CISC 235: Topic 1

Complexity of lterative Algorithms

Outline

Complexity Basics

Big-Oh Notation

Big-Q and Big-0 Notation
Summations

Limitations of Big-Oh Analysis

CISC 235 Topic 1

Complexity

Complexity is the study of how the time and space
to execute an algorithm vary with problem size.

The purpose Is to compare alternative algorithms
to solve a problem to determine which is “best”.

Time Complexity:

Let T(71) denote the time to execute an algorithm
with input size n

How can we measure T(n)?

CISC 235 Topic 1

Experimental Study

Implement the alternative algorithms and then time them
with various benchmarks, measuring running time with a
method like Java’'s System.currentTimeMillis()

T(n) _ o=

Too much coding & not general results n
CISC 235 Topic 1

Mathematical Analysis

Analyze alternative algorithms mathematically
prior to coding

— Define the amount of time taken by an algorithm to
be a function of the size of the input data:

T(n)="7

— Count the key instructions that are executed to
obtain the value of the function in terms of the size
of the input data

— Compare algorithms by comparing how fast their
running time functions grow as the input size
Increases

CISC 235 Topic 1

Finding an Algorithm’s
Running Time Function

Count the key instructions that are executed to
obtain the running time in terms of the size of
the input data.

Important Decisions:
* What is the measure of the size of input?
* Which are the key instructions?

CISC 235 Topic 1

Example: Find smallest value In
array A of length n

Int small = 0;
for (intj=0;j<n;j++)
if (A[j] <A[small])
small = j;

Counting Assignments:
Line 1: 1
Line2: n+1
Line 3: O
Line 4. best case: O
worst case: n So, T(n) =2n + 2

CISC 235 Topic 1

Example: Find smallest value In
array A of length n

Int small = 0;
for (intj=0;j<n;j++)
if (A[j] <A[small])
small = j;

Substitute constants
a & b to reduce analysis time:
Line 1: b (constant time for everything outside loop)
Line 2: n (variable number of times through loop)
Lines 2, 3, 4. a (constant time for everything inside loop,
Including loop test & increment)

So, T(n)=an+Db

CISC 235 Topic 1 8

For large input sizes, constant
terms are Insignificant

Program A with running time T,(71)= 100n
Program B with running time Tg(1)= 2n?

Tp(n)

Tg(n) = 2n?

TA(n) = 100N
5000 ——

| Input Size n
CISC 235 Topic1 20 9

Big-Oh Notation

Purpose: Establish a relative ordering
among functions by comparing their
relative rates of growth

Example: f(x) =4x + 3

Big-Oh Notation: f(x) € O(x)
or f(x)is O(x)

CISC 235 Topic 1

10

Definition of Big-Oh Notation

f(x) is O(g(x)) if two constants C and k can
be found such that:

for all x >k, f(x)< Cg(x)

Note: Big-Oh is an upper bound

CISC 235 Topic 1

11

Meaning of Big-Oh Notation

» The function f(x) is one of the set of functions that has
an order of magnitude growth rate < the growth rate of

9(x)
OR

- f(x) is at most a constant times g(x), except possibly for
some small values of x

CISC 235 Topic 1 12

Graph of Big-Oh for a Program

T Cg(n)

For all n >k, T(n) < Cg(n)

Running

Time

CISC 235 Topic 1 13

o

0 2
4x xX“+2x+1

Show that
f(x)=x?+2x+1
s O(x?)

The part of the graph of f(x) = x>+ 2x + 1
that satisfies f(x) < 4x? is shown in color.

o

2 2
X“+2x+ 1 <4x“forx> 1
So, we can take k =1 and C = 4 to show that
f(x) = x2 + 2x + 1 is O(x?)

1
1 2

f x>1,then xX2+2x+1<X?+2X%+ X?= 4x°

f x>2,then xX2+2x+1<Xx?+ X2+ x?= 3x°

CISC 235 Topic 1 14

Rules for Big-Oh

« We want to find the closest upper bound
— if f(x) = 100x,
we choose f(x) is O(x),
not f(x) is O(x?)
* Never include constants or lower-order terms

within a Big-Oh (so also don’t include the
base of a logarithm)

—if f(x)=2x%2+ x
we choose f(x) is O(x?),
not f(x)is O(2x?) and not f(x) is O(x? + x)

CISC 235 Topic 1

15

Order of Magnitude Growth Rates

Function Descriptor Big-Oh
C Constant O(1l)
logn Logarithmic O(log n)
n Linear O(n)
nlogn nlogn O(nlog n)
n2 Quadratic O(n?)
N Cubic Oo(n®)
nk Polynomial O(n*)
2" Exponential O(2")
n! Factorial Oo(n!)

CISC 235 Topic 1

16

n!

Order of

Magnitude

Growth Rates
2"
5
.
nlogn
n
log n
1
| | |
6 7 8

CISC 235 Topic 1

17

Change to Running Times When
Input Size n is Doubled?

Function | n =100 n =200 Change
C C cC +
log n ~5 ~5 +
n 100 100 *
n? 1002 1002 *
n3 1003 | 1003 *
2" ~100%> | ~100t>*

CISC 235 Topic 1

18

Growth of Combinations of
Functions

If f1(x) is O(g1(x)) and f,(x) is O(gx(x)),
Then

(f1 + f2)(x) is O(max(gy(x), g(x)))

and

(f1.12)(x) is O(91(x)g,(x))

CISC 235 Topic 1 19

Deriving Big-Oh of Functions

fl x) Big-Oh
3x°2 + 5 O(x?)
2X3-X%-6 O(x?)
log,x + X O(x)

(5 +log,x)(3x - 3) O(xlogx)
4(2%- x3) O(2%)
4c-6d + 17a O(1)

CISC 235 Topic 1

Big-Omega (Big-Q) Notation

Expresses a lower-bound of a function

f(x) is Q(g(x)) if f(x) is at least a constant times
g(x), except possibly for some small values of
X.

Formally:

f(x) is Q(g(x)) if two constants C and k can be
found such that for all x > k, f(x) = Cg(x)

CISC 235 Topic 1 21

Graph of Big-Q) for a Program

T(n)

Running For all n >k, T(n) =2 Cg(n)

Time

K Input Size n
CISC 235 Topic 1 22

Big-Theta (Big-®) Notation

Expresses a tight bound of a function
f(x) is O(g(x)) if f(x) Is both O(g(x)) and Q(g(x))

T(n)

Co(n)
T(n)
// C,a(n)

—

CISC 235 Topic1 Input Size n 23

Example

Input: An n+1 element array A of
coefficients and x, a number

Output: pVal, the value of the polynomial
A[O] + A[l]x + A[2]x? +... + A[n]x™

CISC 235 Topic 1

24

Algorithm 1

pVal = AJO]
for (int1=1;1<=n,; I++)
pVal = pVal + A[i] * Math.pow(X,I);

What is the Big-Oh analysis of this algorithm?

CISC 235 Topic 1 25

Algorithm 2

pVal = A[O]
for(inti=1;1<=n;I++)
{
powX =1
for(intj=0;j<1;++)
POWX = X * powX
pVal = pVal + AJi] * powX
}
What is the Big-Oh analysis of this algorithm?

CISC 235 Topic 1 26

Algorithm 3

Horner's method:
To evaluate a, + a;x + a,x* + ... + a X", use:
PX) =a,+ (X (a;+x(a, + ... +x(a,.; + xa,) ...)))

pVal = x * A[n]

for(inti=n-1;1>0;1--)
pVal = x * (A[i] + pVal)

pVal = pVal + A[O]

What is the Big-Oh analysis of this algorithm?

CISC 235 Topic 1

27

Example: Selection Sort

for(inti=0;1<n-1; i++)

{
Int small = i;
for(intj=1+1;]<n;|++)

if (A[j] <A[small])
small = j;

Int temp = A[small];
Alsmall] = A[l];
All] = temp;

CISC 235 Topic 1

28

Summation Notation

Representsa,+a ., +... +a

CISC 235 Topic 1

n

29

TABLE 2 Some Useful Summation

Formulae.
Sum Closed Form
4 n+l
Zar"'(r#O) ar"” —4 _yet 1
k=0 de
ik nn + 1)
k=1 2
i:kz n(n + 1)2n + 1)
k=1 6
X":k3 n*(n + 1)°
k=1 4
Zx", x| < 1 g%
£t |l —x =§
kxE Ix] < 1 - i’é

Summation Manipulations

1. Take out constant terms:
> ki2=1%) k
k=1 k=1

2. Decompose Iarge terms:

an+k2 Zn_Zk+Zk2
k=1 k=1

k=1

CISC 235 Topic 1

31

Summation Manipulations

3. Partial Sums

Zk—Zk—Zk

_]+1

4. Practice:

> kj+a =
j=

CISC 235 Topic 1

32

Number of Terms in a Summation

Upper Bound — Lower Bound + 1
n

1 =1+1+..+1=n-2+1=n-1
k=2

Z1 =1+1+ ... +1=(n-1)—(+1) + 1
k=j+1 =n—j-1

Note: This is equivalent to calculating the number of

iterations in a for loop
CISC 235 Topic 1 33

Calculating Arithmetic Summations

((First Term + Last Term) * Number of Terms) / 2

N
» k =1+2+ ... +n=(1+n) * n/2 = n(n+1)

k=1 2

n-2
n—i-1 =(n-1)+(N-2)+...+1
=0 = ((n-1) + 1) * (n-1))/2
n(n-1)
2 y

Example: Max Subsequence Sum

Int maxSum = 0;
Int besti = 0; int best] =0;
for(inti=0;i<n;i++)
for(intj=1;j<n;j+t+)
{ intthisSum = 0;
for (intk =1; k <=7j; k++)
thisSum = thisSum + A[K];
If (thisSum > maxSum)
{ maxSum = thisSum;
besti = I, bestj = ;

}

CISC 235 Topic 1

35

Analyzing Complexity of Lists

Operation

Sorted
Array

Sorted
Linked
List

Unsorted
Array

Unsorted

Linked
List

Search(L, x)

Insert(L, x)

Delete(L, x)

CISC 235 Topic 1

36

Limitations of Big-Oh Analysis

Not appropriate for small amounts of input
— Use the simplest algorithm
Large constants can affect which algorithm is
more efficient
— e.g., 2nlogn versus 1000n
Assumption that all basic operations take 1 time
unit is faulty
— e.g., memory access versus disk access
(1000s of time more)
Big-Oh can give serious over-estimate

— e.g., loop inside an if statement that seldom executes
CISC 235 Topic 1 37

