CISC 204 Class 23

Semantics of Functions

Text Correspondence: pp. 123-124

Main Concepts:

- f : function maps values to values
- \mathcal{F} : set of function symbols

The next concept we need is that of a function.

23.1 Semantics of a Function

Syntactically, we simply accepted that a function "takes" zero or more terms as input and "returns" a value that a variable can take. We now need to be more careful and specific.

With reference to a set A, we want a nullary (or constant) function to always return a value that is in the set A. In mathematical notation, we would write

$$
f:\{ \} \rightarrow A
$$

This notation says that, taking no inputs, the function f maps to the set A; this is the same as saying that it returns a value in the set A.

Now, suppose that f is a function that maps a single value to one definite value. In mathematical notation, we would write

$$
f: A \rightarrow A
$$

Next, suppose that f maps two values to one definite value. We write this as $f(x, y)$ according to the syntax of propositional logic. Semantically, we mean that $f(\cdot, \cdot)$ maps a pair, or 2-tuple, of values from the set A to a value in the set A. In mathematical notation, there are two ways to write this; one way is to say explicitly that f takes a 2 -tuple from the outer-product set $A \times A$, and the other way is to abbreviate the outer-product set as A^{2}. The instructor's preferred notation, and the textbook notation, are

$$
\begin{aligned}
& f: A \times A \rightarrow A \\
& \text { or } \quad f: A^{2} \rightarrow A \\
& \text { equivalently, } z= f(x, y) \Rightarrow z \in A
\end{aligned}
$$

This notation extends to a function of n variables, also called an n-ary function, as

$$
\begin{aligned}
& f: A \times A \times \cdots \times A \rightarrow A \\
\text { or } & f: A^{n} \rightarrow A
\end{aligned}
$$

We must use our notation carefully. In symbolic logic, the set of functions that we are using is typically limited; the set is written using the symbol \mathcal{F}. When we mean that a function f is in the set of specified functions, we will write

$$
f \in \mathcal{F}
$$

This is very different than the usual way of writing function! We might be used to saying that the value returned by f is in the set A; we do not need to say this, because it is in the definition of the function f. Instead, we are concerned with restricting our attention to one of a limited number of functions.

For example, thinking of the previous set A that is the integers from 0 to 3 , we might define the function s to be the "succeeding" integer in base-4 arithmetic. This is often written as modular arithmetic; we could define the function s in many ways, such as

$$
\begin{aligned}
& s(x) \stackrel{\text { def }}{=}(x+1) \bmod 4 \\
& s(x) \stackrel{\text { def }}{=}\left\{\begin{array}{rll}
x+1 & \text { if } & x \leq 2 \\
0 & \text { if } & x=3
\end{array}\right.
\end{aligned}
$$

We might define the function d to be "double" the integer in base-4 arithmetic, so

$$
d(x) \stackrel{\text { def }}{=}(2 \cdot x) \bmod 4
$$

Our set, or space, of functions would then be $\mathcal{F}=\{s, d\}$.

