It is required to derive the number of equivalence relations on the set $X=$ $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, that is, the number of ways to partition X into nonempty, disjoint subsets whose union is X. Let this number be a_{n}.

Suppose that we choose m elements out of $x_{1}, x_{2}, \ldots, x_{n-1}$, where $0 \leq m \leq$ $n-1$. The number of equivalence relations that can be defined on these m elements is a_{m}. To each of these relations, add the $n-m$ leftover elements of X, as an equivalence class by themselves.

Since m elements can be selected out of $n-1$ elements in $\binom{n-1}{m}$ ways, there are $\binom{n-1}{m} a_{m}$ equivalence relations for a given m.

It follows that

$$
a_{n}=\sum_{m=0}^{n-1}\binom{n-1}{m} a_{m}
$$

for $n \geq 1$. Note that $a_{0}=1$, since there is one equivalence relation on the empty set, namely, the empty set.

Let us now show that the above algorithm constructs every equivalence relation \mathcal{R} on X exactly once. Indeed, suppose that the relation \mathcal{R} partitions X into classes $C_{1}, C_{2}, \ldots, C_{h}$. Further, let C_{h} be the unique class containing x_{n}. Then \mathcal{R} was constructed uniquely from one of the a_{m} partitions of the set $C_{1} \cup C_{2} \cup \cdots \cup C_{h-1}$, where

$$
m=\sum_{i=1}^{h-1}\left|C_{i}\right|
$$

