3619 6225 \ 80 6178 \ 249

12 426 \ 18 425 \ 1 421 \ 25 424 \ 4 422 \ 1 425 \ 1 * 21312 \ 710 21092 \ 814

Table 4. Translation\Constraint Solving times (seconds) for the 18 constraints on
different scopes. For a scope of 12, the verification of S1 did not terminate in a week.

Two observations can be made from Table 4. First, despite the exponential
complexity of checking boolean satisfiability, we could verify the postconditions
for scopes up to 12 in most of the cases; only the analysis of S1 did not finish
for scope 12; the constraint solving time of S1 in scope 10 was the longest (just
over an hour). Although we have no proof that no bugs will appear for bigger
scopes, we are confident that a scope of 12 was sufficient to uncover any bugs in
our transformation with respect to the defined constraints. In fact, the two bugs
that were uncovered and fixed were found at a scope of one.

Second, the translation times are larger than expected and grow mostly poly-
nomially. This can be attributed to the approach used by Kodkod to unfold a
first-order relational formula into a set of clauses in conjunctive normal form
(CNF), given an upper bound for the relation extents [33]. While transforming
a formula into CNF grows exponentially with the length of the formula, it only
grows polynomially with the scope in our case (as the formula’s length does not
change significantly). For example, each pair of nested quantifiers will generate a
number of clauses that grows quadratically with the scope. The relational logic
constraints generated implicitly by USE for all associations expand similarly.
This justifies why the two pattern contracts (i.e., P1 and P2) show the highest
translation times; they have the most quantifiers of the 18 constraints.

Using an incremental SAT solver would improve the performance of the pro-
totype. Since most of the generated Boolean formula is the same for all the 18
constraints (i.e., the encoding of classes, associations, multiplicities, and precon-
ditions), we expect that the translation (i.e., the first number in each cell of
Table 4) can be done once for the entire verification process; except for P1 and
P2 which differ in their high number of nested quantifiers.

6 Discussion

6.1 Strengths of the Verification Approach

We claim that the verification approach is practical to use for two reasons. First,
the used approach provides a fully automated translation from ATL transfor-
mations and their constrained metamodels to OCL and relational logic. The

approach further provides a fully automated verification of the generated trans-
lation. Even when applied to a realistic case study, the approach scaled to a scope
that was large enough to strongly suggest that the analysis did not overlook a
bug in the transformation due to the boundedness of the underlying satisfiabil-
ity solving approach. If we wanted to perform the same verification on a Java
implementation of the transformation, we would require equally rich class and
operation contracts for, say, Ecore in JML [21]. To the best of our knowledge, no
research has explored automatically inferring such contracts. Even then, we ex-
pect that the user would have to explicitly specify loop invariants as soon as the
transformation contains non-trivial loops, like the loops in our transformation.

Second, the study translates a substantial subset of ATL for verification, i.e.,
all rules except for imperative blocks, recursive lazy rules and recursive query
operations other than relational closures. Thus, the approach takes advantage of
the ways declarative, rule-based transformation languages (e.g., ATL) provide to
iterate over the input model without requiring recursion or looping. This simpli-
fies verification by, for instance, obviating the need for loop invariants. Although
this subset of ATL is not Turing-complete, it can be used to implement many
non-trivial transformations. We have statically checked the 131 transformations
(comprising 2825 individual rules) in the ATL transformation zoo [36], and 83
of them fall into the described fragment, i.e., neither use recursive rules nor
imperative features. Of the remaining 48 transformations, 24 of them that use
imperative blocks but no recursion could be expressed declaratively, too.

We conclude that our verification approach greatly benefited from the concep-
tual simplicity of the declarative fragment of ATL compared to, e.g., a general-
purpose programming language such as Java.

6.2 Limitations of the Verification Approach

We identify two limitations of the verification approach.
Correctness of ATL-to-relational-logic translation: Extensive testing

and inspection was used to ensure that all steps involved in the translation of
ATL and OCL to first-order relational logic are correct. However, in the absence
of a formal semantics of ATL and OCL, a formal correctness proof is impossible
and the possibility of a bug in the translation remains. This should be taken into
account before our approach is used in the context of safety-critical systems.

Bounded search approach: All verification approaches based on a
bounded search space cannot guarantee correctness of a transformation because
the scopes experimented with may have been too small. The maximum scope
sufficient to show bugs in a transformation is transformation-dependent. For ex-
ample, a transformation with a multiplicity invariant that requires a multiplicity
to be 10, will require a scope of 11 to generate a counterexample for that invari-
ant, if any. With respect to our case study, we are confident that a scope of 5
is sufficient to detect violations of the given constraints; we ran analyses with
scopes up to 12, because we wanted to study the performance of the approach.
Real proofs of unsatisfiability can be created using SMT solvers and quantifier
reasoning [9], but the problem is generally undecidable (i.e., the SAT solver does

not terminate on all transformations), and the mapping presented in [9] does
not yet cover all language features used in our case study. Further, we have not
yet applied any a priori optimizations of the search problem, e.g., metamodel
pruning [30], which we plan to apply for future work.

7 Related Work

There are several approaches that translate declarative model transformations
into some logic or logic-like language to perform automated verification. Anas-
tasakis et al. [3] and Baresi and Spoletini [5] use relational logic and the Alloy
analyzer to check for inconsistencies in a transformation. Inaba et al. [19] verify
the typing of transformations with respect to a metamodel using second-order
monadic logic and the MONA solver. Troya and Vallecillo [34] define an encod-
ing of ATL in rewriting logic, that can be used to check the possible executions
of a transformation in Maude. Cabot et al. [11] translated QVT-R and triple
graph grammar transformations into OCL contracts, requiring an OCL model
finder to conduct the counterexample checking. Our translation of ATL into OCL
(based on [10]) closely resembles this approach. In another previous work [9], we
have presented a mapping of ATL directly into first-order logic, using quantifier
reasoning to prove transformation properties with SMT solvers.

Asztalos et al. [4] formulated transformations and their properties as asser-
tions in first-order logic. A deduction system was implemented to deduce the
properties from the rules. Lucio et al. [24] verified correctness constraints for
transformations in DSLTrans language using a model checker implemented in
Prolog. Rensink [28] checked first-order linear temporal properties for graph
transformation systems. Becker et al. [6] verified a metamodel refactoring imple-
mented as a graph rewriting system by extending the metamodel with predicate
structures which were used to specify well-formedness graph constraints. Sten-
zel et al. [31] implemented an algebraic formalization of a subset of operational
QVT in the KIV theorem prover.

There are also several approaches that use OCL constraints to specify con-
tracts for model transformations. Guerra et al. [18], Gogolla and Vallecillo [16],
Braga et al. [7], and Cariou et al. [12] discussed testing transformations against
contracts. In the same vein, Narayanan et al. [26] discuss a methodology to spec-
ify structural correspondence rules between source and target. Our constraints
presented in Sect. 4.2 can be considered a transformation contract in this sense,
although we do not use the contracts to test the actual transformation imple-
mentation but use them to verify the transformation independent of any input.

Regarding the used approach to check the satisfiability of OCL-constrained
models, there are several potential alternatives to the USE Model Validator [23]
that we employed. Gonzalez et al. [17] implemented the EMFtoCSP model finder
that encodes metamodels and OCL constraints as constraint-logic programs
(performing bounded verification). Queralt and Teniente [27] implemented a
symbolic reasoning procedure for OCL constraints, based on predicate calculus.
Brucker et al. [8] implemented the HOL-OCL theorem prover to interactively

prove correctness constraints. Jackson et al. [20] used the FORMULA tool to
reason about metamodels, but they did not support OCL.

The novel aspect of our study is two-fold: First, we have applied an automated
verification methodology to an industrial model transformation implemented
in the ATL transformation language. Second, we have shown the applicability
of this approach to realistic search spaces and discussed the performance of
our approach. Most of the referenced research papers evaluate their verification
approach on small examples and do not address the performance aspect.

8 Conclusion and Future Work

In this study, we demonstrated how automated verification can be useful in
verifying industrial transformations. First, we described the GM-to-AUTOSAR
transformation that we have developed for General Motors [29]. We also dis-
cussed an automated transformation verification prototype that works on the
declarative, non-recursive subset of ATL and its application to our transforma-
tion. The prototype was able to uncover two bugs in the transformation that
violated two multiplicities in the AUTOSAR metamodel. We further discussed
the performance of the verification prototype by showing the translation and
constraint solving times for all the constraints over different scopes. The num-
bers showed that both the Translation times and the Constraint Solving times
grow exponentially with the scope. Nonetheless, analysis of the transformation
in sufficiently large scopes (up to 12) was possible. We conclude that the appli-
cation of our verification approach to the case study was successful and provides
evidence for its practicality, even in industrial contexts.

For future work, this study can be extended in several ways. First, other
industrial transformations should be incorporated in the case study to have a
better idea of the practicality of using automated verification on such transfor-
mations. Our case study explored a transformation that manipulates metamodels
that are considered large on an industrial scale. The transformation, although
far from being trivial, does not fully manipulate the two metamodels. We con-
ducted a couple of experiments that show that the verification problem scales
almost linearly when more independent rules are added. However, we still need
to investigate the performance on larger and more complex transformations. As
a result of our demonstration of the effectiveness of our approach in migrating
a subset of the GM metamodel to its AUTOSAR equivalent, engineers at Gen-
eral Motors have expressed interest in extending the transformation to the full
scope of the GM metamodel. Second, incremental SAT solvers can be used in the
bounded search approach to improve the performance and the execution time
of the approach, as suggested in Section 5.2. Third, pruning of the manipulated
metamodels or the transformation model can be applied before executing the
bounded search, as suggested in Section 6.2.

References

1. AUTOSAR Consortium. AUTOSAR System Template,
http://AUTOSAR.org/index.php?p=3&up=1&uup=3& uuup=3&uuuup=0&
uuuuup=0/AUTOSAR TPS SystemTemplate.pdf, 2007.

2. AUTOSAR Consortium. AUTOSAR, http://AUTOSAR.org/, 2007.

3. K. Anastasakis, B. Bordbar, and J. Küster. Analysis of Model Transformations
via Alloy. MoDeVVa, pages 47–56, 2007.

4. M. Asztalos, L. Lengyel, and T. Levendovszky. Towards Automated, Formal Ver-
ification of Model Transformations. In ICST, pages 15–24, Paris, France, 2010.

5. L. Baresi and P. Spoletini. On the Use of Alloy to Analyze Graph Transformation
Systems. In ICGT, volume 4178 of LNCS, pages 306–320, 2006.

6. B. Becker, L. Lambers, J. Dyck, S. Birth, and H. Giese. Iterative Development of
Consistency-Preserving Rule-Based Refactorings. ICMT, pages 123–137, 2011.

7. C. Braga, R. Menezes, T. Comicio, C. Santos, and E. Landim. On the Specification,
Verification and Implementation of Model Transformations with Transformation
Contracts. In SBMF, volume 7021 of LNCS, pages 108–123, 2011.

8. A. D. Brucker and B. Wolff. Semantics, Calculi, and Analysis for Object-Oriented
Specifications. Acta Informatica, 46(4):255–284, 2009.

9. F. Büttner, M. Egea, and J. Cabot. On Verifying ATL Transformations Using
Off-the-Shelf SMT Solvers. In MODELS, volume 7590 of LNCS, pages 432–448,
2012.

10. F. Büttner, M. Egea, J. Cabot, and M. Gogolla. Verification of ATL Transforma-
tions Using Transformation Models and Model Finders. In ICFEM, volume 7635
of LNCS, pages 198–213, 2012.

11. J. Cabot, R. Clarisó, E. Guerra, and J. de Lara. Verification and Validation of
Declarative Model-to-Model Transformations Through Invariants. Systems and
Software, 83(2):283–302, 2010.

12. E. Cariou, N. Belloir, F. Barbier, and N. Djemam. OCL Contracts for the Verifi-
cation of Model Transformations. EASST, 24, 2009.

13. T. Cottenier, A. Van Den Berg, and T. Elrad. The Motorola WEAVR: Model
Weaving in a Large Industrial Context. In AOSD, volume 32, Vancouver, Canada,
2007.

14. A. Daghsen, K. Chaaban, S. Saudrais, and P. Leserf. Applying Holistic Distributed
Scheduling to AUTOSAR Methodology. In ERTSS, Toulouse, France, 2010.

15. H. Giese, S. Hildebrandt, and S. Neumann. Model Synchronization at Work:
Keeping SysML and AUTOSAR Models Consistent. Graph Transformations and
Model-Driven Engineering, 5765:555–579, 2010.

16. M. Gogolla and A. Vallecillo. Tractable Model Transformation Testing. In ECMFA,
pages 221–236, Birmingham, UK, 2011.

17. C. A. González Pérez, F. Büttner, R. Clarisó, and J. Cabot. EMFtoCSP: A Tool
for the Lightweight Verification of EMF Models. In FormSERA, pages 44–50,
Zurich, Switzerland, 2012.

18. E. Guerra, J. de Lara, M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger,
J. Schönböck, and W. Schwinger. Automated Verification of Model Transforma-
tions Based on Visual Contracts. Automated Software Engineering, 20(1):5–46,
2013.

19. K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Graph-Transformation
Verification Using Monadic Second-Order Logic. In PPDP, pages 17–28, 2011.

20. E. Jackson, T. Levendovszky, and D. Balasubramanian. Automatically reasoning
about metamodeling. SoSyM, pages 1–15, 2013.

21. B. Jacobs and E. Poll. A Logic for the Java Modeling Language JML. In FASE,
volume 2029 of LNCS, pages 284–299, 2001.

22. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A Model Transformation
Tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

23. M. Kuhlmann, L. Hamann, and M. Gogolla. Extensive Validation of OCL Models
by Integrating SAT Solving into USE. In TOOLS, volume 6705 of LNCS, pages
290–306, 2011.

24. L. Lúcio, B. Barroca, and V. Amaral. A Technique for Automatic Validation of
Model Transformations. MODELS, pages 136–150, 2010.

25. P. Mohagheghi and V. Dehlen. Where is the Proof?-A Review of Experiences from
Applying MDE in Industry. In ECMDA–FA, pages 432–443, 2008.

26. A. Narayanan and G. Karsai. Verifying Model Transformations by Structural
Correspondence. EASST, 10(0), 2008.

27. A. Queralt and E. Teniente. Verification and Validation of UML Conceptual
Schemas with OCL Constraints. TOSEM, 21(2):13, 2012.

28. A. Rensink. Explicit State Model Checking for Graph Grammars. In Concurrency,
Graphs and Models, volume 5065 of LNCS, pages 114–132, 2008.

29. G. Selim, S. Wang, J. Cordy, and J. Dingel. Model Transformations for Migrating
Legacy Models: An Industrial Case Study. ECMFA, pages 90–101, 2012.

30. S. Sen, N. Moha, B. Baudry, and J.-M. Jézéquel. Meta-model Pruning. In MOD-
ELS, volume 5795 of LNCS, pages 32–46, 2009.

31. K. Stenzel, N. Moebius, and W. Reif. Formal Verification of QVT Transformations
for Code Generation. MODELS, pages 533–547, 2011.

32. M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use of Higher-
Order Model Transformations. In ECMDA-FA, volume 5562 of LNCS, 2009.

33. E. Torlak and D. Jackson. Kodkod: A Relational Model Finder. In TACAS, volume
4424 of LNCS, 2007.

34. J. Troya and A. Vallecillo. A Rewriting Logic Semantics for ATL. Journal of
Object Technology, 10:5: 1–29, 2011.

35. The USE Validator. available online, http://sourceforge.net/projects/useocl/files/
Plugins/ModelValidator/.

36. The ATL Transformation Zoo. available online,
http://www.eclipse.org/atl/atlTransformations/.

