CISC 235: Topic 10

Graph Algorithms

Outline

- Spanning Trees
- Minimum Spanning Trees
 - Kruskal's Algorithm
 - Prim's Algorithm
- Topological Sort

Spanning Trees

A *spanning tree* of an undirected graph is a subgraph that contains all its vertices and is a tree.

The complete graph on four vertices

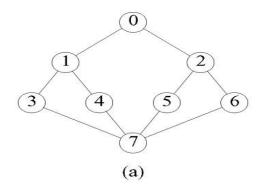
o---o |\ /| | X | |/ \| o---o

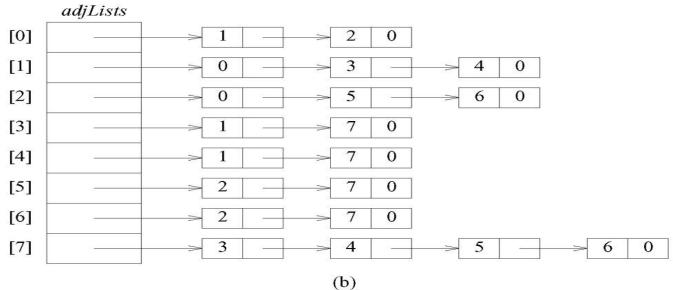
has 16 spanning trees. CISC 235 Topic 10

oo	00	o o	00
o o	00	oo	00
oo	0 0	o o	o o
∖ /	\ /	∖/	\/
X	X	X	X
/ ∖	/ \	/∖	/\
o o	0 0	oo	o o
0 0	00	0 0	oo
\	/	/	\
\	/	/	\
\	/	/	\
0 0	00	0 0	\
oo \ \ \ \ ic 10	o o / / / oo	o o \ \ \ oo	00 / / / 0 0

3

Example Graph

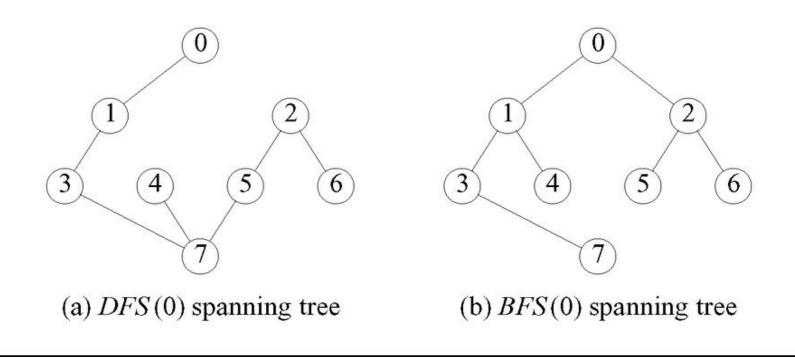




4

DFS & BFS Spanning Trees

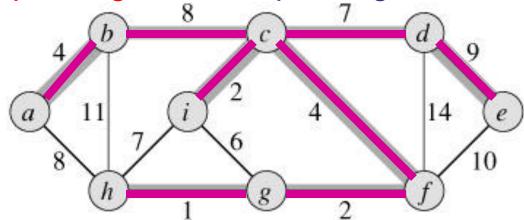
What property does the BFS spanning tree have that the DFS spanning tree does not?



Minimum Spanning Trees

The *cost* of a spanning tree of a weighted, undirected graph is the sum of the costs (weights) of the edges in the spanning tree.

A *minimum-cost spanning tree* is a spanning tree of least cost.



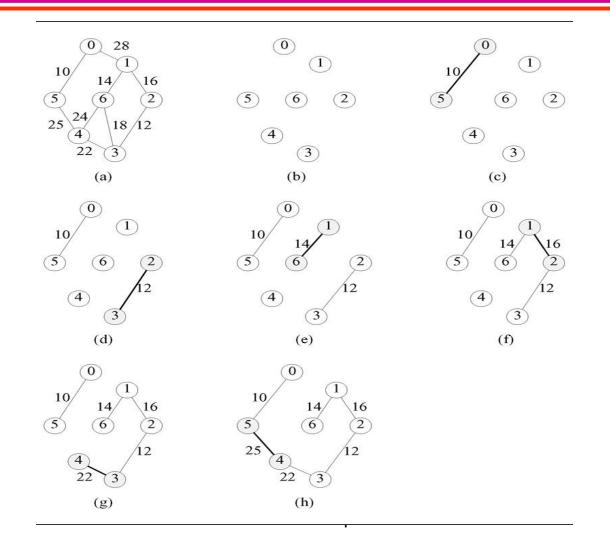
Is there more than one minimum spanning tree?

Kruskal's Algorithm

Begin with a subgraph S of a weighted, connected undirected graph G, that includes all of its vertices, but none of its edges (i.e., a forest of one-node trees).

Add edges from *G* one at a time to *S*, each time picking a least-cost edge that will not form a cycle in *S*, until *V*-1 edges have been added (so we have a single spanning tree).

Kruskal's Algorithm



Kruskal's Algorithm: O(|E| Ig |V|)

MST-Kruskal(G, w) // weight function $w : E \rightarrow R$

 $S \leftarrow \emptyset$ // Subgraph S has no edges (but has all vertices) for each vertex $v \in V[G]$

 $\begin{array}{l} \mathsf{MAKE}\text{-}\mathsf{SET}(\mathsf{v}) \ /\!/ \ \mathsf{Each vertex is a tree of one node} \\ \text{sort the edges of E into nondecreasing order by weight w} \\ \textbf{for each edge } (\mathsf{u},\mathsf{v}) \in \mathsf{E}, \text{ taken in nondecreasing order} \\ \textbf{if FIND}\text{-}\mathsf{SET}(\mathsf{u}) \neq \mathsf{FIND}\text{-}\mathsf{SET}(\mathsf{v}) \ /\!/ \ \mathsf{If not in same tree} \\ & \mathsf{S} \leftarrow \mathsf{S} \cup \{(\mathsf{u},\mathsf{v})\} \ /\!/ \ \mathsf{Add edge to subgraph S} \\ & \mathsf{UNION}(\mathsf{u},\mathsf{v}) \ /\!/ \ \mathsf{Join their two trees} \end{array}$

return S

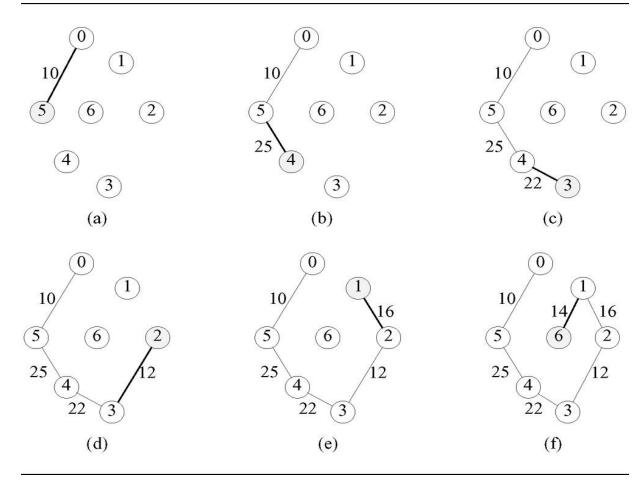
Prim's Algorithm

Begin with a tree T that contains any single vertex, w, from a weighted, connected undirected graph G.

Then add a least-cost edge (u, w) to T such that $T \cup \{(u, w)\}$ is also a tree. This edge-addition step is repeated until T contains *V*-1 edges.

Notice that edge (u, w) is always such that exactly one of u and w is in T.

Prim's Algorithm



Prim's Algorithm Using a Priority Queue : O(|E| lg |V|)

MST-Prim(G, w, r) // r is the root vertex (start vertex)

for each $u \in V[G]$ // Initially, all vertices u are set to:

 $key[u] \leftarrow \infty \quad // \text{ No edge connecting u to MST, so cost is } \infty$

 $\pi[u] \leftarrow NIL \quad // \text{ No parent of } u \text{ in MST}$

key[r] $\leftarrow 0$ // Initially, r is the only vertex in MST

 $Q \leftarrow V[G]$ // All vertices are placed in priority queue while $Q \neq \emptyset$

 $u \leftarrow EXTRACT-MIN(Q)$

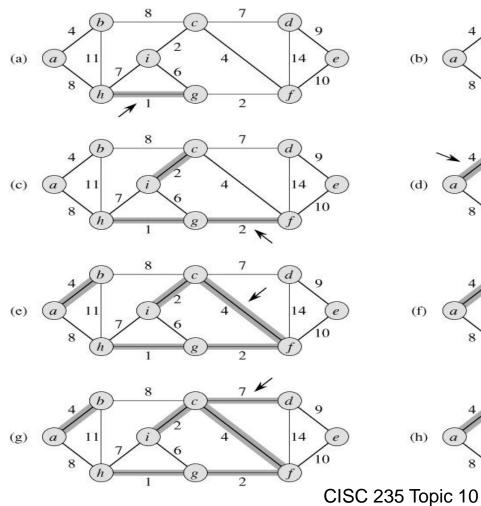
for each $v \in Adj[u]$ // Update adjacent edges if

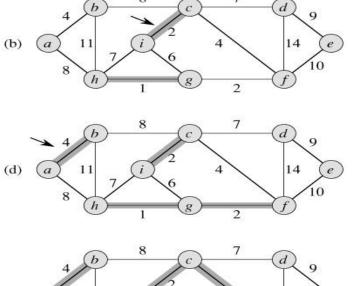
if $v \in Q$ and w(u, v) < key[v] // this path is cheaper

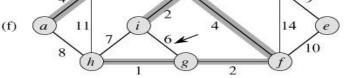
 $\pi[v] \leftarrow u \ // \text{ Reset parent of } v \text{ to be } u$

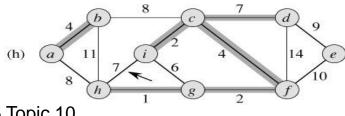
 $key[v] \leftarrow w(u, v) // Reset minimum cost$

Kruskal's Algorithm

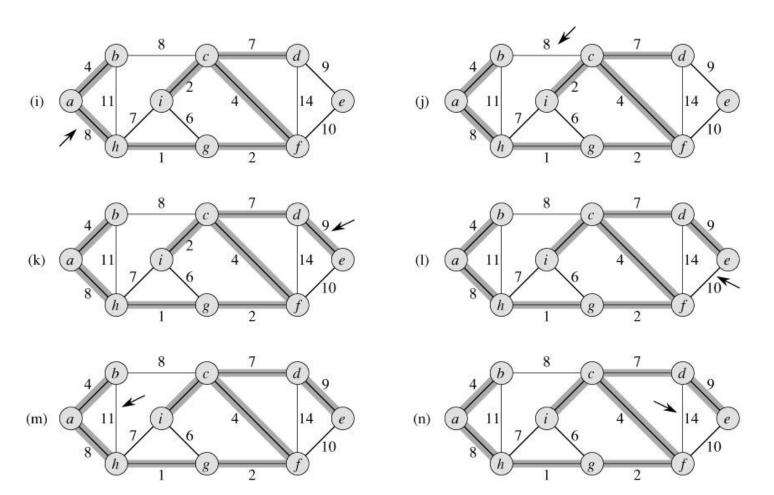




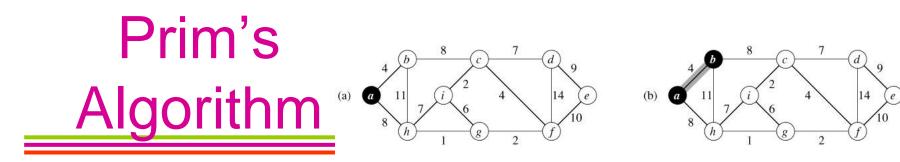


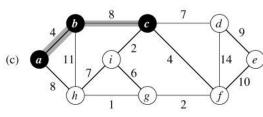


Kruskal's Algorithm, con.



CISC 235 Topic 10





g

7

2

7

2

d

14 (e)

d

14

9

(e)

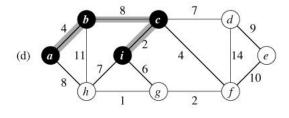
8

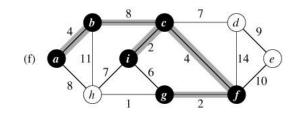
(e)

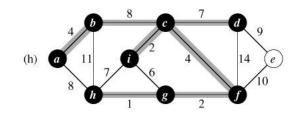
(g)

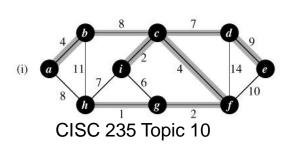
a

a





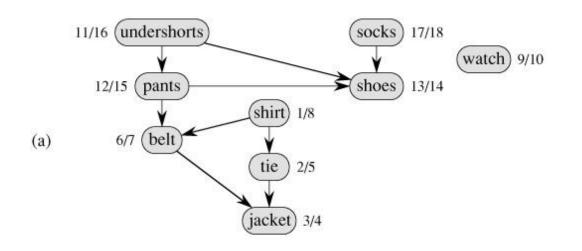


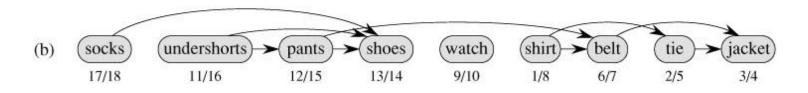


Topological Sorting

- A *topological sort* of a *dag* (directed, acyclic graph) is a linear ordering of all its vertices such that if the graph contains an edge (*u*, *v*), then *u* appears before *v* in the ordering.
- A topological sort of a graph can be viewed as an ordering of its vertices along a horizontal line so that all directed edges go from left to right.
- If the graph has a cycle, then no linear ordering is possible.

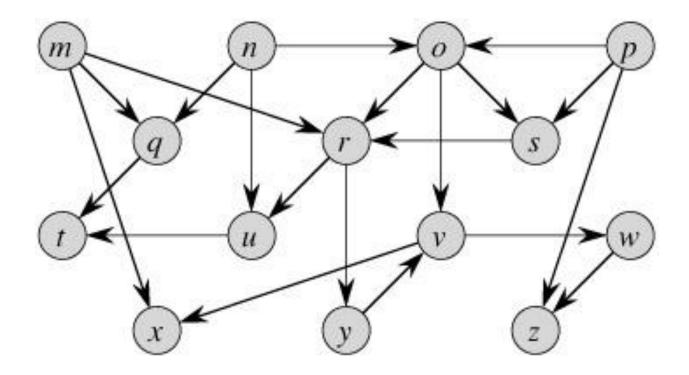
Topological Sorting





What other topological sorts are possible? CISC 235 Topic 10

A dag for Topological Sorting



In general, which vertex will be first in a topological sort?

CISC 235 Topic 10

Topological Sort Algorithm

Begin with an empty list *L* and a dag *G*. While *G* is not empty,

- Find a vertex v with no incoming edges
- Delete v and its outgoing edges from G
- $\text{Add } \mathbf{v} \text{ to } \mathbf{L}$

Topological Sort Algorithm

```
Topological-Sort(G)
Create empty lists L & K
Create a count array
for each vertex v in G
        count[v] \leftarrow number of incoming edges to v
        if count[v] = 0
                 add v to K
while K is not empty
        remove a vertex v from K
        for each outgoing edge (v,w)
                 decrement count[w]
                 if count[w] = 0
                         add w to K
        add v to L
                      CISC 235 Topic 10
return |
```