HAND IN

Answers recorded
in question paper

PAGE 1 OF 5 PAGES

QUEEN'S UNIVERSITY
 FACULTY OF ARTS AND SCIENCE
 SCHOOL OF COMPUTING

CISC-203*
 DISCRETE MATHEMATICS FOR COMPUTING SCIENCE

TEST 2

October 2005

Professor Selim G. AKL

Please write your answer to each question only in the box marked Answer.
No questions will be answered by the instructor during the exam.
This is a closed-book exam. No computers or calculators are allowed.
If you are unsure of what is wanted for a particular question,
make a reasonable assumption and write this at the beginning of your answer.
PLEASE NOTE: Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.

NAME: \qquad

STUDENT NUMBER: \qquad

FOR INSTRUCTOR'S USE ONLY

Question 1: ___-_-_ / 5

Question 2: _-_---- / 5

Question 3: _-_-_-_ / 5

Question 4: __-_-_ / 5

TOTAL: _-_--_-_--- / 20
\qquad

Question 1: [5 marks]

Let n be a positive integer. Prove that n is even if and only if $7 n+4$ is even.

[^0]\qquad

Question 2: [5 marks]

Let n be an integer. Prove that n^{2} always ends with one of the following digits: $0,1,4,5$, 6 , or 9 .

Hint: Assume without loss of generality that $n \geq 0$, and write $n=10 k+\ell$, where k is a nonnegative integer and $\ell \in\{0,1, \ldots, 9\}$.

Answer:

There are 10 possible cases for n^{2} :

$$
\begin{aligned}
(10 k+0)^{2} & =100 k^{2}+0 \\
(10 k+1)^{2} & =100 k^{2}+20 k+1 \\
(10 k+2)^{2} & =100 k^{2}+40 k+4 \\
(10 k+3)^{2} & =100 k^{2}+60 k+9 \\
(10 k+4)^{2} & =100 k^{2}+80 k+16 \\
(10 k+5)^{2} & =100 k^{2}+100 k+25 \\
(10 k+6)^{2} & =100 k^{2}+120 k+36 \\
(10 k+7)^{2} & =100 k^{2}+140 k+49 \\
(10 k+8)^{2} & =100 k^{2}+160 k+64 \\
(10 k+9)^{2} & =100 k^{2}+180 k+81
\end{aligned}
$$

In each case, the least significant digit is one of $0,1,4,5,6$, or 9 .
\qquad

Question 3: [5 marks]

Let n be an integer greater than 3. Use mathematical induction to prove that $n^{2}-7 n+12 \geq 0$.

Answer:

Base case: When $n=4,4^{2}-7 \cdot 4+12=0$.
Inductive assumption: We assume that $n^{2}-7 n+12 \geq 0$.
Inductive step: We must show that $(n+1)^{2}-7(n+1)+12 \geq 0$.
We have

$$
\begin{aligned}
(n+1)^{2}-7(n+1)+12 & =n^{2}+2 n+1-7 n-7+12 \\
& =\left(n^{2}-7 n+12\right)+(2 n-6)
\end{aligned}
$$

The first parenthesized expression is nonnegative by the inductive assumption, while the second is also nonnegative since $n \geq 4$. Therefore the sum is nonnegative, and the proof is complete.

Question 4: [5 marks]

Give a pseudo-code description of a recursive algorithm for computing the sum of the sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$.

```
Answer:
algorithm \(\operatorname{sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right)\)
if \(n=1\) then \(\operatorname{sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leftarrow a_{1}\)
        else \(\operatorname{sum}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \leftarrow a_{1}+\operatorname{sum}\left(a_{2}, a_{3}, \ldots, a_{n}\right)\).
```


[^0]: Answer:

 First we prove that if n is even then $7 n+4$ is even. Since n is even, it can be written as $2 k$, for some integer k. Then $7 n+4=14 k+4=2(7 k+2)$. This is 2 times an integer, which is even.

 Now we prove that if $7 n+4$ is even then n is even. Suppose that n is odd; in that case it could be written as $2 k+1$, for some integer k. Thus $7 n+4=14 k+11=2(7 k+5)+1$. This is 2 times an integer plus 1 , so it is odd. Since this contradicts the given fact that $7 n+4$ is even, our assumption that n is odd must be wrong, and n is even.

