
Fig. 1. TXL function call graph

Fig. 2. Call graph for modified TXL program

Application Strategy Decomposition
Rule application strategies are implicitly
programmed as part of the functional
decomposition of the transformation rule set,
which controls how and in which order subrules
are applied. Transformation rule isolation
breaks down a strategy into isolated regions
that can be evaluated separately. The result is
a new application strategy with the target rule
acting as the entry point.

Fig. 3. Unmodified TXL rule application strategy

Fig. 4. Application strategy fragments

TETE: Unit Testing for Source Transformation
Derek M. Shimozawa, James R. Cordy, and Adrian Thurston

Software Technology Laboratory, School of Computing, Queen’s University
Kingston, Canada

Debugging Transformation Rules
Source transformation processes are
implemented using sets of individual
subtransformations that map syntactic
substructures in the problem domain to those
of the solution domain. Typically, rewrites
cannot be executed independently from the
overall transformation. As a result, localizing
and analyzing rewrite errors within a large
group of rules can be difficult, especially for
inexperienced users [4].

Debugging Application Strategies
Rewrite systems also include traversal control
facilities and application conditions to define
the order and scope of application of
intermediate tree rewrite rules. Determining an
appropriate application strategy can be a
challenging task, in part because rewrites can
be composed in various arrangements to return
syntactically valid, but semantically incorrect,
results.

Debugging Transformation Grammars
Transformation systems require the definition
of a context-free grammar that describes the
form of the source input. Transformation
grammars often allow for unrestricted
grammatical forms, without analyzing or
checking for errors. Even though a grammar
may be flawed, an erroneous definition often
will not surface until the user generates a parse
that descends into the flawed structure.

Pedagogy
Source transformation systems usually work
well to help experienced developers quickly
produce source transformations, at the cost
that they presume a strong grasp of the
underlying paradigm fundamentals and place
their target audience well above the
introductory level [1].

Presented at CASCON 2005 , Richmond Hill, Ontario, Canada (October 2005) This work was supported by an IBM Eclipse Innovation Grant
and by the Natural Sciences and Engineering Research Council of Canada

TETE provides a set of Eclipse plug-ins
designed to make editing, testing and
debugging TXL source transformations simpler
and more accessible. As the range of
transformation applications increases, the role
of TETE as a general solution environment will
become a compelling possibility for the future.

VI. Conclusion

References

I. Motivation

[1] E. Allen, R. Cartwright, and B. Stoler. DrJava: A Lightweight Pedagogic
Environment for Java. SIGCSE Bull., pp. 137-141, 2002.

[2] J. R. Cordy. TXL – a language for programming language tools and applications.
Proc. LDTA 2004, pp. 1-27, 2004.

[3] S. H. Edwards. Rethinking Computer Science Education from a Test-First
Perspective. In OOPSLA '03: Companion of the 18th annual ACM SIGPLAN
Conference on Object-oriented programming, systems, languages, and
applications, pp. 148-155, 2003.

[4] R. B. Findler, J. Clements, C. Flanagan, M. Flatt, S. Krishnamurthi, P. Steckler,
and M. Felleisen. DrScheme: A Programming Environment for Scheme. Journal
of Functional Programming, pp. 159-182, 2002.

[5] OTI Technologies. Eclipse Platform Technical Overview. Technical report,
Object Technology International, Inc., February 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf; accessed 2004

[6] C. Reis and R. Cartwright. A Friendly Face for Eclipse. In Eclipse '03:
Proceedings of the 2003 OOPSLA workshop on Eclipse technology eXchange,
pp. 25-29, 2003.

III. Rule Testing

II. TETE
A Unit Testing Framework
To address the unique learning and
development challenges posed by the source
transformation paradigm, we present the TXL
Engineering Toolkit for Eclipse (TETE). TETE
is a set of Eclipse plug-ins that provides a
simple, consistent interface for automatically
and non-invasively unit testing pattern
replacements (subtransformations), rewrite
strategies (which are implicitly defined by the
composition of subtransformations), and
grammar types written in the TXL source
transformation language [2, 6].

optimizeAddOne optimizeAddZero

simplifymain

optimizeAddOnemain

optimizeAddZero

Pattern-Replacement Isolation
Structurally, TXL rules are organized into a
rooted pure functional program in which lower
level rules are applied as functions on scopes
captured by higher level patterns. By
synthesizing a transformation entry point that
directly invokes the rule of interest (target rule),
a user can bypass the rules that reside outside
of the target rule's scope, thereby isolating the
pattern-replacement effects of the target rule.

IV. Grammar Testing

Context-free Grammar Type Isolation
TXL Grammar redefinitions (overrides) can be
used for the generation of language dialects
and variants without modifying the base
grammar. The effective grammar is the one
that is formed by substituting each redefinition
into the base grammar in the order that it
appears in the TXL program. TETE
automatically isolates a non-terminal of interest
(target type) by redefining the root non-terminal
so that it directly references the target type.

Fig. 5. TXL grammar type isolation

Thus far, our methodology has been focused
on using functional decomposition and
grammar overriding to isolate individual TXL
rules and non-terminals [3]. Without an
automation process, a program must be
manually mutated to denote new rule and
grammar entry points. To address this issue,
the TXL Test Generator provides non-invasive
test stub generation to automate the program
mutation process for TXL programmers [5].

Fig. 8. TXL Test Generator

V. Unit Test Automation

Original Program
Read TXL Source Model Extract

Dependencies
TXL Test Generator

TXL RTIV

Test Input

Data

Read

Mutated Program
Copy and

Mutate

TETE Framework

<adverb>

<program>

<sentence>

<noun_phrase> <verb_phrase>

<adjective> <noun_phrase>

<adjective> <noun>

<verb>

the little boy quicklyran quickly

<verb_phrase>

<program>

<verb> <adverb>

ran

Grammar Scope Refinement
When used together with rule isolation, type
isolation greatly simplifies the evaluation
process by refining a program's grammar
according to the specific scoping requirements
of the target rule. Programmers can therefore
test their rules with refined instances of
grammatical input that directly and concretely
demonstrates pattern-replacement behavior.

Fig. 6. Refinement of scope to rule patterns

Output

Input Main

. . .

Trans 1

Trans n

Trans 2

Pattern 1

Pattern 2

Output 1

Output 2

. . .

main A B0

B1

C

main B0

B1

main B1

