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Main Concepts:

• Decidable logical theory: there is an algorithm to determine whether a given

formula is a theorem

33.1 Undecidability of Predicate Logic

Our exploration of semantic entailment introduced two theorems for predicate logic. The

Soundness Theorem states that, if there is a proof for a theorem, then the theorem’s formula is

valid; another way to say this is that predicate logic is sound because every theorem is a semantic

entailment.

The Completeness Theorem states that, if a formula is valid, then the formula is a theorem.

This says that predicate logic is complete because we can prove every valid formula. The two

theorems are often combined into a single assertion:

For a formula φ, ⊢ φ if and only if |= φ

It would seem that this is straightforward: a theorem is semantically entailed, and vice versa.

But we must walk carefully here because predicate logic can be subtle.

In propositional logic, we had a mechanical way of determining whether a formula was valid:

we could enumerate every possible valuation, or equivalently examine every row in a truth table,

to determine whether or not the formula evaluated to T in every valuation. In predicate logic we

cannot do this, because for a model with an infinitely large universe of discourse A there is no way

to enumerate all possible logical environments.

The Completeness Theorem is a conditional statement that says, if a formula is valid, then it is

a theorem. To apply this theorem we need an answer to the question

For a formula φ, is φ valid? That is, does |= φ hold for all possible models?

This question was asked in 1928 by the great mathematician David Hilbert. Another way to

pose this problem, which comes from the equivalence provided by the Soundness Theorem and the

Completeness Theorem, is
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For a formula φ, is φ a theorem in predicate logic? That is, is ⊢ φ a theorem in predicate logic?

The first question is semantic and the second question is syntactic. The answer to these ques-

tions is the Undecidability Theorem:

NO: there is no algorithm for determining whether

a given formula is a theorem in predicate logic

This result was proved, independently, in 1936 by Alonzo Church and Alan Turing. This result

puts a fundamental limit on computation and on expressibility in languages that have predicate

logic as a universe of discourse.

When we reflect on this statement, it is perhaps a bit astonishing. In computer science, we are

used to being able to find an algorithm to solve the problems given to use. In those cases when we

are having difficulty in finding an algorithm we simply try harder. The Undecidability Theorem

says that there are fundamental limits to algorithms for solving problems.

We now accept that we cannot prove that a formula φ is valid, meaning that we cannot prove

that it holds in all models M. We might ask whether φ is satisfiable, which is asking if there is

some model M and some environment l of the model in which φ holds. Formally, we are asking

For a formula φ, is there a model M and environment l such that |=l φ?

The answer to this question is also negative. We can see this in a proof by contradiction:

suppose there is no environment in which |= φ holds. This is semantically equivalent to saying

that, for all environments, |= ¬φ holds. Because |= ¬φ is undecidable, the semantically equivalent

statement that |= φ is satisfiable is also undecidable. We can summarize this finding as

NO: there is no algorithm for determining whether

a given formula in predicate logic is satisfiable

What happens if we extend predicate logic to include integer arithmetic? This is usually done

by adding the Peano Axioms, either as 5 axioms or as 4 axioms and the rule of mathematical

induction. What happens is that the above undecidability results continue to hold, plus we get

Gödel’s Incompleteness Theorem:

A logical system that includes the Peano Axioms cannot be both

consistent and complete

Because we usually insist that a logical system is consistent, meaning that it does not have a

contradiction as a theorem, we must accept that for such a system there are valid formulas that are

unprovable. What if we find such a formula, and take it as an axiom? Gödel’s Incompleteness
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Theorem still applies! We therefore must accept that, by being able to express integer arithmetic,

there are an infinite number of valid formulas that cannot be proved.

Proof of these theorems is beyond the scope of this course.

Extra Notes

UNDECIDABILITY AND THE AXIOM OF CHOICE

An example of a useful formula that is undecidable, given the “usual” axioms of mathematics,

is the Axiom of Choice. Conceptually, we would begin by extending arithmetic to be able to

rigorously define sets and set theory. Set theory was formalized by Ernst Zermelo and extended by

Abraham Fraenkel; the result is usually abbreviated as ZF set theory. The axioms can be translated

from symbols into plain English as:

1. Two sets are equal if they have the same members

2. Every non-empty set A contains a member x such that A and x are disjoint sets

3. For a set A, and formula φ(x) with one free variable x, there exists a set B that is all the

members of A that satisfy the formula φ(x)

4. If A and B are sets, then there exists a set C that has A and B as members

5. The union of the members of a set of sets is a set

6. For a definable function f with a domain set A, the range of f is a set B

7. There is a set A that has infinitely many members

8. For any set A, there is a set B that contains every subset of A

These axioms can be expressed in predicate logic that has the operator of set membership.

There is an important axiom that is independent of these set axioms. Depending on how it is

written, it is called the Axiom of Choice or the Well-Ordering Theorem. One English translation,

from symbolic logic, is

9. For any set X of non-empty sets, for every set A in X , there is a function f that maps some

member of A into A

The Axiom of Choice is not problematic for a finite set of finite sets; in such a case, for each

finite A, we can “order” its members and map the first member to itself as f(x) = x. We could

also take the last member, or use any computable formula to choose from A.
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Also unproblematic are an infinite number of finite sets, where we can order each A and choose

a member, or a finite number of infinite sets, where we can specify a “choice” function f for each

set A that maps some member of A into A.

The problem arises when there is an infinite number of infinite sets. We cannot list all of the

choice functions, and we cannot specify a choice function that works for all sets. To some students

the Axiom of Choice might seem intuitively evident, but other students might object that they want

a construction of the choice functions f for each set. Because the Axiom of Choice is independent

of the other axioms of set theory, each student has a point: we can add this axiom, or its negation

for the infinite cases, and have a consistent new set theory.

End of Extra Notes
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CISC 204 Class 34

Advanced Modeling of Logical Systems

Text Correspondence: ∼

The material for this class is presented in a video lecture that accompanies these notes.
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