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Question 1: [5 marks]

Let n be a positive integer. Prove that n is even if and only if 7n+ 4 is even.

Answer:

First we prove that if n is even then 7n+4 is even. Since n is even, it can be written as 2k, for some

integer k. Then 7n+ 4 = 14k + 4 = 2(7k + 2). This is 2 times an integer, which is even.

Now we prove that if 7n + 4 is even then n is even. Suppose that n is odd; in that case it could be

written as 2k + 1, for some integer k. Thus 7n + 4 = 14k + 11 = 2(7k + 5) + 1. This is 2 times an

integer plus 1, so it is odd. Since this contradicts the given fact that 7n+ 4 is even, our assumption

that n is odd must be wrong, and n is even.
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Question 2: [5 marks]

Let n be an integer. Prove that n2 always ends with one of the following digits: 0, 1, 4, 5,

6, or 9.

Hint: Assume without loss of generality that n � 0, and write n = 10k + `, where k is a

nonnegative integer and ` 2 f0; 1; : : : ; 9g.

Answer:

There are 10 possible cases for n2:

(10k + 0)2 = 100k2 + 0

(10k + 1)2 = 100k2 + 20k + 1

(10k + 2)2 = 100k2 + 40k + 4

(10k + 3)2 = 100k2 + 60k + 9

(10k + 4)2 = 100k2 + 80k + 16

(10k + 5)2 = 100k2 + 100k + 25

(10k + 6)2 = 100k2 + 120k + 36

(10k + 7)2 = 100k2 + 140k + 49

(10k + 8)2 = 100k2 + 160k + 64

(10k + 9)2 = 100k2 + 180k + 81

In each case, the least signi�cant digit is one of 0, 1, 4, 5, 6, or 9.
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Question 3: [5 marks]

Let n be an integer greater than 3. Use mathematical induction to prove that n2�7n+12 � 0.

Answer:

Base case: When n = 4, 42 � 7 � 4 + 12 = 0.

Inductive assumption: We assume that n2 � 7n+ 12 � 0.

Inductive step: We must show that (n+ 1)2 � 7(n + 1) + 12 � 0.

We have

(n+ 1)2 � 7(n+ 1) + 12 = n2 + 2n+ 1� 7n� 7 + 12

= (n2
� 7n+ 12) + (2n� 6):

The �rst parenthesized expression is nonnegative by the inductive assumption, while the second is

also nonnegative since n � 4. Therefore the sum is nonnegative, and the proof is complete.
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Question 4: [5 marks]

Give a pseudo-code description of a recursive algorithm for computing the sum of the se-

quence of numbers a1; a2; : : : ; an.

Answer:

algorithm sum (a1; a2; : : : ; an)

if n = 1 then sum (a1; a2; : : : ; an)  a1
else sum (a1; a2; : : : ; an)  a1 + sum (a2; a3; : : : ; an).


