
Including control architecture in attribute grammar
specifications of feedforward neural networks

Talib S. Hussain
Computing and Information Science Dept.

Queen’s University
Kingston, Ontario

hussain@qucis.queensu.ca

Roger A. Browse
Computing and Information Science Dept.

Psychology Dept.
Queen’s University, Kingston, Ontario

browse@qucis.queensu.ca

Abstract
An important problem in evolutionary
computing is the design of genetic
representations of neural networks that permit
optimization of topology and learning
characteristics. One promising approach for
genetic representation of neural networks is the
use of grammars to depict a process in which
neural networks may be generated. Existing
grammar representations of neural networks
describe classes of networks with homogenous
processing elements, simple fixed learning
mechanisms and little organized topological
structure. In previous research we have
presented an attribute grammar representation
for classes of networks with modular topology.
Each parse tree generated by the grammar
encodes a neural network specification which is
subsequently executed by an interpreter. By
expanding the grammar to include the control of
the sequence of activity in the networks, we
have been able to reduce the interpreter to a
simple model of the operation of individual
neurons in the networks. The expanded
grammar may be used in an evolutionary
computation to explore neural networks that
vary in their architecture and learning behaviors.

1. Introduction
An important issue in the fields of

neural networks and evolutionary computing is
the development of methods for the
specification of classes of neural networks.
Neural network research could benefit from
such techniques in that they may provide for
improved theoretical analysis and comparison of
network architectures. As well, such
specification methods could lead to better
scaling and the development of systematic
relationships between problem decomposition
and network modularity (Jacobs et al., 1991;
Happel and Murre, 1994). Evolutionary
computing could benefit from network

specification methods in that they could provide
a good basis for the encoding of topological and
learning characteristics that are critical to the
exploration of network solutions using genetic
algorithms (Yao, 1993).

Recently, techniques have been
developed that permit the use of grammars in
the specification of classes of networks (Gruau,
1995; Kitano, 1990). One attractive feature of
these systems is that each sequence of
application of productions in the grammar
coincides with a separate, but related neural
network architecture. Thus, an evolutionary
algorithm may search the space of possible
architectures through its access to the rules of
the grammar. However, these grammar-based
approaches appear to have limited application in
that they have thus far only been demonstrated
to generate neural networks with fixed learning
capabilities. Also, they have been limited to
generating novel neural network architectures
rather than the conventional architectures that
have been useful in problem solving.

Cellular encoding (Gruau, 1995) is a
grammar-based system whose productions all
operate upon a single symbol type, termed a
cell, and specify the expansion of those cells
into connected groups of cells. The cells are
considered nodes of the neural network once
expansion is complete. While the idea of one
network node expanding into several is
intriguing, it does not permit the design of
structured networks with distinctly different
components.

This paper illustrates the use of
attribute grammars for the genetic representation
of neural networks (Hussain and Browse, 1998a,
1998b). We present an analysis of what makes
the genetic representation of neural networks
difficult, and propose a framework within which
powerful new representations may be
developed. We then present one particular
attribute grammar which creates neural networks
that are modular in structure and may vary

significantly in their learning behaviors. The
advantages of our attribute grammar approach
over cellular encoding are discussed.

2. Background

2.1 Neural interpreter complexity
Many different neural network

algorithms have been proposed over the years.
These models are mostly designed with the
premise that a neural network consists of
interconnected processing units, termed neurons
or nodes, which process activation signals and
update their internal structure based upon
internal calculations (unsupervised networks)
and/or upon externally provided feedback
(supervised/reinforcement learning). However,
between different models, there are great
differences in the details of the networks, and in
how those models are described. Thus, some
networks, such as back-propagation, seem to be
algorithmically simple, yet are actually quite
complex when constructed with neurons that
adhere to a strict model of neural computation
(Hecht-Nielsen, 1990).

As a consequence of this great
variation in network specifications, we face the
dilemma that a representation must be selected
which is powerful enough to encode all the
important network characteristics are to be
manipulated by the evolutionary process, yet
which is still simple and structured enough to
permit meaningful genetic manipulation.

A typical solution is to adopt a simple
genetic description of a network and rely on a
complex interpreter which is specific to one
particular neural network architecture model to
produce functioning individuals. The interpreter
is an important yet often overlooked component
of an evolutionary system for neural networks
which has a strong relationship with the genetic
description. The use of a complex interpreter
keeps the genetic description simple, but it
limits the range of neural network architectures
that may be specified, and therefore searched.

Ideally, the interpreter should possess
no more than a model of the operation of
individual nodes within the neural networks.
This permits the genetic representation great
latitude in specifying classes of established
networks, hybrid networks and even novel
architectures without the introduction of
boundaries between these classes within the
genetic search.

2.2 Attribute grammars
Context-free grammars are known to

be fairly limited in their power of
representation. Researchers in evolutionary
computation have focused on CFG-based
representations since they are simple to design
and produce parse trees which are amenable to
genetic manipulation. However, in developing a
complex genetic representation of a neural
network that permits a generic interpreter, a
more powerful form of grammar is needed. We
propose that attribute grammars are the ideal
solution since they have a context-sensitive
component yet produce the same useful parse
trees as CFGs.

An attribute grammar (Knuth, 1968) is
a context-free grammar augmented by the
assignment of attributes and attribute values to
the symbols of the grammar. A production rule
specifies not only the replacement of symbols,
but also the evaluation of the attributes of those
symbols. The attributes may be used to pass
information downward (inherited) or upward
(synthesized) through the parse tree.

2.3 Hierarchical grammar design
Adopting a more powerful grammar is

only the first step towards solving our dilemma
in selecting a representation. In addition, we
require the representation to be able to develop
genomes with complex internal composition in
order to permit a simpler interpreter and fully
exploit the context-sensitivity of the attribute
grammar. However, a typical genetic
programming (GP) representation is supposed to
obey the closure property defined by Koza
(1992) which states that all symbols in a genetic
representation may be interchanged and still
result in valid parse trees. All GP
representations obeying this property, such as
cellular encoding, may be thought of context-
free grammars (CFGs) that are non-hierarchical
in their productions.

Recently, several researchers have
relaxed this closure property to permit
genotypes with a more complex internal
composition. In one approach, termed strongly-
typed genetic programming (STGP) (Haynes et
al, 1996; Montana, 1993), a genome is derived
from a hierarchical CFG. STGP is designed
upon the premise that a genotype may require an
internal structure with non-interchangeable
components. These components may be
reflected as different non-terminal symbols in

the grammar. New genetic operators are
consequently required which preserve the
independence of these types, and thereby
preserve the syntactic (and semantic) validity of
the resulting offspring.

We propose that these same principles
may be applied to the design of hierarchical
attribute grammars. Such grammars should be
able to generate specifications of all levels of a
neural network architecture.

3. System design
Our evolutionary system uses an

attribute grammar to specify a class of neural
networks. Each parse tree generated from the
grammar depicts an individual neural network.
The values of the attributes that are computed
within the parse tree encode the connections
among the nodes of the network along with the
characteristics of the operation of the nodes.
Our current grammar collects this information in
the attributes of the root symbol of the tree to
form a concise neural network specification.
The system’s neural interpreter is able to accept
this specification and carry out the functions of
the network.

Labeled non-terminals in the parse tree
represent distinct structural components, which
may be replaced through the subsequent
application of productions using that non-
terminal as the starting symbol, or which may be
replaced through substitution from some other
network whose parse tree contains the same
symbol. Genetic operators may thus be
designed in a similar fashion to those of STGP.
At any time, the performance level of the
network may be determined by evaluating the
attributes of the parse tree and providing the
resultant specification to the interpreter.

3.1 Neural interpreter
It has been our goal to develop the use

of attribute grammars to the point that a
complete neural specification can be created
which requires only a highly generic interpreter.
The design of our current interpreter has
required the adoption of an atypical neural
framework which focuses not on biological
plausibility nor on simplicity of representation,
but on the flexibility of the representational
approach. Primary features of the framework
are a generalized model of a neuron and the
enforcement of a purely localized structure.

In our system, a neuron is considered a
processing element which may receive signals of
multiple types and may transmit signals of
multiple types (see Figure 1). It may include
arbitrary internal memory and internal functions
that process the incoming signals, modify
internal memory and produce output signals.
This is in contrast to the typical neuron model in
which there is only one signal type - activation.

Type 3
Multiple outgoing
signal types

Internal memory
(e.g., weights)

Arbitrary internal
processing function
May perform multiple actions

Type 1

per iteration dependent upon
specific input signal types

Type 1 Type 2

Multiple incoming
signal types

f

Figure 1: Basic neuron model

Further, we define a neural network to
be a purely localized structure. Any
computations that occur in the network must
occur in the nodes, and all of these
computations must be based solely upon
information that a node receives as signals or
stores in local memory. We shall term this
information the domain of the node. Thus, for
instance, all learning computations and
operations must be performed by the nodes and
must be local to the domain of each node.

4. Attribute grammar representation
of neural networks

We present an attribute grammar
(FFS1) which represents a class of feedforward,
supervised neural networks with learning. In
FFS1, we have extended our previous work
(Hussain and Browse, 1998a, 1998b) and taken
steps in the direction of a fully generic
interpreter by excluding from the interpreter any
requirements to perform network-level
operations. The grammar itself includes nodes
which control the stages of firing of levels of
nodes within the network to ensure the proper
sequence of feedforward and learning
operations. These control nodes carry out a
different operation than the processing nodes,
but those differences are only instances of the

basic neuron model, and thus do not require
special treatment by the neural interpreter.

 The grammar uses three distinct types
of non-terminals in order to incorporate the
control behavior of the network directly into the
grammar. Space precludes a complete
description of the FFS1, but the context-free
portion of the entire grammar is given (see
Figure 2), three productions are presented in
detail (see Figure 3), and the meanings of the
symbols are summarized (see Figure 4).

SÆ i o f N
 Specifies a network’s external I/O.
N Æ C M
 Adds a control structure to a topology

of basic nodes.
C Æ s C | t C | z_a | z_b
 Specifies a topology of control nodes.
M Æ seq(M , M) | par(M , M) | n
 Specifies a topology of basic nodes.

Figure 2: Synopsis of CFG portion of FFS1

N ÆÆ C M
 (inherited)
 C.nodes_to_control = M .all_nodes
 C.existing_controls = {}
 (synthesized)
 N.all_nodes = M .all_nodes ∪ C.new_nodes
 N.in_nodes = M .in_nodes
 N.out_nodes = M .out_nodes
 N.visible_controls = C.visible_controls
 N.connections = M .connections ∪ C.connections

C1 ÆÆ s C2

 (inherited)
 C2.nodes_to_control = C1.nodes_to_control
 C2.existing_controls = {s} ∪ C1.existing_controls
 (synthesized)
 C1.visible_controls = {s} ∪ C2.visible_controls
 C1.new_nodes = {s} ∪ C2.new_nodes
 C1.connections = C2.connections ∪ {connect all ‘S’-

producing nodes in C1.existing_controls to s} ∪
{connect all ‘A’-producing nodes in
C1.nodes_to_control to s} ∪ {connect s to all
‘F’-producing nodes in C1.nodes_to_control }

C ÆÆ z_a
 (synthesized)
 C.visible_controls = {z_a}
 C.new_nodes = {z_a}
 C.connections = {connect all ‘S’ and ‘T’-producing

nodes in C.existing_controls to z_a} ∪ {connect
z_a to all nodes in C.nodes_to_control}

Figure 3: Three detailed productions of FFS1

S Start symbol: Describes a complete
network.

N Represents a functioning neural module.
M Represents a topology of processing

neurons
C Represents a topology of control neurons.
i,o,f Externally accessible input, output and

feedback ports, respectively.
n A node which computes ‘A’ signals until it

receives a ‘Z’ signal; computes ‘F’ signals
only when it receives an ‘S’ signal and until
it receives a ‘Z’ signal; and modifies
internal weights only when it receives a ‘Z’
signal.

s A node which outputs an ‘S’ signal if none
of its incoming ‘A’ signals have changed
since the previous cycle.

t A node which outputs a ‘T’ signal if none
of its incoming ‘F’ signals have changed
since the previous cycle.

z_a A node which outputs a ‘Z’ signal if it
receives both an ‘S’ and ‘T’ signal.

z_b A node which always outputs a ‘Z’ signal.
Figure 4: Meanings of grammar symbols

Inspection of the grammar as presented
above immediately reveals that the resulting
performance of each node will depend upon
what control signals it receives, and that the
performance of the entire network will depend
upon the control architecture produced by the
grammar. For instance, a control structure with
no z_a or z_b node will produce no learning,
while one with a z_b node will produce
continuous learning.

5. Conclusions
Our approach, as illustrated by FFS1,

allows a neural network topology to be
represented through the application of attribute
grammar rules and the evaluation of the
attributes of the symbols in the resultant parse
tree. This approach, in contrast to cellular
encoding, exhibits several advantages. Firstly, it
provides a clear representation of the structure
of networks generated with the grammar. FFS1

collects the entire specification of the network
into a few attribute of the root. Cellular
encoding, by contrast, never presents a concise
neural representation. The user is required to
perform a complex traversal of the parse tree in
order to inspect what the parse tree represents.

Secondly, cellular encoding produces a
small space of possible architectures. It only

permits one type of node and does not explicitly
represent the learning characteristics of those
nodes. Also, it requires a complex neural
interpreter since all the details concerning what
a node does and how it does it are not encoded
in the grammar. In FFS1, the specification of
the control architecture by the grammar and the
inclusion of multiple types of nodes permits a
greater variety of network architectures to be
modeled.

Finally, within cellular encoding,
identical subtrees do not always expand in
identical ways as they may be dependent on the
context of the rest of the tree for the
development of network connections. This
characteristic emerges primarily from the
application of cellular encoding’s REC and
WAIT productions, and affects the behavior of
the genetic operators used to optimize genetic
codes. In particular, crossover will not transfer
fixed meaning in such a representation. FFS1

introduces a stricter notion of semantic identity
to the subtrees in the genetic representation and
a more explicit notion of a constituent module.

There are a variety of simple ways in
which a grammar such as FFS1 may be modified
to explore new possibilities. For instance, new
productions which change the hierarchy or
introduce new structures may easily be
incorporated to extend or constrain the class of
networks represented by the grammar. The
attribute grammar can also be made slightly
more interesting through the assignment of
probabilities to the various production rules.
During the random generation of an individual,
the rules applicable to a given non-terminal
under expansion may be selected
probabilistically. This has the effect of biasing
the generation process to encouraging certain
structural forms in the final neural network.
Note that the class of networks represented by
the grammar is not affected, only the frequency
with which certain networks are generated. In
population-based genetic search, this has the
effect of biasing the relative frequency of certain
genes in the population.

Our research is continuing to extend the
representational capabilities of our grammar,
and we are exploring a complete attribute
grammar for a localized version of the back-
propagation algorithm, as presented by Hecht-
Nielsen (1990). Our preliminary findings
indicate that FFS1 may be modified to produce
back-propagation networks through changes

solely to the grammar productions and terminal
symbol characteristics. No changes to the
neural interpreter are needed. The introduction
of the control architecture into the grammar
itself has reduced the role of the interpreter and
has increased the network architecture details
available to manipulation by the evolutionary
process.

Acknowledgments
The research reported in this paper was

conducted with financial support from the
Natural Science and Engineering Research
Council of Canada.

References
Gruau, F. (1995) “Automatic definition of modular

neural networks,” Adaptive Behavior, 3, p. 151-
183.

Happel, B.L.M. and Murre, J.M.J. (1994) “Design
and evolution of modular neural network
architectures,” Neural Networks, 7, p. 985-1004.

Haynes, T.D., Schoenefeld, D.A. and Wainwright,
R.L. (1996) “Type inheritance in strongly typed
genetic programming,” Chapter 18 in K.E.
Kinnear, Jr. and P.J. Angeline (Eds.), Advances in
Genetic Programming 2. Cambridge, Mass: MIT
Press.

Hecht-Nielsen, R. (1990) Neurocomputing. Reading,
Mass.: Addison-Wesley.

Hussain, T.S. and Browse, R.A. (1998a) “Network
generating attribute grammar encoding,” 1998
IEEE International Joint Conference on Neural
Networks, p. 431-436.

Hussain, T.S. and Browse, R.A. (1998b) “Basic
properties of attribute grammar encoding,” Late-
Breaking Papers of the Third Annual Genetic
Programming Conference.

Jacobs, R.A., Jordan, M.I., Nowlan, S.J. and Hinton,
G.E. (1991) “Adaptive mixtures of local experts,”
Neural Computation, 3, p. 79-87.

Kitano, H. (1990) “Designing a neural network using
genetic algorithm with graph generation system,”
Complex Systems, 4, p.461-476.

Knuth, D. E. (1968) “The semantics of context-free
languages," Mathematical Systems Theory, 2, p.
127-145.

Koza, J.R. (1992) Genetic Programming. Cambridge,
Mass: MIT Press.

Montana, D.J. (1993) “Strongly Typed Genetic
Programming,” BBN Tech Report #7866.

Yao, X. (1993) “Evolutionary artificial neural
networks,” International Journal of Neural
Systems, 4, p. 203-222.

