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Question 1: [5 marks]

Prove that if n is an integer and 3n + 2 is even, then n is even, in two di�erent ways of

your choice. Give the name of each proof technique that you use.

Hint: You may use, for example, a direct proof, an indirect proof, a proof by contradiction,

and so on.

Answer:

(i) First proof: using a direct proof

If 3n + 2 is even, then so is 3n. Therefore, 3n = 2k, for some integer k. It follows that n = 2(k=3),

which is even.

(ii) Second proof: using an indirect proof

We must prove the contrapositive: If n is odd, then 3n+ 2 is odd.

Assume that n is odd. Then we can write n = 2k+1, for some integer k. Then 3n+2 = 3(2k+1)+2 =

6k + 5 = 2(3k + 2) + 1. Thus 3n+ 2 is odd.

Alternative: using a proof by contradiction

Suppose that 3n+ 2 is even, but that n is odd. Since 3n+ 2 is even, so is 3n. If we add or subtract

an odd number from an even number, we get an odd number, so 3n � n = 2n is odd. But this is

obviously not true. Therefore our assumption was wrong, and n is even.
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Question 2: [5 marks]

Let a, b, and c be real numbers. Use a proof by cases to show that

min(a, min(b; c)) = min(min(a; b), c).

Answer:

There are three cases:

Case 1: a is smallest. That is, a � min(b; c), and the left-hand side equals a. On the right-hand

side we have min(a; c) = a as well.

Case 2: b is smallest. Thus the right-hand side equals min(b; c) = b and the left-hand side equals

min(a; b) = b as well.

Case 3: c is smallest. Thus the left-hand side is min(a; c) = c, whereas the right-hand side is clearly

also c.



NAME: PAGE 4 OF 5 PAGES

Question 3: [5 marks]

Use mathematical induction to prove that

1 � 2 � 3 + 2 � 3 � 4 + � � �+ n(n+ 1)(n+ 2) =
n(n + 1)(n+ 2)(n+ 3)

4
:

Answer:

The base case, when n = 1 reduces to 6 = 6. Assume the statement is true for some k � 1. We now

prove it for k + 1. We have

1 � 2 � 3 + 2 � 3 � 4 + � � �+ k(k + 1)(k + 2) + (k + 1)(k + 2)(k + 3)

=
k(k + 1)(k + 2)(k + 3)

4
+ (k + 1)(k + 2)(k + 3)

= (k + 1)(k + 2)(k + 3)

 
k

4
+ 1

!

=
(k + 1)(k + 2)(k + 3)(k + 4)

4
:
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Question 4: [5 marks]

Let n, x, and m be positive integers. Provide a recursive algorithm that computes

x
n mod m

using the identity

x
n mod m = (xn�1 mod m � x mod m) mod m.

Answer:

procedure power(x; n;m : positive integers)

if n = 1 then power(x; n;m)  x mod m

else power(x; n;m)  ((x mod m) � power(x; n� 1; m)) mod m.

This method, of course, is ine�cient.


