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Question 1: [5 marks]

(i) Find a recurrence relation for the number of bit strings of length n, n � 0, that contain

at least one substring of three consecutive 0s. Explain your answer.

(ii) What are the initial conditions?

(iii) How many bit strings of length seven contain (at least one substring of) three consec-

utive 0s?

Answer:

(i) Let an be the number of bit strings of length n containing at least one substring of three consecutive

0s. In order to construct one such string, we may start with 1, or 01, or 001 and continue with a

string containing three consecutive 0s, or start with 000 and continue with any string. Therefore, for

n � 3, an = an�1 + an�2 + an�3 + 2n�3.

(ii) a0 = a1 = a2 = 0.

(iii) a7 = 47.
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Question 2: [5 marks]

Find f(n) when n = 2k, where k � 0 and f(n) satis�es the recurrence relation f(n) =

f(n=2) + 1 with f(1) = 1.

Answer:

Initially, f(20) = 1. For each factor of 2 in n, the value of f(n) increases by 1. Indeed, for k � 1, we

have

f(2k) = f(2k�1) + 1 = f(2k�2) + 2 = f(2k�3) + 3 = : : : = f(2k�k) + k:

Therefore, f(2k) = 1 + k.
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Question 3: [5 marks]

Let R be the relation

f(1; 2); (1; 3); (2; 3); (2; 4); (3; 1)g;

and let S be the relation

f(2; 1); (3; 1); (3; 2); (4; 2)g:

Find S �R.

Answer:

S �R = f(1; 1); (1; 2); (2; 1); (2; 2)g.
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Question 4: [5 marks]

Let R be the following relation on the set fa; b; c; d; eg:

f(a; c); (b; d); (c; a); (d; b); (e; d)g:

Use the 0-1 matrix representation for relations to �nd the transitive closure of R.

Answer:

A =

2
6666664

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

3
7777775
; A[2] =

2
6666664

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 1 0 0 0

3
7777775
;

and

A[3] =

2
6666664

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

3
7777775
= A:

It follows that A[4] = A[2], and A[5] = A[3]. Therefore the transitive closure of R is A _ A[2], namely,

B =

2
6666664

1 0 1 0 0

0 1 0 1 0

1 0 1 0 0

0 1 0 1 0

0 1 0 1 0

3
7777775
:


