HAND IN

Answers recorded
in question paper

PAGE 1 OF 5 PAGES

QUEEN'S UNIVERSITY
 FACULTY OF ARTS AND SCIENCE
 SCHOOL OF COMPUTING

CISC-203*
DISCRETE MATHEMATICS FOR COMPUTING SCIENCE

TEST 5
November 2006

Professor Selim G. AKL

Please write your answer to each question only in the box marked Answer.
No questions will be answered by the instructor during the exam.
This is a closed-book exam. No computers or calculators are allowed.
If you are unsure of what is wanted for a particular question,
make a reasonable assumption and write this at the beginning of your answer.
PLEASE NOTE: Proctors are unable to respond to queries about the interpretation of exam questions. Do your best to answer exam questions as written.

NAME: \qquad

STUDENT NUMBER: \qquad

FOR INSTRUCTOR'S USE ONLY

Question 1: ___-_-_ / 5

Question 2: _-_-_--- / 5

Question 3: _-_-_-- / 5

Question 4: _-_-_-_ / 5

TOTAL: _-_-_-_-_ / 20
\qquad

Question 1: [5 marks]

a) Show that the relation

$$
D=\{(x, y) \mid x-y \text { is an integer }\}
$$

is an equivalence relation on the set of real numbers.

Answer:

- The relation is reflexive since $x-x$ is an integer, thus $(x, x) \in D$ for all x.
- The relation is symmetric since, if $(x, y) \in D$ then $x-y$ is an integer, say z. Therefore $y-x$ is integer $-z$. Thus $(y, x) \in D$.
- Suppose $(x, y) \in D$ and $(y, z) \in D$. Then $x-y=z_{1}$ and $y-z=z_{2}$ for integers z_{1} and z_{2}. Therefore $(x-y)+(y-z)=x-z=z_{1}+z_{2}$. Thus $x-z$ is an integer and $(x, z) \in D$. Therefore the relation is transitive.
b) Describe the equivalence class for each of 0 and 0.5 .

[^0]\qquad

Question 2: [5 marks]

Let R be the relation on the set of ordered pairs of positive integers such that

$$
((a, b),(c, d)) \in R \quad \text { if and only if } \quad a d \leq b c
$$

a) Is the relation reflexive? Explain your answer.

Yes, because $((a, b),(a, b)) \in R$ for every (a, b) since $a b \leq b a$.
b) Is it symmetric? Explain your answer.

No, because $((1,3),(2,4)) \in R$ but $((2,4),(1,3)) \notin R$.
c) Is it antisymmetric? Explain your answer.

No, because $((3,2),(6,4)) \in R$ and $((6,4),(3,2)) \in R$.
d) Is it transitive? Explain your answer.

Yes, because if $((a, b),(c, d)) \in R$ and $((c, d),(e, f)) \in R$, then $a d \leq b c$ and $c f \leq d e$, implying that $a f \leq b e$, and therefore $((a, b),(e, f)) \in R$.
e) Is it an equivalence relation? Explain your answer. No, since it is not symmetric.
f) Is it a partial order? Explain your answer.

No, since it is not antisymmetric.
\qquad

Question 3: [5 marks]

It is required to determine whether the following two graphs, given by their adjacency matrices,

$$
\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right] \quad \text { and } \quad\left[\begin{array}{llllllll}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0
\end{array}\right],
$$

are isomorphic. If they are isomorphic you are to exhibit an isomorphism. If they are not, give a rigorous argument that none exists.

Hint: You may find it helpful to draw the two graphs.

Answer:

The two graphs are not isomorphic since in the first graph the two vertices of degree 3 (see rows 3 and 6) are adjacent to a common vertex (see column 5), while this is not true in the second graph (see rows 2 and 6).

Alternatively, the two graphs are not isomorphic since in the second graph each vertex of degree 3 is adjacent to two vertices of degree 1 and to one vertex of degree 2 , while this is not true in the first graph.

Question 4: [5 marks]

Use Huffman coding to encode these symbols with given frequencies: $A: 0.23, B: 0.37, C$: $0.06, D: 0.14, E: 0.16, F: 0.01, G: 0.03$. Compute the average number of bits required to encode a symbol.

Answer:

In what follows, the heavier subtree is always to the left (edges going left are labeled with a 0 , while edges going right are labeled with a 1). Combine F and G into a tree T_{1} of weight 0.04 . Combine T_{1} and C into a tree T_{2} of weight 0.10 . Combine T_{2} and D into a tree T_{3} of weight 0.24 . Combine E and A into a tree T_{4} of weight 0.39 . Combine B and T_{3} into a tree T_{5} of weight 0.61 . Finally, combine T_{4} and T_{5}. This gives the following code: $A: 10, B: 00, C: 0110, D: 010, E: 11, F: 01111$, $G: 01110$.
The average number of bits required is given by:

$$
2(0.23)+2(0.37)+4(0.06)+3(0.14)+2(0.16)+5(0.01)+5(0.03)=2.38
$$

which means that, on average, 2.38 bits are needed to encode a character.

[^0]: Answer:

 The equivalence class for 0 is the set of integers Z (since k is related to 0 if and only if $k-0$ is an integer).
 The equivalence class for .5 is the set $k+.5$ for all integers k (since any arbitrary number x is related to 0.5 if and only if $x-0.5$ is an integer, and hence x must be of the form $k+0.5$ for all integers k).

