The divide-and-conquer algorithm for multiplying two $2 n$-bit integers, where $n=2^{k}, k \geq 0$, executes $f(2 n)$ bit operations where

$$
f(2 n)=3 f(n)+c n
$$

with c a positive integer constant and $f(1)=1$.
Solving this recurrence by the telescoping method, we obtain:

$$
\begin{aligned}
f(2 n) & =3 f(n)+c n \\
& =3[3 f(n / 2)+c(n / 2)]+c n \\
& =3^{2} f(n / 2)+3 c(n / 2)+c n \\
& =3^{2}[3 f(n / 4)+c(n / 4)]+3 c(n / 2)+c n \\
& =3^{3} f(n / 4)+3^{2} c(n / 4)+3 c(n / 2)+c n \\
& \vdots \\
& =3^{k+1} f\left(n / 2^{k}\right)+c n\left(\sum_{i=1}^{k} 3^{i} / 2^{i}\right)+c n \\
& =3^{k+1} f(1)+c n\left[\left(\sum_{i=1}^{k} 3^{i} / 2^{i}\right)+1\right] \\
& =\left(3^{\log _{2} 2 n} \times 1\right)+c n\left(\sum_{i=0}^{k} 3^{i} / 2^{i}\right) \\
& =(2 n)^{\log _{2} 3}+c n\left[\left(3^{k+1} / 2^{k}\right)-2\right] \\
& =(2 n)^{\log _{2} 3}+c 3^{k+1}-2 c n \\
& =(2 n)^{\log _{2} 3}+c(2 n)^{\log _{2} 3}-2 c n \\
& =O\left(n^{1.6}\right) .
\end{aligned}
$$

Note that:

1. $\sum_{i=0}^{k} 3^{i} / 2^{i}$ is a geometric progression whose sum is

$$
\frac{\left(\frac{3}{2}\right)^{k+1}-1}{\frac{3}{2}-1}
$$

2. $\log _{2} 3$ equals approximately 1.6.
3. Since $1.6<2$, this algorithm is better than standard integer multiplication.
