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1 Introduction

The vast majority of algorithms in the table recognition literature are specified informally as a sequence
of operations [7]. This has the undesirable side effects that models of table structure are implicit, defined
generatively by the sequence of operations, and that the effects of intermediate decisions are often lost as
usually a single interpretation is modified in-place.

We wished to compare the Handley [2] and Hu et al. [4]. table structure recognition algorithms and the com-
plete set of table cell hypotheses they each generated, including any rejected in the final result. Rebuilding
the systems using procedural code that transformed data structures for interpretations in-place would not
have achieved this goal. Initially we translated the strategies to a formal model-based (specifically grammar-
based) framework. A well designed model-driven system (such as DMOS by Coüasnon [1]) makes it easier
to observe and record decision making, and can be programmed succinctly by a model specification. How-
ever, we found mapping the sequence of operations in the strategies to a model based description was
difficult, and the formal system required frequent and substantial reconfiguration in order to incorporate
unanticipated requirements.

We then considered an intermediate level of formalization. By using a small set of basic graph-based opera-
tions we could define recognition algorithms as a series of decisions, where the alternatives for each decision
were model operations of a specified type (e.g. classifying table cells as header cells or data cells). This made
the model operations considered and applied at each decision point explicit, permitted dependencies between
logical types to be automatically recovered, and allowed the complete history of hypothesis creation, rejec-
tion, and reinstatement to be automatically captured. The resulting formalization is the Recognition Strategy
Language (RSL).

2 RSL: A Simple Table Cell Recognition Example
Figure 1 shows three words in a table being transformed by RSL into a table cell representation using a
sequence of decision operations. At run-time, each decision determines which model operations to apply
based on the output of a decision function (e.g. selectHorAdjRegions()). The decision syntax defines a
space of possible model operations (that classify, segment, or relate regions), and defines which parameters
and types of elements in the interpretation may be observed by the decision function. For example, in
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Figure 2: Recall, Precision, Historical Recall, and Historical Precision

Decision 3, only Cell regions and the location of their member words are visible to the decision function
labelColumnHeadersAndEntries().

RSL automatically updates interpretations for the programmer; the programmer need only define an RSL
specification and the set of decision functions used in the specification. All decision outcomes are passed to a
Decision Interpeter associated with the decision that insures that the decision returned is valid, i.e. contains
only elements from the decision space. Figure 1 shows the three core RSL decision operations: relating,
segmenting, and classifying regions in the input. In Figure 1 the input regions are bounding boxes for the
three words. These operations create (and accept) hypotheses; other RSL operations reject hypotheses, and
accept interpretations for output. A complete definition of the RSL language is available elsewhere [5].

RSL records all decision outcomes. From the outcomes we may produce a hypothesis history which de-
scribes when hypotheses are first proposed (generated), and the subsequent times at which hypotheses are
rejected or reinstated. Reinstatement refers to when a rejected hypothesis is itself rejected, resulting in the
hypothesis being accepted again. A hypothesis history also records confidence values associated with hy-
pothesis creation, rejection, or reinstatement (e.g. probabilities or fuzzy values).

3 Historical Recall and Precision
From a hypothesis history we may observe new metrics that take rejected hypotheses into account. Figure 2
illustrates the relationship between recall, precision, historical recall and historical precision [6]. Informally
stated, the new historical measures give an algorithm credit for correct hypotheses that it made somewhere
along the way, even if the algorithm later rejected these hypotheses.

Conventional and historical recall can be directly compared, as they both describe coverage of the set of
ground truth elements. Note that historical recall will always be greater than or equal to recall (refer to
Figure 3a). Historical recall never decreases during a recognition algorithm’s progress, while recall may
increase or decrease at any point. It is harder to relate conventional and historical precision, as precision
measures the accuracy of what is accepted as valid, while historical precision measures the accuracy (or
efficiency) of hypothesis generation, in terms of hypotheses that the algorithm considers within the space of
possible interpretations.
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Figure 3: Comparison of Cell detection metrics for Handley and Hu et al. algorithms applied to a Single
Table. The decision numbers shown correspond to the sequence of RSL decision operations that altered cell
hypotheses

4 Decision-Based Comparison of Algorithms
We can use historical recall and precision along with conventional recall and precision to summarize the
decision-making process of algorithms implemented in RSL. Figure 3 presents all four of these metrics for
the Handley and Hu et al. algorithms applied to a single table. The Handley algorithm takes an iterative
approach to modifying cells (specifically, all words are classified as cells, and then cells are merged in
stages), whereas the Hu algorithm only updates cells twice; this is because the Hu algorithm makes many
decisions about other hypothesis types before manipulating cells.

Note that the Handley algorithm has higher recall and precision after Decision 19 than the Hu algorithm at
any point. However, conventional performance evaluation for table structure recognition considers only the
recall and precision of final interpretations, in which case the Hu algorithm appears to perform better. This
new information about the decisions made by each algorithm may also be used to better understand and
combine these strategies. For example, it is possible to combine the RSL decision operations for these two
algorithms to produce a new algorithm which performs better than either for the table in question.

In the future, we plan to apply machine learning techniques to optimally combine recognition algorithms
specified in RSL, making use of hypothesis histories, historical recall and precision, and static analyses of
RSL specifications [3].
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