CISC 235: Topic 1

Complexity of Iterative Algorithms

Outline

- Complexity Basics
- Big-Oh Notation
- Big- Ω and Big- θ Notation
- Summations
- Limitations of Big-Oh Analysis

Complexity

Complexity is the study of how the time and space to execute an algorithm vary with problem size. The purpose is to compare alternative algorithms to solve a problem to determine which is "best".

Time Complexity:

Let T(n) denote the time to execute an algorithm with input size n

How can we measure T(n)?

Experimental Study

Implement the alternative algorithms and then time them with various benchmarks, measuring running time with a method like Java's System.currentTimeMillis()

n

Mathematical Analysis

Analyze alternative algorithms mathematically prior to coding

 Define the amount of time taken by an algorithm to be a function of the size of the input data:

$$\mathsf{T}(n) = ?$$

- Count the key instructions that are executed to obtain the value of the function in terms of the size of the input data
- Compare algorithms by comparing how fast their running time functions grow as the input size increases

Finding an Algorithm's Running Time Function

Count the *key instructions* that are executed to obtain the running time in terms of the *size of the input data*.

Important Decisions:

- What is the measure of the size of input?
- Which are the key instructions?

Example: Find smallest value in array A of length n

int small = 0; for (int j = 0; j < n; j++) if (A[j] < A[small]) small = j;

Counting Assignments:

- Line 1: 1
- Line 2: n + 1
- Line 3: 0
- Line 4: best case: 0

worst case: n

So, T(n) = 2n + 2

Example: Find smallest value in array A of length n

int small = 0; for (int j = 0; j < n; j++) if (A[j] < A[small]) small = j;

Substitute constants

a & b to reduce analysis time:

Line 1: b(constant time for everything outside loop)Line 2: n(variable number of times through loop)Lines 2, 3, 4: a (constant time for everything inside loop,

including loop test & increment)

So, T(n) = an + b

For large input sizes, constant terms are insignificant

Program A with running time $T_A(n) = 100n$ Program *B* with running time $T_B(n) = 2n^2$ $T_P(n)$ $T_B(n) = 2n^2$ $T_{\Delta}(n) = 100n$ 5000 Input Size *n* 50 CISC 235 Topic 1 9

Big-Oh Notation

Purpose: Establish a relative ordering among functions by comparing their relative rates of growth

Example:
$$f(x) = 4x + 3$$

Big-Oh Notation: $f(x) \in O(x)$ or f(x) is O(x)

Definition of Big-Oh Notation

f(x) is O(g(x)) if two constants C and k can be found such that:

for all
$$x > k$$
, $f(x) \le Cg(x)$

Note: Big-Oh is an upper bound

Meaning of Big-Oh Notation

 The function *f*(*x*) is one of the set of functions that has an order of magnitude growth rate ≤ the growth rate of *g*(*x*)

OR

• f(x) is at most a constant times g(x), except possibly for some small values of x

Graph of Big-Oh for a Program

13

Rules for Big-Oh

- We want to find the closest upper bound - if f(x) = 100x, we choose f(x) is O(x), not f(x) is $O(x^2)$
- Never include constants or lower-order terms within a Big-Oh (so also don't include the base of a logarithm)

- if
$$f(x) = 2x^2 + x$$

we choose $f(x)$ is $O(x^2)$,
not $f(x)$ is $O(2x^2)$ and not $f(x)$ is $O(x^2 + x)$

Order of Magnitude Growth Rates

Function	Descriptor	Big-Oh
С	Constant	O(1)
log n	Logarithmic $O(\log n)$	
n	Linear	O(<i>n</i>)
$n \log n$	n log n	O($n \log n$)
n^2	Quadratic	O(<i>n</i> ²)
n^3	Cubic	O(<i>n</i> ³)
n ^k	Polynomial	O(<i>n</i> ^k)
2 ⁿ	Exponential	O(2 ⁿ)
n!	Factorial	O(<i>n!</i>)

Order of Magnitude Growth Rates

Change to Running Times When Input Size *n* is Doubled?

Function	<i>n</i> = 100	n = 200	Change
С	С	C +	
log n	~5	~5 +	
n	100	100 *	
n^2	100 ²	100 ² *	
n^3	100 ³	100 ³ *	
2 ^{<i>n</i>}	~100 ¹⁵	~100 ¹⁵ *	

Growth of Combinations of Functions

If $f_1(x)$ is O($g_1(x)$) and $f_2(x)$ is O($g_2(x)$), Then

 $(f_1 + f_2)(x)$ is O(max($g_1(x), g_2(x)$)) and

$$(f_1 f_2)(x)$$
 is O($g_1(x)g_2(x)$)

Deriving Big-Oh of Functions

f(x)	Big-Oh
$3x^2 + 5$	$O(\chi^2)$
$2x^3 - x^2 - 6$	O(<i>X</i> ³)
$\log_2 x + x$	O(x)
$(5 + \log_2 x)(3x - 3)$	$O(x \log x)$
$4(2^{\chi} - \chi^3)$	O(2 ^{<i>x</i>})
4c - 6d + 17a	O(1)

Big-Omega (Big-Ω) Notation

Expresses a lower-bound of a function f(x) is $\Omega(g(x))$ if f(x) is at least a constant times g(x), except possibly for some small values of x.

Formally: f(x) is $\Omega(g(x))$ if two constants C and k can be found such that for all x > k, $f(x) \ge Cg(x)$

Graph of Big- Ω for a Program

Big-Theta (Big- Θ) Notation

Expresses a tight bound of a function f(x) is $\Theta(g(x))$ if f(x) is both O(g(x)) and $\Omega(g(x))$

Example

Input: An n+1 element array A of coefficients and x, a number

Output: pVal, the value of the polynomial A[0] + A[1]x + A[2] x^2 +... + A[n] x^n

Algorithm 1

What is the Big-Oh analysis of this algorithm?

Algorithm 2

```
pVal = A[0]
     for (int i = 1; i <= n; i++)
        powX = 1
       for (int j = 0; j < i; j++)
                powX = x * powX
        pVal = pVal + A[i] * powX
What is the Big-Oh analysis of this algorithm?
```

Algorithm 3

Horner's method:

To evaluate $a_0 + a_1x + a_2x^2 + ... + a_nx^n$, use: $P(x) = a_0 + (x (a_1 + x(a_2 + ... + x(a_{n-1} + xa_n) ...)))$

$$pVal = x * A[n]$$

for (int i = n -1; i > 0; i - -)
 $pVal = x * (A[i] + pVal)$
 $pVal = pVal + A[0]$

What is the Big-Oh analysis of this algorithm?

Example: Selection Sort

```
for (int i = 0; i < n-1; i++)
ł
      int small = i;
     for (int j = i + 1; j < n; j++)
          if (A[j] < A[small])
                small = j;
      int temp = A[small];
      A[small] = A[i];
      A[i] = temp;
```

Summation Notation

 $\sum_{i=m}^{n} a_{i}$

Represents $a_m + a_{m+1} + \dots + a_n$

TABLE 2Some UsefuFormulae.		
Sum	Closed Form	
$\sum_{k=0}^{n} ar^k \ (r \neq 0)$	$\frac{ar^{n+1}-a}{r-1}, r \neq 1$	
$\sum_{k=1}^{n} k$	$\frac{n(n+1)}{2}$	
$\sum_{k=1}^{n} k^2$	$\frac{n(n+1)(2n+1)}{6}$	
$\sum_{k=1}^{n} k^3$	$\frac{n^2(n+1)^2}{4}$	
$\sum_{k=0}^{\infty} x^k, x < 1$	$\frac{1}{1-x}$	Hill Companies, Inc. roduction or display.
$\sum_{k=1}^{\infty}, kx^{k-1}, x < 1$	$\frac{1}{(1-x)^2}$	Copyright © The McGraw Permission required for reg

Summation Manipulations

1. Take out constant terms:

2. Decompose large terms:

n n n n n

$$\sum_{k=1}^{n} n - k + k^{2} = \sum_{k=1}^{n} n - \sum_{k=1}^{n} k + \sum_{k=1}^{n} k^{2}$$

Summation Manipulations

3. Partial Sums:

n n j

$$\sum_{k=j+1}^{n} k = \sum_{k=1}^{n} k - \sum_{k=1}^{j} k$$

4. Practice: n $\sum_{j=i}^{n} kj + a =$

Number of Terms in a Summation

Upper Bound – Lower Bound + 1

n

$$\sum_{k=2}^{n} 1 = 1 + 1 + ... + 1 = n - 2 + 1 = n - 1$$

$$\sum_{k=j+1}^{n-j-1} = 1 + 1 + \dots + 1 = (n-1) - (j+1) + 1$$
$$= n - j - 1$$

Note: This is equivalent to calculating the number of iterations in a for loop

CISC 235 Topic 1

Calculating Arithmetic Summations

((First Term + Last Term) * Number of Terms) / 2 n $\sum_{k=1}^{n} k = 1 + 2 + ... + n = (1+n) * n/2 = n(n+1)$ 2

n-2 $\sum_{i=0}^{n-i-1} = (n-1) + (n-2) + \dots + 1$ = ((n-1) + 1) * (n-1))/2 $= \underline{n(n-1)}$ 2

Example: Max Subsequence Sum

```
int maxSum = 0;
int besti = 0; int bestj = 0;
for (int i = 0; i < n; i++)
     for (int j = i; j < n; j++)
          int thisSum = 0;
          for (int k = i; k \le j; k++)
              thisSum = thisSum + A[k];
          if (thisSum > maxSum)
              maxSum = thisSum;
              besti = i; besti = j;
```

Analyzing Complexity of Lists

Operation	Sorted Array	Sorted Linked List	Unsorted Array	Unsorted Linked List
Search(L, x)				
Insert(L, x)				
Delete(L, x)				

Limitations of Big-Oh Analysis

- Not appropriate for small amounts of input
 - Use the simplest algorithm
- Large constants can affect which algorithm is more efficient
 - e.g., 2nlogn versus 1000n
- Assumption that all basic operations take 1 time unit is faulty
 - e.g., memory access versus disk access (1000s of time more)
- Big-Oh can give serious over-estimate
 - e.g., loop inside an if statement that seldom executes