CISC 235: Topic 1

Complexity of Iterative Algorithms

Outline

- Complexity Basics
- Big-Oh Notation
- Big- Ω and Big- θ Notation
- Summations
- Limitations of Big-Oh Analysis

Complexity

Complexity is the study of how the time and space to execute an algorithm vary with problem size.
The purpose is to compare alternative algorithms to solve a problem to determine which is "best".

Time Complexity:
Let $\mathrm{T}(n)$ denote the time to execute an algorithm with input size n

How can we measure $\mathrm{T}(n)$?

Experimental Study

Implement the alternative algorithms and then time them with various benchmarks, measuring running time with a method like Java's System.currentTimeMillis()

Mathematical Analysis

Analyze alternative algorithms mathematically

 prior to coding- Define the amount of time taken by an algorithm to be a function of the size of the input data:

$$
\mathrm{T}(n)=?
$$

- Count the key instructions that are executed to obtain the value of the function in terms of the size of the input data
- Compare algorithms by comparing how fast their running time functions grow as the input size increases

Finding an Algorithm's Running Time Function

Count the key instructions that are executed to obtain the running time in terms of the size of the input data.

Important Decisions:

- What is the measure of the size of input?
- Which are the key instructions?

Example: Find smallest value in array A of length n

int small $=0$;
for (int $\mathrm{j}=0 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++$)
if ($A[j]<A[s m a l l])$
small $=\mathrm{j}$;

Counting Assignments:
Line 1: 1
Line 2: $\mathrm{n}+1$
Line 3: 0
Line 4: best case: 0 worst case: n

$$
\text { So, } T(n)=2 n+2
$$

Example: Find smallest value in array A of length n

$$
\begin{aligned}
& \text { int small }=0 ; \\
& \text { for }(\text { int } j=0 ; j<n ; j++) \\
& \text { if }(A[j]<A[\text { small }] \\
& \quad \text { small }=j ;
\end{aligned}
$$

Substitute constants
$a \& b$ to reduce analysis time:
Line 1: b (constant time for everything outside loop)
Line 2: n (variable number of times through loop)
Lines 2, 3, 4: a (constant time for everything inside loop,
including loop test \& increment)

$$
\text { So, } T(n)=a n+b
$$

For large input sizes, constant terms are insignificant

Program A with running time $T_{A}(n)=100 n$
Program B with running time $T_{B}(n)=2 n^{2}$

Input Size \boldsymbol{n}
CISC 235 Topic 150

Big-Oh Notation

Purpose: Establish a relative ordering among functions by comparing their relative rates of growth

Example: $f(x)=4 x+3$
Big-Oh Notation: $f(x) \in \mathrm{O}(x)$

$$
\text { or } f(x) \text { is } \mathrm{O}(x)
$$

Definition of Big-Oh Notation

$f(x)$ is $\mathrm{O}(g(x))$ if two constants C and k can be found such that:
for all $x>k, f(x) \leq C g(x)$

Note: Big-Oh is an upper bound

Meaning of Big-Oh Notation

- The function $f(x)$ is one of the set of functions that has an order of magnitude growth rate \leq the growth rate of $g(x)$

OR

- $f(x)$ is at most a constant times $g(x)$, except possibly for some small values of x

Graph of Big-Oh for a Program

If $x>1$, then $x^{2}+2 x+1<x^{2}+2 x^{2}+x^{2}=4 x^{2}$
If $x>2$, then $x^{2}+2 x+1<x^{2}+x^{2}+x^{2}=3 x^{2}$

Rules for Big-Oh

- We want to find the closest upper bound
- if $f(x)=100 x$, we choose $f(x)$ is $\mathrm{O}(x)$, not $f(x)$ is $\mathrm{O}\left(x^{2}\right)$
- Never include constants or lower-order terms within a Big-Oh (so also don't include the base of a logarithm)
- if $f(x)=2 x^{2}+x$
we choose $f(x)$ is $\mathrm{O}\left(x^{2}\right)$,
not $f(x)$ is $\mathrm{O}\left(2 x^{2}\right)$ and $n o t f(x)$ is $\mathrm{O}\left(x^{2}+x\right)$

Order of Magnitude Growth Rates

Function	Descriptor	Big-Oh
C	Constant	$\mathrm{O}(1)$
$\log n$	Logarithmic	$\mathrm{O}(\log n)$
n	Linear	$\mathrm{O}(n)$
$n \log n$	$\mathrm{n} \log \mathrm{n}$	$\mathrm{O}(n \log n)$
n^{2}	Quadratic	$\mathrm{O}\left(n^{2}\right)$
n^{3}	Cubic	$\mathrm{O}\left(n^{3}\right)$
n^{k}	Polynomial	$\mathrm{O}\left(n^{k}\right)$
2^{n}	Exponential	$\mathrm{O}\left(2^{n}\right)$
$n!$	Factorial	$\mathrm{O}(n!)$

Order of
Magnitude
Growth Rates
\qquad

Change to Running Times When Input Size n is Doubled?

Function	$n=100$	$n=200$	Change
C	C	$C+\ldots$	
$\log n$	~ 5	$\sim 5+$	
n	100	100^{*}	
n^{2}	100^{2}	$100^{2}{ }^{*}$	
n^{3}	100^{3}	$100^{*} *$	
2^{n}	$\sim 100^{15}$	$\sim 100^{15} *$	

Growth of Combinations of Functions

If $f_{1}(x)$ is $\mathrm{O}\left(g_{1}(x)\right)$ and $f_{2}(x)$ is $\mathrm{O}\left(g_{2}(x)\right)$,
Then

$$
\left(f_{1}+f_{2}\right)(x) \text { is } \mathrm{O}\left(\max \left(g_{1}(x), g_{2}(x)\right)\right)
$$

and

$$
\left(f_{1} f_{2}\right)(x) \text { is } \mathrm{O}\left(g_{1}(x) g_{2}(x)\right)
$$

Deriving Big-Oh of Functions

$f(x)$	Big-Oh
$3 x^{2}+5$	$\mathrm{O}\left(x^{2}\right)$
$2 x^{3}-x^{2}-6$	$\mathrm{O}\left(x^{3}\right)$
$\log _{2} x+x$	$\mathrm{O}(x)$
$\left(5+\log _{2} x\right)(3 x-3)$	$\mathrm{O}(x \log x)$
$4\left(2^{x}-x^{3}\right)$	$\mathrm{O}\left(2^{x}\right)$
$4 c-6 d+17 a$	$\mathrm{O}(1)$

Big-Omega (Big- Ω) Notation

Expresses a lower-bound of a function
$f(x)$ is $\Omega(g(x))$ if $f(x)$ is at least a constant times $g(x)$, except possibly for some small values of x.

Formally:
$f(x)$ is $\Omega(g(x))$ if two constants C and k can be found such that for all $x>k, f(x) \geq C g(x)$

Graph of Big- Ω for a Program

Big-Theta $($ Big $-\Theta$) Notation

Expresses a tight bound of a function $f(x)$ is $\Theta(g(x))$ if $f(x)$ is both $\mathrm{O}(g(x))$ and $\Omega(g(x))$

Example

Input: An $n+1$ element array A of coefficients and x, a number

Output: pVal , the value of the polynomial $\mathrm{A}[0]+\mathrm{A}[1] x+\mathrm{A}[2] x^{2}+\ldots+\mathrm{A}[n] x^{n}$

Algorithm 1

$$
\begin{aligned}
& \mathrm{pVal}=\mathrm{A}[0] \\
& \text { for (int } \mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++ \text {) } \\
& \qquad \mathrm{pVal}=\mathrm{pVal}+\mathrm{A}[\mathrm{i}] \text { * Math.pow }(\mathrm{x}, \mathrm{i}) ;
\end{aligned}
$$

What is the Big-Oh analysis of this algorithm?

Algorithm 2

$$
\begin{aligned}
& \text { pVal = A[0] } \\
& \text { for (int } i=1 ; i<=n ; i++) \\
& \left\{\begin{array}{l}
\text { pow } X=1 \\
\text { for }(\text { int } j=0 ; j<i ; j++) \\
\quad \text { pow } X=x^{*} \text { pow } X \\
\text { pVal }=p V a l+A[i] \text { * pow } X
\end{array}\right. \\
& \} \quad
\end{aligned}
$$

What is the Big-Oh analysis of this algorithm? ${ }_{26}$

Algorithm 3

Horner's method:
To evaluate $a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}$, use:

$$
\mathrm{P}(\mathrm{x})=\mathrm{a}_{0}+\left(\mathrm{x}\left(\mathrm{a}_{1}+\mathrm{x}\left(\mathrm{a}_{2}+\ldots+\mathrm{x}\left(\mathrm{a}_{\mathrm{n}-1}+\mathrm{x} \mathrm{a}_{\mathrm{n}}\right) \ldots\right)\right)\right)
$$

$$
\begin{aligned}
& p \vee a l=x^{*} A[n] \\
& \text { for (int } i=n-1 ; i>0 ; i--) \\
& \quad p \vee a l=x *(A[i]+p V a l) \\
& p \vee a l=p \vee a l+A[0]
\end{aligned}
$$

What is the Big-Oh analysis of this algorithm?

Example: Selection Sort

$$
\begin{aligned}
& \text { for (int } \mathrm{i}=0 ; \mathrm{i}<\mathrm{n}-1 ; \mathrm{i}++ \text {) } \\
& \text { \{ } \\
& \text { int small = i; } \\
& \text { for (int } \mathrm{j}=\mathrm{i}+1 ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++ \text {) } \\
& \text { if (} A[j]<A[s m a l l]) \\
& \text { small = j; } \\
& \text { int temp = A[small]; } \\
& \text { A[small] = A[i]; } \\
& A[i]=\text { temp; } \\
& \text { \} }
\end{aligned}
$$

Summation Notation

$$
\sum_{i=m}^{n} a_{i}
$$

Represents $a_{m}+a_{m+1}+\ldots+a_{n}$

TABLE 2 Some Useful Summation
Formulae.

Sum	Closed Form
$\begin{aligned} & \sum_{k=0}^{n} a r^{k}(r \neq 0) \\ & \sum_{k=1}^{n} k \\ & \sum_{k=1}^{n} k^{2} \\ & \sum_{k=1}^{n} k^{3} \\ & \sum_{k=0}^{\infty} x^{k},\|x\|<1 \\ & \sum_{k=1}^{\infty}, k x^{k-1},\|x\|<1 \end{aligned}$	$\begin{aligned} & \frac{a r^{n+1}-a}{r-1}, r \neq 1 \\ & \frac{n(n+1)}{2} \\ & \frac{n(n+1)(2 n+1)}{6} \\ & \frac{n^{2}(n+1)^{2}}{4} \\ & \frac{1}{1-x} \\ & \frac{1}{(1-x)^{2}} \end{aligned}$

Summation Manipulations

1. Take out constant terms:

$$
\sum_{k=1}^{n} k / 2=1 / 2 \sum_{k=1}^{n} k
$$

2. Decompose large terms:

$$
\sum_{k=1}^{n} n-k+k^{2}=\sum_{k=1}^{n} n-\sum_{k=1}^{n} k+\sum_{k=1}^{n} k^{2}
$$

Summation Manipulations

3. Partial Sums:

$$
\sum_{k=j+1}^{n} k=\sum_{k=1}^{n} k-\sum_{k=1}^{j} k
$$

4. Practice:

n

$$
\sum_{j=i} k j+a=
$$

Number of Terms in a Summation

Upper Bound - Lower Bound + 1

$$
\begin{aligned}
& \sum_{k=2}^{n} 1=1+1+\ldots+1=n-2+1=n-1 \\
& \begin{aligned}
\sum_{k=j+1}^{n-1} 1=1+1+\ldots+1 & =(n-1)-(j+1)+1 \\
& =n-j-1
\end{aligned}
\end{aligned}
$$

Note: This is equivalent to calculating the number of iterations in a for loop

Calculating Arithmetic Summations

((First Term + Last Term) * Number of Terms) / 2

$$
\begin{aligned}
& \sum_{k=1}^{n} k=1+2+\ldots+n=(1+n) * n / 2=\frac{n(n+1)}{2} \\
& \begin{aligned}
\sum_{i=0}^{n-2} n-i-1 & =(n-1)+(n-2)+\ldots+1 \\
& =((n-1)+1) *(n-1)) / 2 \\
& =\frac{n(n-1)}{2}
\end{aligned}
\end{aligned}
$$

Example: Max Subsequence Sum

```
int maxSum \(=0\);
int besti \(=0\); int bestj \(=0\);
for ( int \(\mathrm{i}=0 ; \mathrm{i}<\mathrm{n} ; \mathrm{i}++\) )
    for ( int \(\mathrm{j}=\mathrm{i} ; \mathrm{j}<\mathrm{n} ; \mathrm{j}++\) )
    \{ int thisSum =0;
        for (int \(\mathrm{k}=\mathrm{i} ; \mathrm{k}<=\mathrm{j} ; \mathrm{k}++\) )
        thisSum = thisSum \(+A[k]\);
        if ( thisSum > maxSum )
        \{ maxSum = thisSum;
        besti \(=\mathrm{i}\); bestj \(=\mathrm{j}\);
        \}
        \}

\section*{Analyzing Complexity of Lists}
\begin{tabular}{|l|l|l|l|l|}
\hline \hline Operation & \begin{tabular}{c} 
Sorted \\
Array
\end{tabular} & \begin{tabular}{c} 
Sorted \\
Linked \\
List
\end{tabular} & \begin{tabular}{c} 
Unsorted \\
Array
\end{tabular} & \begin{tabular}{c} 
Unsorted \\
Linked \\
List
\end{tabular} \\
\hline Search( L, x) & & & & \\
\hline Insert( L, x ) & & & & \\
\hline Delete( L, x) & & & & \\
\hline \multicolumn{5}{|c|}{ CISC 235 Topic 1 }
\end{tabular}

\section*{Limitations of Big-Oh Analysis}
- Not appropriate for small amounts of input
- Use the simplest algorithm
- Large constants can affect which algorithm is more efficient
- e.g., 2nlogn versus 1000n
- Assumption that all basic operations take 1 time unit is faulty
- e.g., memory access versus disk access
(1000s of time more )
- Big-Oh can give serious over-estimate
- e.g., loop inside an if statement that seldom executes```

