
CISC 235:  Topic 10 

Graph Algorithms 
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Outline 

 

• Spanning Trees 

• Minimum Spanning Trees 

– Kruskal’s Algorithm 

– Prim’s Algorithm  

• Topological Sort 
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Spanning Trees 
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A spanning tree of an 

undirected graph is a 

subgraph that contains all 

its vertices and is a tree. 

 

The complete graph on 

four vertices 
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has 16 spanning trees. 
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Example Graph 
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DFS & BFS Spanning Trees 

What property does the BFS spanning tree have 

that the DFS spanning tree does not?   
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Minimum Spanning Trees 

The cost of a spanning tree of a weighted, undirected 

graph is the sum of the costs (weights) of the edges in 

the spanning tree. 
  

A minimum-cost spanning tree is a spanning tree of least 

cost.  

 

 

 

 

Is there more than one minimum spanning tree? 
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Kruskal’s Algorithm 

Begin with a subgraph S of a weighted, connected 

undirected graph G, that includes all of its 

vertices, but none of its edges (i.e., a forest of 

one-node trees). 

Add edges from G one at a time to S, each time 

picking a least-cost edge that will not form a 

cycle in S, until V-1 edges have been added (so 

we have a single spanning tree). 
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Kruskal’s Algorithm 
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Kruskal’s Algorithm: O( |E| lg |V| ) 

MST-Kruskal(G, w)   // weight function w : E  R 

    S ← Ø   // Subgraph S has no edges (but has all vertices) 

    for each vertex v ∈ V[G] 

             MAKE-SET(v)  // Each vertex is a tree of one node 

    sort the edges of E into nondecreasing order by weight w 

    for each edge (u, v) ∈ E, taken in nondecreasing order  

             if FIND-SET(u) ≠ FIND-SET(v)  // If not in same tree 

                    S ← S ∪ {(u, v)}  // Add edge to subgraph S 

                    UNION(u, v)  // Join their two trees 

    return S 
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Prim’s Algorithm 

Begin with a tree T that contains any single 
vertex, w, from a weighted, connected 
undirected graph G.  

Then add a least-cost edge (u, w) to T such 
that T ∪ {(u, w)} is also a tree. This edge-
addition step is repeated until T contains 
V-1 edges.  

 

Notice that edge (u, w) is always such that 
exactly one of u and w is in T.  
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Prim’s Algorithm 
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Prim’s Algorithm Using a Priority 

Queue : O( |E| lg |V| ) 
MST-Prim(G, w, r)  // r is the root vertex (start vertex) 

     for each u ∈ V [G]  // Initially, all vertices u are set to: 

               key[u] ← ∞   // No edge connecting u to MST, so cost is ∞  

               π[u] ← NIL   // No parent of u in MST 

     key[r] ← 0  // Initially, r is the only vertex in MST 

     Q ← V [G]  // All vertices are placed in priority queue 

     while Q ≠ Ø 

               u ← EXTRACT-MIN(Q) 

               for each v ∈ Adj[u]  // Update adjacent edges if  

                        if v ∈ Q and w(u, v) < key[v]  // this path is cheaper  

                                π[v] ← u  // Reset parent of v to be u  

                                key[v] ← w(u, v)  // Reset minimum cost 
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Kruskal’s Algorithm 
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Kruskal’s Algorithm, con. 
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Prim’s 

Algorithm 
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Topological Sorting 

A topological sort of a dag (directed, acyclic graph) 
is a linear ordering of all its vertices such that if 
the graph contains an edge (u, v), then u 
appears before v in the ordering.  

 

A topological sort of a graph can be viewed as an 
ordering of its vertices along a horizontal line so 
that all directed edges go from left to right.  

 

If the graph has a cycle, then no linear ordering is 
possible.  
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Topological Sorting 

What other topological sorts are possible? 
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A dag for Topological Sorting 

In general, which vertex will be first in a 

topological sort? 
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Topological Sort Algorithm 

Begin with an empty list L and a dag G.   

While G is not empty,  

– Find a vertex v with no incoming edges 

– Delete v and its outgoing edges from G 

– Add v to L   
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Topological Sort Algorithm 

Topological-Sort( G ) 

  Create empty lists L & K 

  Create a count array 

  for each vertex v in G 

   count[v]  number of incoming edges to v 

   if count[v] = 0 

    add v to K 

  while K is not empty 

   remove a vertex v from K 

   for each outgoing edge (v,w)  

    decrement count[w] 

    if count[w] = 0  

     add w to K 

   add v to L 

  return L 


