CISC 235: Topic 11

Shortest Paths Algorithms

Outline

- Single-Source Shortest Paths
- Algorithm for Unweighted Graphs
- Algorithm for Weighted, Directed Acyclic Graphs (Weighted DAGs)
- Algorithm for Weighted, Directed Graphs with no negative weights

Single-Source Shortest Paths

Give a graph $G=(V, E)$, we want to find a shortest path from a given source vertex $s \in V$ to each vertex $v \in V$

	Path
1)	0,3
2) $0,3,4$	10
3) $0,3,4,1$	25
3) 0,35	
4) 0,2	45

(b) Shortest paths from 0

Why is vertex 5 not included in the list? CISC 235 Topic 11

Single-Source Shortest Paths

What problems might occur with these two special cases?

Properties of Shortest Paths

Can a shortest path contain a cycle?

At most how many edges will a shortest path contain?

Unweighted Graphs

What algorithm can be used to find the shortest paths for unweighted graphs?

Shortest Paths Algorithms for Weighted Graphs

For each vertex $v \in V$, we maintain attributes:
$\mathrm{d}[\nu]$: shortest-path estimate (upper bound on weight of shortest path from source s to v)
$\pi[v]$: predecessor of v on shortest path so far
Initially $\mathrm{d}[v]$ is ∞ and $\pi[v]$ is NIL :
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex $v \in \mathrm{~V}[\mathrm{G}]$

$$
\begin{gathered}
\mathrm{d}[\mathrm{~V}] \leftarrow \infty \\
\pi[\mathrm{V}] \leftarrow \mathrm{NIL} \\
\mathrm{~d}[\mathrm{~s}] \leftarrow 0 \quad \text { CISC } 235 \text { Topic 11 }
\end{gathered}
$$

Updating Adjacent Vertices

RELAX(u, v, w)

$$
\begin{aligned}
\text { if } \mathrm{d}[\mathrm{v}] & >\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \mathrm{d}[\mathrm{v}] \leftarrow \mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v}) \\
& \pi[\mathrm{v}] \leftarrow \mathrm{u}
\end{aligned}
$$

(a)

(b)

Algorithm for Weighted DAGs

AG-SHORTEST-PATHS(G, w, s)

topologically sort the vertices of G
INITIALIZE-SINGLE-SOURCE(G, s)
for each vertex u, taken in topologically sorted order for each vertex $v \in \operatorname{Adj}[u]$
$\operatorname{RELAX}(u, v, w)$

Example

Weighted Digraphs with No Negative Weights

Dijkstra's Algorithm

DIJKSTRA(G, w, s)
INITIALIZE-SINGLE-SOURCE (G, s)
$S \leftarrow \varnothing$
$Q \leftarrow V G]$
while $Q \neq \varnothing$
$u \leftarrow \operatorname{EXTRACT}-\mathrm{MIN}(Q)$
$S \leftarrow S \cup\{u\}$
for each vertex $v \in \operatorname{AdJ}[u]$ $\operatorname{RELAX}(u, v, w)$

Example

