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Abstract. There is need for more formal specification of recognition
tasks. Currently, it is common to use labeled training samples to il-
lustrate the task to be performed. The mathematical theory of games
may provide more formal and complete definitions for recognition tasks.
We present an imitation game that describes a wide variety of recogni-
tion tasks, including the classification of isolated patterns and structural
analysis. In each round of the game, a set of ‘players’ try to match the
interpretation of an input produced by a set of ‘experts.” The ‘playing
field’ on which experts and players operate is a set of interpretations gen-
erated from legal sequences of ‘moves’ for a round. The expert and player
moves transform interpretations, and select interpretations for output.
The distance between interpretations in the playing field is defined by
a distance metric for interpretations, and the game outcome by a rank-
ing function on distance values observed for players’ interpretations. We
demonstrate how this imitation game may be used to define and compare
recognition tasks, and clarify the evaluation of proposed solutions.

1 Introduction

Many recognition tasks have strong similarities to the children’s game ‘pin the
tail on the donkey.” In that game, players are shown a picture of a donkey without
a tail. Players take turns being blindfolded, turned around several times, and
then trying to place a pin with an attached tail at the proper location on the
donkey. At the end of the game, the adult running the game awards prizes to
the children based on the closeness of their pins to the ‘proper’ location. At first,
‘pin the tail on the donkey’ might seem like a strange analogy for recognition
tasks, but consider the following similarities.

1. The basic task is to choose points in space. In the game, a pin is used
to pick a physical location within a room. In recognition, interpretations
of an input or object are selected from a space of possible interpretations.
The relative distances (‘closeness’) of interpretations within the space are
determined by a distance metric (e.g. classification risk or edit distance).

2. Goal points are determined by an expert opinion. In the game, the
adult chooses the optimal tail location(s) using his or her understanding



of donkey anatomy. For recognition tasks, one or more experts use their
understanding of the problem domain to select goal interpretations.

3. From an initial point in space, the goal point(s) must be guessed.'
In each turn of the game, a blindfolded and disoriented player must make a
sequence of guesses as to how to move and eventually place their tail from
their starting position. Similarly, despite ambiguities in an input’s content or
introduced by noise, a recognition protocol must make a sequence of guesses
about which interpretations should be considered and/or selected as goal
interpretations, starting from some initial interpretation (e.g. ‘reject’).

4. Guesses are ranked using their distance from the expert opinion.
In the game, tail locations are ranked using the distance from pins to the
location(s) chosen by the adult. For recognition tasks, recognition protocols
are ranked using a function of the distances from guessed to goal interpre-
tations within the interpretation space (e.g. the minimum, mean, or median
of interpretation space distances observed for a test sample).

We propose that like the players in ‘pin the tail on the donkey,” recognition
systems evaluated against expert opinions are engaged in an imitation game
where players producing responses that are closest to that of an expert opinion
are deemed most successful. The outcome of such a game depends directly upon
expert opinion(s), how ‘closest’ is defined, and the interpretation spaces used
by experts and players, which may not coincide. As an extreme example, if the
donkey picture in ‘pin the tail’ is placed too high for a child to reach the goal
tail location(s), the child might not consider these locations (i.e. they do not
exist in the child’s interpretation space). Similarly, the use of different domain
models by experts and recognition algorithms may produce ‘holes’ in the algo-
rithms’ interpretation spaces, which may prevent goal interpretations from being
considered.

Using an imitation game to define recognition tasks places evaluation within
problem definitions, as opposed to treating evaluation as a validation of proposed
solutions for more abstract problems. This is similar to how Turing avoided
directly considering whether machines “think” by instead considering outcomes
of his own famous imitation game [3]. As an example, consider classifying images
of handwritten digits (0..9) when the cost (risk) of classification error is fixed, as
opposed to when it is not (i.e. solutions try to ‘recognize digits,” in the absence of
an explicit evaluation scheme). In the second scenario, an evaluation mechanism
may be chosen after solutions for recognizing digits have been defined. This
compares solutions unfairly, particularly if they are designed assuming different
evaluation schemes. Evaluation in the context of an imitation game is more
meaningful, because the assumptions (‘rules’) under which solutions (‘players’)
operate are explicit and uniform. Imagine telling children after placing two tails
each in ‘pin the tail on the donkey’ that they will be ranked by mean rather
than minimum pin distance.

! Interesting discussions pertaining to guessing in pattern recognition have recently
been provided by Kanatani [1] and Oommen and Rueda [2].



Games and game theory [4,5] have of course been used previously in the
pattern recognition literature. For example, game-theoretic models have been
used for combining modules in vision systems [6, 7] and for modeling sequential
prediction problems [8]. Based on earlier work for monitoring aircraft engines [9],
Pau has modeled Bayesian classification using two-player games, with a classifier
deciding the a posteriori probabilities of input patterns, and a teacher providing
the a priori class probabilities to the classifier [10]. A zero-sum game between
the teacher and classifier is used for the worst-case, when the teacher tries to
maximize the number of errors made by the classifier. A bi-matrix game in
which teacher and classifier may cooperate is also examined. Optimal strategies
for player and teacher in each game (equilibrium solutions) are presented.

We are taking a different tack here, as we present a class of games for defin-
ing and comparing various recognition problems, including the classification of
isolated patterns and structural analysis. The purpose of our imitation game is
to compare recognition strategies rather than optimize a single one, as in Pau’s
game. For this discussion we assume that all our ‘players’ produce a sequence of
decisions, leaving issues pertinent to parallelism for the future. We use examples
from ‘pin the tail on the donkey,” digit recognition, and table cell detection for
illustration.

2 Rules of the Game: Interpretation Models

Let’s consider a simple mathematical model for the rules of ‘pin the tail on the
donkey,” ignoring the vertical position of pins. We will model the position of a
child and their tail-pin as a line segment in R?, with the child at one point,
and the pin at the other. The distances between pins will be defined by their
Euclidean distance in R?. During a turn, a child may do the following actions:
move forward, turn varying amounts clockwise or counter-clockwise, and push
their tail-pin forward to fix it in a wall. We model these actions as transforming
the location of the line segment; walking forward translates the segment, turning
rotates the ‘pin’ point around the ‘child’ point, and a successful push of the pin
into the wall fixes the pin location, and ends the turn. If a child pushes their pin
into empty space, the line segment remains unchanged, and the turn continues.

We now have rules for the game, defining the legal space of guesses (interpre-
tation space) from the sequences of moves that a child may perform during their
turn(s). If we include failed pin pushes (pushes into air), the locations a child
may attempt to place the pin includes all the space in R? on and between the
walls of the room. This provides us with a generative model of the interpretation
space, in which a player’s turn is described by a sequence of model operations
(an operation sequence), and the interpretation(s) selected as a result.

In our imitation game for recognition tasks, we will define an interpretation
model as a 7-tuple m:

m = (D™ if", T™, T apply™, 6™, time):..). (1)

max

D™ is a set of problem domain inputs, the set of elements for which interpre-
tations are constructed by the model. For a model m, the interpretation for all



inputs d ¢ D™ is defined as the initial interpretation, ¢j’. For a classification
model, ig* would be ‘reject’, and for a structural recognition model, ¢7* might be
the empty set.

T™ is a set of model operations that transform interpretations, the set of
possible moves for the game. In ‘pin the tail on the donkey,” these were the actions
to move and push the tail-pin. Generally speaking, operations in 7™ create,
delete, classify, segment, and relate entities in interpretations [11]. 7™ must
include an accept operation which marks interpretations for output (as a final
‘guess’ in the game), and may also include a reject transform for reversing an
accept operation. Model operations in 7™ may alter sets of interpretations, such
as for representing the combination of interpretations by a classifier ensemble, or
for generating alternatives. As a simple example, 7™ for an interpretation space
of digit strings might contain accept, reject, and a set of string edit operations
(e.g. replace a digit, transpose a digit, insert a digit, delete a digit).

I'™ defines legal sequences of moves (the model operations, 7") similar to
a string grammar with start symbol ¢7* and terminals 7. Restrictions on the
maximum number of moves in a turn may be enforced by defining I such
that legal transformation sequences have a finite maximum length k. All turns
begin with the initial interpretation (if") as the default interpretation. The legal
interpretation sequences are denoted L™ (the language of model m), and the
interpretation space I™ is obtained using the function apply™.

L™ =T1"(ig", T™) (2)

m=igu | J apply™(s,ig") (3)
seLm™

apply™(s ¢ L™ ,ig") = iy’ (4)

The function apply™ constructs interpretations by applying an operation se-
quence to the initial interpretation (iJ'); illegal sequences are mapped to ijJ".
We define one property of operation sequences, the interpretation history
(™). The interpretation history of an operation sequence s € L™ is the set of
unique interpretations generated over the course of applying the sequence.

Is]

R (s={t €T™, ..t €T™}) = U apply™ (t1..t;) (5)
i=1

An interpretation history contains all unique interpretations constructed during
recognition. This is the set of pin locations for a turn in ‘pin the tail on the
donkey.’

The distance function 0™ defines a distance between interpretations (this
was Euclidean distance in R? for our simple ‘pin the tail’ model). Consider our
example of the digit string interpretation space employing string edit operations
in T™. "™ could be defined as a ‘string edit distance,” the minimum number of
operations needed to transform one digit string to another. Alternatively, if we
use the numerical difference of the numbers represented by the strings for §™,
the operation sequences and distances are less directly related.



The final component of an interpretation model m is time] ..,

time in which an operation sequence may be generated. Unbounded recognition
time may be represented using oco. For both ‘pin the tail on the donkey’ and

real-world recognition problems, time]; . is finite, and relatively small.

the maximum

3 Playing Recognition Games

We now define an imitation game for recognition tasks, in which a sample of
a problem domain is taken, experts define goal interpretations for the sample
elements, and players try to guess the expert interpretations. Experts and play-
ers use two models, differing only in the time for choosing interpretations. This
allows for differences between human ‘experts’ (e.g. using a GUI to create inter-
pretations) and algorithms under real-time constraints.

For a recognition game, the recognition game parameters (g) are an 8-tuple:

g = (m9,timed, timey, p?,n, ¢?, B9, P9). (6)

mY is an interpretation model as described in the previous section. timed is the
maximum time allowed for creating expert interpretation(s), and time] is the
maximum duration of a player’s turn. p9 is a sampling function returning a list
of ¢ elements from a set (e.g. u9(D™ ,q) = (dy € D™ ,....d, € D™)); n is
the sample size used in the game. ¢ is a ranking function, defining an ordering
for sets of values (e.g. ranking by minimum distance, as in ‘pin the tail on the
donkey’).

Players are represented as functions called recognition strategies (P9 = {ax,
.., ap}) returning legal operation sequences from the language of m9 (for i €
{1..p}, au(d € Dmg,mg,timeg) = s € L™). The expert protocol defining goal
interpretations is defined as a pair EY = (A ), where A° = {af,.,af} is
another set of recognition strategies using time restriction timeg, and 3 is a
function combining the expert opinions (operation sequences) to produce goal
interpretation(s) for an input d € D™ (3(a$(d), ..., a$(d)) = {i1, -y im})

Given recognition game parameters g, a recognition game is an imitation
game that proceeds as follows:

1. The game input set DY is defined by
D9 = (D™ ,n) = {d,..d,} € D™ . (7)

2. The goal interpretation set (I3 ) for each input di, € D9,k = 1..n is defined
using the expert protocol EY
3. A series of ‘rounds’ is played, one for each d, k = 1..n. In each round:
(a) Each player in P9 is given dj and produces an operation sequence ({sg‘;
. 535})7 from which the guessed interpretation sets ({17’ Ig:}) are ob-

g9

tained using apply™’ (e.g. I3 = apply™ (s3!))



b) Each player is scored using the distance function of the game interpre-
Y g g
tation model (6™"), to produce a set of distances AgT between each
guessed interpretation in Ig‘: and each goal interpretation in I :

A= J 8@ Ye=1p k=10 (8)

iﬂelj;, iﬁe];k

4. The player ranking is determined by applying the ranking function ¢9 to the
scores from each round (e.g. ¢9({A7'..A3"}) = (a3, {ap, a1}, ...), where a3
wins, and a,, and «; are tied for second place)

4 Decision Making in Recognition Strategies

In our game, the experts and players are modeled by functions called recogni-
tion strategies, which return operation sequences for a problem domain input.
Operation sequences represent decisions made within a series of decision spaces
containing the alternatives for each decision; applying a model operation implies
that some inference has been made regarding the appropriate model instance(s)
for an input [11]. Sequential decision making can be represented by a decision
tree, flow chart, or similar representation [4,5]. We will consider properties of a
decision tree representation for decision making in our recognition games.

Consider Figure 1, which presents a single turn for ‘pin the tail on the donkey.’
Shown are the sequence of decisions made (s = (forward, turn 5 deg. CC,
push)), and the set of alternatives considered. At each point in the tree, some
alternatives will produce identical pin locations. For example, deciding to turn
30° clockwise produces the same pin location as turning 330° counter-clockwise.
Though not shown in Figure 1, at some points certain moves may not be possible
(e.g. moving forward if a chair blocks the child) or even considered. If a child
decides after turning that they are at the right location, they may only consider
pushing the pin (i.e. the decision space has only one element, ‘push pin’).

Let us now define the decision spaces, alternative decision sequences, and
interpretations considered by a recognition strategy « for an input di € DY.
The series of decision spaces encountered by a recognition strategy o may be
represented as a list of subsets of the game moves, T’ :

Qapaces(@,m?, dy, € DI) = {{T{'} CT™, . (T2} €T} (9)

where |s]| is the length of the operation sequence produced by «. The complete
set of alternative operation sequences considered for a given series of decision
spaces A = Qgpaces(, m9, d, € DY) and the related operation sequence s is then
given by:

Is]

S(A,s)={0}uU U U cat(spi—1],a) C L (10)

i=la€cA;



forward [push ] [turn 5deg.C } [turn 5deg. CC ]

[ forward ][push ] [turn 5deg. C }
forward

Fig. 1. Decision tree for one child’s turn in ‘pin the tail on the donkey.” The sequence
of moves (operation sequence) shown is s = (forward,turn 5 deg. CC,push), rep-
resenting the child stepping forward, turning five degrees counter-clockwise, and then
pushing their tail-pin into a wall. ‘... is used to represent turning clockwise and counter-
clockwise in increments of five degrees (from 10° to 355°)

turn 5 deg. CC

[turnsdeg.c } ---[turnSdeg.CC }

where cat appends elements of a decision space (a € A;) to subsequences of s
from lengths 0 (sp,0)) to |[s| —1, and {0} is the empty sequence. S also describes
the exhaustive set of paths from the root of the corresponding decision tree.

The complete set of points in the game’s interpretation space (I mg) consid-
ered by recognition strategy « for input dj, is then given by:

Cs(As)= |J  apply™ (y) 1™ (11)
yeS(A,s)

Equations (9), (10), and (11) allow us to analyze and compare recognition
strategies quantitatively using decision spaces, operation sequences, and inter-
pretations considered. For example, within a recognition game we can determine
if a goal interpretation was considered by a strategy, and if so, in which decision
space(s) (equivalently, at which nodes in the decision tree).

5 Example: A Table Cell Detection Game

We have previously carried out an informal recognition game for table cell de-
tection [12]. We will now formalize the game, using our imitation game. In the
game we compared the detection of table cells within lists of words and lines
in segmented tables. We implemented two table recognition algorithms from
the literature [13, 14] using the Recognition Strategy Language (RSL [12]). RSL
formalizes decision making and captures operation sequences that transform in-
terpretations represented as attributed graphs. One of the authors selected five
challenging tables from the UW-I technical document corpus [15], and then pro-
duced a single set of table cells for each table. Both player algorithms return sin-
gle interpretations. The distance from the algorithms’ cell sets to the author’s
cell sets were measured using the harmonic mean of cell recall and precision
(with a higher mean representing a smaller distance in the interpretation space).
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Expert (author)

Fig. 2. One round of a table cell detection game

The game had a ‘best three out of five’ outcome, where the algorithm with the
highest harmonic mean would ‘win’ for each round (table). One round from the
game is shown in Figure 2, for a table taken from page a038 of the UW-I corpus.
For the round shown, Player 2 wins because both recall and precision are higher
than for Player 1.

Let us now define the interpretation model m¢ for our cell detection game.
The problem domain D™ included the marked tables in the UW-I technical
document corpus. The language of m® was defined with ig”c equal to the empty
set of cells, 7™ containing basic operations of RSL that modify cell hypothe-
ses (e.g. accept, classify, relate), and I"™" defined by legal RSL operation
sequences. The function apply™ was defined by the interpretive layer of the
RSL core that generates interpretations from operation sequences. The distance



m¢

. c . . . .
metric 6™ was 1 - the harmonic mean of cell recall and precision, and time;" .

was roughly 30 minutes, for both the author ‘expert’ and the algorithms.

The cell detection game parameters g included m?9 = m¢, with timed =
timey = timeﬁ;x. Sampling was defined by p9 (select ‘challenging’ tables), with
sample size n = 5. Players were ranked using a ‘best three out of five’ protocol
(¢9). For the expert protocol E9 = (A€, [3) the author acted as the sole ‘ex-
pert’, providing 1 interpretation per table (A¢ = {author}, 8 =‘choose single
best interpretation’). The choice of 8 was significant, because often the author
considered multiple interpretations. Finally, the players P9 were the two table
recognition algorithms. One of the algorithms won; complete details may be
found elsewhere [12].

The two player algorithms used different models of table structure. To ad-
dress this, we isolated operations where cell hypotheses may have been affected.
In terms of our imitation game, this might have been achieved using a more
restrictive model language I’ Tmc C I'"™" that included only sequences of RSL op-
erations affecting cell hypotheses. The generated operation sequences could then
have been filtered to include only these operations (a well-formed version of such
an approach requires further investigation). For both algorithms, we were able to
plot cell recall and precision against operation sequence positions affecting cell
hypotheses, and observe new metrics describing the recall and precision of the
entire set of cell hypotheses. The new metrics rely on the interpretation history
(see equation (5)), and are called historical recall and historical precision. Using
interpretation histories also simplified error analysis, particularly for locating
which operations introduce errors [12].

In the future, we wish to modify RSL to automatically collect the decision
space associated with each operation, given an input. We could then use the
properties defined in the previous section to further compare recognition strate-
gies. The game model might also provide the basis for a formal semantics of the
RSL language.

6 Conclusion

The proposed imitation game defines the variables for a recognition task and
the evaluation of proposed solutions explicitly, using an interpretation model and
game parameters. This allows recognition tasks to be compared quantitatively in
terms of the game variables (e.g. the relative sizes of interpretation spaces), and
stipulates the terms of evaluation within the problem definition. Additionally,
within the game expert and player moves are transparent, and may be compared
using the decision trees they produce for inputs. In the future we are interested
in defining general classes of strategies for specific games, as for example Cesa-
Bianchi and Lugosi [8] have done, and begin considering optimal strategies for
recognition games (similar to what Pau has done for Bayesian classification [10]).

For recognition tasks, we commonly talk about ground-truth as the set of
correct interpretations for a problem domain. However, in practice ground-truth
is comprised of interpretations for a sample of a problem domain, produced



by experts whose opinions may vary and even conflict [16]. We propose that
this type of ground-truth is more accurately understood as expert opinion, as
suggested in this paper.
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