
CISC 235:  Topic 10 

Graph Algorithms 



CISC 235 Topic 10 2 

Outline 

 

• Spanning Trees 

• Minimum Spanning Trees 

– Kruskal’s Algorithm 

– Prim’s Algorithm  

• Topological Sort 



CISC 235 Topic 10 3 

Spanning Trees 

    o---o    o---o    o   o    o---o 

    |   |    |        |   |        | 

    |   |    |        |   |        | 

    |   |    |        |   |        | 

    o   o    o---o    o---o    o---o 

 

    o---o    o   o    o   o    o   o 

     \ /     |\ /      \ /      \ /| 

      X      | X        X        X | 

     / \     |/ \      / \      / \| 

    o   o    o   o    o---o    o   o 

 

    o   o    o---o    o   o    o---o 

    |\  |       /     |  /|     \ 

    | \ |      /      | / |      \ 

    |  \|     /       |/  |       \ 

    o   o    o---o    o   o    o---o 

 

    o---o    o   o    o   o    o---o 

    |\       |  /      \  |       /| 

    | \      | /        \ |      / | 

    |  \     |/          \|     /  | 

    o   o    o---o    o---o    o   o 

A spanning tree of an 

undirected graph is a 

subgraph that contains all 

its vertices and is a tree. 

 

The complete graph on 

four vertices 
                o---o 

    |\ /| 

    | X | 

    |/ \| 

    o---o 

has 16 spanning trees. 



CISC 235 Topic 10 4 

Example Graph 



CISC 235 Topic 10 5 

DFS & BFS Spanning Trees 

What property does the BFS spanning tree have 

that the DFS spanning tree does not?   



CISC 235 Topic 10 6 

Minimum Spanning Trees 

The cost of a spanning tree of a weighted, undirected 

graph is the sum of the costs (weights) of the edges in 

the spanning tree. 
  

A minimum-cost spanning tree is a spanning tree of least 

cost.  

 

 

 

 

Is there more than one minimum spanning tree? 

 

 

 

 

 



CISC 235 Topic 10 7 

Kruskal’s Algorithm 

Begin with a subgraph S of a weighted, connected 

undirected graph G, that includes all of its 

vertices, but none of its edges (i.e., a forest of 

one-node trees). 

Add edges from G one at a time to S, each time 

picking a least-cost edge that will not form a 

cycle in S, until V-1 edges have been added (so 

we have a single spanning tree). 

  

 



CISC 235 Topic 10 8 

Kruskal’s Algorithm 



CISC 235 Topic 10 9 

Kruskal’s Algorithm: O( |E| lg |V| ) 

MST-Kruskal(G, w)   // weight function w : E  R 

    S ← Ø   // Subgraph S has no edges (but has all vertices) 

    for each vertex v ∈ V[G] 

             MAKE-SET(v)  // Each vertex is a tree of one node 

    sort the edges of E into nondecreasing order by weight w 

    for each edge (u, v) ∈ E, taken in nondecreasing order  

             if FIND-SET(u) ≠ FIND-SET(v)  // If not in same tree 

                    S ← S ∪ {(u, v)}  // Add edge to subgraph S 

                    UNION(u, v)  // Join their two trees 

    return S 



CISC 235 Topic 10 10 

Prim’s Algorithm 

Begin with a tree T that contains any single 
vertex, w, from a weighted, connected 
undirected graph G.  

Then add a least-cost edge (u, w) to T such 
that T ∪ {(u, w)} is also a tree. This edge-
addition step is repeated until T contains 
V-1 edges.  

 

Notice that edge (u, w) is always such that 
exactly one of u and w is in T.  



CISC 235 Topic 10 11 

Prim’s Algorithm 



CISC 235 Topic 10 12 

Prim’s Algorithm Using a Priority 

Queue : O( |E| lg |V| ) 
MST-Prim(G, w, r)  // r is the root vertex (start vertex) 

     for each u ∈ V [G]  // Initially, all vertices u are set to: 

               key[u] ← ∞   // No edge connecting u to MST, so cost is ∞  

               π[u] ← NIL   // No parent of u in MST 

     key[r] ← 0  // Initially, r is the only vertex in MST 

     Q ← V [G]  // All vertices are placed in priority queue 

     while Q ≠ Ø 

               u ← EXTRACT-MIN(Q) 

               for each v ∈ Adj[u]  // Update adjacent edges if  

                        if v ∈ Q and w(u, v) < key[v]  // this path is cheaper  

                                π[v] ← u  // Reset parent of v to be u  

                                key[v] ← w(u, v)  // Reset minimum cost 



CISC 235 Topic 10 13 

Kruskal’s Algorithm 



CISC 235 Topic 10 14 

Kruskal’s Algorithm, con. 



CISC 235 Topic 10 15 

Prim’s 

Algorithm 



CISC 235 Topic 10 16 

Topological Sorting 

A topological sort of a dag (directed, acyclic graph) 
is a linear ordering of all its vertices such that if 
the graph contains an edge (u, v), then u 
appears before v in the ordering.  

 

A topological sort of a graph can be viewed as an 
ordering of its vertices along a horizontal line so 
that all directed edges go from left to right.  

 

If the graph has a cycle, then no linear ordering is 
possible.  

 



CISC 235 Topic 10 17 

Topological Sorting 

What other topological sorts are possible? 



CISC 235 Topic 10 18 

A dag for Topological Sorting 

In general, which vertex will be first in a 

topological sort? 



CISC 235 Topic 10 19 

Topological Sort Algorithm 

Begin with an empty list L and a dag G.   

While G is not empty,  

– Find a vertex v with no incoming edges 

– Delete v and its outgoing edges from G 

– Add v to L   



CISC 235 Topic 10 20 

Topological Sort Algorithm 

Topological-Sort( G ) 

  Create empty lists L & K 

  Create a count array 

  for each vertex v in G 

   count[v]  number of incoming edges to v 

   if count[v] = 0 

    add v to K 

  while K is not empty 

   remove a vertex v from K 

   for each outgoing edge (v,w)  

    decrement count[w] 

    if count[w] = 0  

     add w to K 

   add v to L 

  return L 


