
CISC 235: Topic 1 

Complexity of Iterative Algorithms 



Outline 

• Complexity Basics  

• Big-Oh Notation 

• Big-Ω and Big-θ Notation 

• Summations 

• Limitations of Big-Oh Analysis  
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Complexity 

Complexity is the study of how the time and space 
to execute an algorithm vary with problem size. 

The purpose is to compare alternative algorithms 
to solve a problem to determine which is “best”. 

 

Time Complexity: 

Let T(n) denote the time to execute an algorithm 
with input size n 

 

How can we measure T(n)? 
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Experimental Study 

Implement the alternative algorithms and then time them 

with various benchmarks, measuring running time with a 

method like Java’s System.currentTimeMillis( ) 

T(n) 

n Too much coding & not general results 
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Mathematical Analysis 

Analyze alternative algorithms mathematically 
prior to coding 
– Define the amount of time taken by an algorithm to 

be a function of the size of the input data: 

   T(n) = ? 

– Count the key instructions that are executed to 
obtain the value of the function in terms of the size 
of the input data 

– Compare algorithms by comparing how fast their 
running time functions grow as the input size 
increases 
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Finding an Algorithm’s 

Running Time Function 

Count the key instructions that are executed to 

obtain the running time in terms of the size of 

the input data. 

 

Important Decisions:  

• What is the measure of the size of input? 

• Which are the key instructions? 
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Example:  Find smallest value in 

array A of length n 
int small = 0; 

for ( int j = 0; j < n; j++ ) 

         if ( A[j] < A[small] ) 

               small = j; 

 

Counting Assignments:                                          

 Line 1:  1  

 Line 2:  n + 1  

 Line 3:  0 

 Line 4:  best case:  0  

              worst case:  n                So, T(n) = 2n + 2 

 

 
7 CISC 235 Topic 1 



Example:  Find smallest value in 

array A of length n 
int small = 0; 

for ( int j = 0; j < n; j++ ) 

         if ( A[j] < A[small] ) 

                small = j; 

 

Substitute constants  

a & b to reduce analysis time:                                          

 Line 1:  b           (constant time for everything outside loop) 

 Line 2:  n           (variable number of times through loop) 

 Lines 2, 3, 4:  a (constant time for everything inside loop,  

                              including loop test & increment) 

   

    So, T(n) = an + b 
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For large input sizes, constant 

terms are insignificant 

Program A with running time TA(n)= 100n 

Program B with running time TB(n)= 2n2 

TP(n) 

TA(n) = 100n 

TB(n) = 2n2 

50 

5000 

Input Size n 
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Big-Oh Notation 

Purpose:  Establish a relative ordering 
among functions by comparing their 
relative rates of growth 

 

Example:  f(x) = 4x + 3 

 

Big-Oh Notation:  f(x)    O(x)         

                      or    f(x) is O(x) 
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Definition of Big-Oh Notation 

 

f(x) is O(g(x)) if two constants C and k can 

be found such that: 

 

 for all x  k,  f(x) ≤ Cg(x) 

 

Note:  Big-Oh is an upper bound  
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Meaning of Big-Oh Notation 

 

• The function f(x) is one of the set of functions that has 

an order of magnitude growth rate ≤ the growth rate of 
g(x) 

 

            OR 

 

• f(x) is at most a constant times g(x), except possibly for 

some small values of x 
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Graph of Big-Oh for a Program 

T(n) 

n 

T(n) 

Cg(n) 

Running 

Time 

Input Size 

For all n  k, T(n) ≤ Cg(n) 

g(n) 

        K   or    K   or … 
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03-2-001.jpg 

If x > 1, then  x2 + 2x + 1  x2 + 2x2 + x2 =  4x2  

If x > 2, then  x2 + 2x + 1  x2 + x2 + x2 =  3x2  

So, we can take k = 1 and C = 4 to show that 

f(x) = x2 + 2x + 1 is O(x2)  

Show that  

f(x) = x2 + 2x + 1  

is O(x2)  
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Rules for Big-Oh 

• We want to find the closest upper bound  
– if f(x) = 100x,  

  we choose f(x) is O(x),  

  not f(x) is O(x2) 

• Never include constants or lower-order terms 
within a Big-Oh (so also don’t include the 
base of a logarithm) 
– if f(x) = 2x2 + x  

  we choose f(x) is O(x2), 

  not  f(x) is O(2x2) and not f(x) is O(x2 + x)  
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Order of Magnitude Growth Rates  
  Function Descriptor  Big-Oh 

      C  Constant   O( 1 ) 

      log n  Logarithmic   O( log n ) 

      n  Linear   O( n ) 

      n log n  n log n   O( n log n ) 

      n2  Quadratic   O( n2 ) 

      n3  Cubic   O( n3 ) 

      nk  Polynomial   O( nk ) 

      2n  Exponential   O( 2n ) 

      n!  Factorial   O( n! ) 
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Change to Running Times When 
Input Size n is Doubled?  

Function n = 100 n = 200 Change 

C  C    C   + ____ 

log n  ~5   ~5   + ____ 

n  100 100  *   ____ 

n2  1002 1002  *   ____ 

n3  1003 1003  *   ____ 

2n ~10015  ~10015 * ____ 
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Growth of Combinations of 

Functions 

If f1(x)  is O( g1(x) ) and f2(x) is O( g2(x) ), 

Then 

 (f1 + f2)(x) is O( max( g1(x), g2(x) )) 

and 

 (f1 f2)(x) is O( g1(x)g2(x) )  
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Deriving Big-Oh of Functions 

       f( x )       Big-Oh 

  3x2  +  5        O(x2 ) 

  2x3 - x2 - 6        O(x3 ) 

  log2x + x        O(x ) 

(5 + log2x)(3x - 3)        O(xlogx ) 

 4( 2x - x3 )        O(2x ) 

 4c - 6d + 17a        O( 1 ) 
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Big-Omega (Big-Ω) Notation 

Expresses a lower-bound of a function 

f(x) is Ω(g(x)) if f(x) is at least a constant times 

g(x), except possibly for some small values of 

x. 

 

Formally:  

f(x) is Ω(g(x)) if two constants C and k can be 

found such that for all x  k, f(x) ≥ Cg(x) 
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Graph of Big-Ω for a Program  

Running 

Time 

T(n) 

n 

T(n) 

Cg(n) 

Input Size K 

For all n  k, T(n) ≥ Cg(n) 
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Big-Theta (Big-) Notation 

Expresses a tight bound of a function 

f(x) is (g(x)) if f(x) is both O(g(x)) and Ω(g(x))  

T(n) 

n 

T(n) 

C1g(n) 

Input Size 

C2g(n) 

23 CISC 235 Topic 1 



Example 

 

Input:  An n+1 element array A of 

coefficients and x, a number 

 

Output:  pVal, the value of the polynomial  

         A[0] + A[1]x + A[2]x2 +… + A[n]xn  
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Algorithm 1 

 pVal = A[0] 

 for (int i = 1; i <= n; i++) 

         pVal = pVal + A[i] * Math.pow(x,i); 
 

 

What is the Big-Oh analysis of this algorithm? 
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Algorithm 2 

  pVal = A[0] 

  for ( int i = 1; i <= n; i++ ) 

  {       

      powX = 1 

            for ( int j = 0; j < i; j++ ) 

              powX = x * powX 

            pVal = pVal + A[i] * powX  

  } 

What is the Big-Oh analysis of this algorithm? 
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Algorithm 3 

Horner’s method: 

To evaluate a0 + a1x + a2x
2 + … + anx

n, use: 

P(x) = a0 + (x (a1 + x(a2 + … + x(an-1 + xan) …))) 

 

     pVal = x * A[n]    

            for (int i = n -1; i > 0; i - -) 

                  pVal = x * ( A[i] + pVal )        

            pVal = pVal + A[0] 
 

What is the Big-Oh analysis of this algorithm? 
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Example: Selection Sort 

 

for ( int i = 0; i < n-1; i++ ) 

{        

      int small = i; 

        for ( int j = i + 1; j < n; j++ ) 

               if ( A[j] < A[small] ) 

                      small = j; 

         int temp = A[small]; 

         A[small] = A[i]; 

         A[i] = temp; 

} 
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Summation Notation 

             

           n 

           ∑ ai   
        i = m       

 

Represents am + am+1 + … + an 
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Summation Manipulations 

1.  Take out constant terms:     
           n                  n 

          ∑ k/2 = ½ ∑ k 

        k=1               k=1  

 

2.Decompose large terms: 

       n                     n           n         n 

          ∑ n-k+k2 = ∑ n  – ∑ k + ∑ k2 

        k=1                 k=1       k=1     k=1 
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Summation Manipulations 

3. Partial Sums:   
          n             n             j 

          ∑ k  =  ∑ k  –  ∑ k  

        k=j+1       k=1        k=1  
 

4.  Practice:   

      n              

      ∑ kj + a  =   

     j=i                 ________________________         
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Number of Terms in a Summation 

Upper Bound – Lower Bound + 1  
          n 

          ∑ 1  = 1 + 1 + … + 1 = n – 2 + 1 = n – 1   

        k=2 

 

         n-1 

          ∑ 1  = 1 + 1 + … + 1 = (n–1) – (j+1) + 1  

        k=j+1                                 = n – j – 1  
Note:  This is equivalent to calculating the number of 

iterations in a for loop 
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Calculating Arithmetic Summations 

((First Term + Last Term) * Number of Terms) / 2  
          n 

          ∑ k  = 1 + 2 + … + n = (1+n) * n/2 = n(n+1) 

        k=1                                                                      2 

                                                                   

        n-2 

          ∑ n – i – 1   = (n–1) + (n–2) + … + 1 

        i=0                    = ((n-1) + 1) * (n-1))/2  

                            =  n( n-1) 

                                     2 
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Example: Max Subsequence Sum 

 

int maxSum = 0; 

int besti = 0;   int bestj = 0; 

for ( int i = 0; i < n; i++ ) 

        for ( int j = i; j < n; j++ ) 

        {      int thisSum = 0; 

               for ( int k = i; k <= j; k++ ) 

                      thisSum = thisSum + A[k]; 

               if ( thisSum > maxSum ) 

               {      maxSum = thisSum; 

                      besti = i; bestj = j; 

               } 

         } 
35 CISC 235 Topic 1 



Analyzing Complexity of Lists 

Operation Sorted 

Array 

Sorted 

Linked 

List 

Unsorted 

Array 

Unsorted 

Linked 

List 

Search( L, x ) 

Insert( L, x ) 

Delete( L, x ) 
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Limitations of Big-Oh Analysis 

• Not appropriate for small amounts of input 
– Use the simplest algorithm 

• Large constants can affect which algorithm is 
more efficient 
– e.g., 2nlogn versus 1000n 

• Assumption that all basic operations take 1 time 
unit is faulty 
– e.g., memory access versus disk access  

           (1000s of time more ) 

• Big-Oh can give serious over-estimate 
– e.g., loop inside an if statement that seldom executes 
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