
CISC 235: Topic 1

Complexity of Iterative Algorithms

Outline

• Complexity Basics

• Big-Oh Notation

• Big-Ω and Big-θ Notation

• Summations

• Limitations of Big-Oh Analysis

2 CISC 235 Topic 1

Complexity

Complexity is the study of how the time and space
to execute an algorithm vary with problem size.

The purpose is to compare alternative algorithms
to solve a problem to determine which is “best”.

Time Complexity:

Let T(n) denote the time to execute an algorithm
with input size n

How can we measure T(n)?

 3 CISC 235 Topic 1

Experimental Study

Implement the alternative algorithms and then time them

with various benchmarks, measuring running time with a

method like Java’s System.currentTimeMillis()

T(n)

n Too much coding & not general results

4 CISC 235 Topic 1

Mathematical Analysis

Analyze alternative algorithms mathematically
prior to coding
– Define the amount of time taken by an algorithm to

be a function of the size of the input data:

 T(n) = ?

– Count the key instructions that are executed to
obtain the value of the function in terms of the size
of the input data

– Compare algorithms by comparing how fast their
running time functions grow as the input size
increases

5 CISC 235 Topic 1

Finding an Algorithm’s

Running Time Function

Count the key instructions that are executed to

obtain the running time in terms of the size of

the input data.

Important Decisions:

• What is the measure of the size of input?

• Which are the key instructions?

6 CISC 235 Topic 1

Example: Find smallest value in

array A of length n
int small = 0;

for (int j = 0; j < n; j++)

 if (A[j] < A[small])

 small = j;

Counting Assignments:

 Line 1: 1

 Line 2: n + 1

 Line 3: 0

 Line 4: best case: 0

 worst case: n So, T(n) = 2n + 2

7 CISC 235 Topic 1

Example: Find smallest value in

array A of length n
int small = 0;

for (int j = 0; j < n; j++)

 if (A[j] < A[small])

 small = j;

Substitute constants

a & b to reduce analysis time:

 Line 1: b (constant time for everything outside loop)

 Line 2: n (variable number of times through loop)

 Lines 2, 3, 4: a (constant time for everything inside loop,

 including loop test & increment)

 So, T(n) = an + b

8 CISC 235 Topic 1

For large input sizes, constant

terms are insignificant

Program A with running time TA(n)= 100n

Program B with running time TB(n)= 2n2

TP(n)

TA(n) = 100n

TB(n) = 2n2

50

5000

Input Size n
9 CISC 235 Topic 1

Big-Oh Notation

Purpose: Establish a relative ordering
among functions by comparing their
relative rates of growth

Example: f(x) = 4x + 3

Big-Oh Notation: f(x) O(x)

 or f(x) is O(x)

10 CISC 235 Topic 1

Definition of Big-Oh Notation

f(x) is O(g(x)) if two constants C and k can

be found such that:

 for all x  k, f(x) ≤ Cg(x)

Note: Big-Oh is an upper bound

11 CISC 235 Topic 1

Meaning of Big-Oh Notation

• The function f(x) is one of the set of functions that has

an order of magnitude growth rate ≤ the growth rate of
g(x)

 OR

• f(x) is at most a constant times g(x), except possibly for

some small values of x

12 CISC 235 Topic 1

Graph of Big-Oh for a Program

T(n)

n

T(n)

Cg(n)

Running

Time

Input Size

For all n  k, T(n) ≤ Cg(n)

g(n)

 K or K or …
13 CISC 235 Topic 1

03-2-001.jpg

If x > 1, then x2 + 2x + 1  x2 + 2x2 + x2 = 4x2

If x > 2, then x2 + 2x + 1  x2 + x2 + x2 = 3x2

So, we can take k = 1 and C = 4 to show that

f(x) = x2 + 2x + 1 is O(x2)

Show that

f(x) = x2 + 2x + 1

is O(x2)

14 CISC 235 Topic 1

Rules for Big-Oh

• We want to find the closest upper bound
– if f(x) = 100x,

 we choose f(x) is O(x),

 not f(x) is O(x2)

• Never include constants or lower-order terms
within a Big-Oh (so also don’t include the
base of a logarithm)
– if f(x) = 2x2 + x

 we choose f(x) is O(x2),

 not f(x) is O(2x2) and not f(x) is O(x2 + x)

 15 CISC 235 Topic 1

Order of Magnitude Growth Rates
 Function Descriptor Big-Oh

 C Constant O(1)

 log n Logarithmic O(log n)

 n Linear O(n)

 n log n n log n O(n log n)

 n2 Quadratic O(n2)

 n3 Cubic O(n3)

 nk Polynomial O(nk)

 2n Exponential O(2n)

 n! Factorial O(n!)

16 CISC 235 Topic 1

03-2-003.jpg
Order of

Magnitude

Growth Rates

17 CISC 235 Topic 1

Change to Running Times When
Input Size n is Doubled?

Function n = 100 n = 200 Change

C C C + ____

log n ~5 ~5 + ____

n 100 100 * ____

n2 1002 1002 * ____

n3 1003 1003 * ____

2n ~10015 ~10015 * ____

18 CISC 235 Topic 1

Growth of Combinations of

Functions

If f1(x) is O(g1(x)) and f2(x) is O(g2(x)),

Then

 (f1 + f2)(x) is O(max(g1(x), g2(x)))

and

 (f1 f2)(x) is O(g1(x)g2(x))

19 CISC 235 Topic 1

Deriving Big-Oh of Functions

 f(x) Big-Oh

 3x2 + 5 O(x2)

 2x3 - x2 - 6 O(x3)

 log2x + x O(x)

(5 + log2x)(3x - 3) O(xlogx)

 4(2x - x3) O(2x)

 4c - 6d + 17a O(1)

20 CISC 235 Topic 1

Big-Omega (Big-Ω) Notation

Expresses a lower-bound of a function

f(x) is Ω(g(x)) if f(x) is at least a constant times

g(x), except possibly for some small values of

x.

Formally:

f(x) is Ω(g(x)) if two constants C and k can be

found such that for all x  k, f(x) ≥ Cg(x)

21 CISC 235 Topic 1

Graph of Big-Ω for a Program

Running

Time

T(n)

n

T(n)

Cg(n)

Input Size K

For all n  k, T(n) ≥ Cg(n)

22 CISC 235 Topic 1

Big-Theta (Big-) Notation

Expresses a tight bound of a function

f(x) is (g(x)) if f(x) is both O(g(x)) and Ω(g(x))

T(n)

n

T(n)

C1g(n)

Input Size

C2g(n)

23 CISC 235 Topic 1

Example

Input: An n+1 element array A of

coefficients and x, a number

Output: pVal, the value of the polynomial

 A[0] + A[1]x + A[2]x2 +… + A[n]xn

24 CISC 235 Topic 1

Algorithm 1

 pVal = A[0]

 for (int i = 1; i <= n; i++)

 pVal = pVal + A[i] * Math.pow(x,i);

What is the Big-Oh analysis of this algorithm?

25 CISC 235 Topic 1

Algorithm 2

 pVal = A[0]

 for (int i = 1; i <= n; i++)

 {

 powX = 1

 for (int j = 0; j < i; j++)

 powX = x * powX

 pVal = pVal + A[i] * powX

 }

What is the Big-Oh analysis of this algorithm?

26 CISC 235 Topic 1

Algorithm 3

Horner’s method:

To evaluate a0 + a1x + a2x
2 + … + anx

n, use:

P(x) = a0 + (x (a1 + x(a2 + … + x(an-1 + xan) …)))

 pVal = x * A[n]

 for (int i = n -1; i > 0; i - -)

 pVal = x * (A[i] + pVal)

 pVal = pVal + A[0]

What is the Big-Oh analysis of this algorithm?

27 CISC 235 Topic 1

Example: Selection Sort

for (int i = 0; i < n-1; i++)

{

 int small = i;

 for (int j = i + 1; j < n; j++)

 if (A[j] < A[small])

 small = j;

 int temp = A[small];

 A[small] = A[i];

 A[i] = temp;

}

 28 CISC 235 Topic 1

Summation Notation

 n

 ∑ ai
 i = m

Represents am + am+1 + … + an

29 CISC 235 Topic 1

t02-4-02.jpg

30 CISC 235 Topic 1

Summation Manipulations

1. Take out constant terms:
 n n

 ∑ k/2 = ½ ∑ k

 k=1 k=1

2.Decompose large terms:

 n n n n

 ∑ n-k+k2 = ∑ n – ∑ k + ∑ k2

 k=1 k=1 k=1 k=1

31 CISC 235 Topic 1

Summation Manipulations

3. Partial Sums:
 n n j

 ∑ k = ∑ k – ∑ k

 k=j+1 k=1 k=1

4. Practice:

 n

 ∑ kj + a =

 j=i ________________________

32 CISC 235 Topic 1

Number of Terms in a Summation

Upper Bound – Lower Bound + 1
 n

 ∑ 1 = 1 + 1 + … + 1 = n – 2 + 1 = n – 1

 k=2

 n-1

 ∑ 1 = 1 + 1 + … + 1 = (n–1) – (j+1) + 1

 k=j+1 = n – j – 1
Note: This is equivalent to calculating the number of

iterations in a for loop

33 CISC 235 Topic 1

Calculating Arithmetic Summations

((First Term + Last Term) * Number of Terms) / 2
 n

 ∑ k = 1 + 2 + … + n = (1+n) * n/2 = n(n+1)

 k=1 2

 n-2

 ∑ n – i – 1 = (n–1) + (n–2) + … + 1

 i=0 = ((n-1) + 1) * (n-1))/2

 = n(n-1)

 2

34

Example: Max Subsequence Sum

int maxSum = 0;

int besti = 0; int bestj = 0;

for (int i = 0; i < n; i++)

 for (int j = i; j < n; j++)

 { int thisSum = 0;

 for (int k = i; k <= j; k++)

 thisSum = thisSum + A[k];

 if (thisSum > maxSum)

 { maxSum = thisSum;

 besti = i; bestj = j;

 }

 }
35 CISC 235 Topic 1

Analyzing Complexity of Lists

Operation Sorted

Array

Sorted

Linked

List

Unsorted

Array

Unsorted

Linked

List

Search(L, x)

Insert(L, x)

Delete(L, x)

36 CISC 235 Topic 1

Limitations of Big-Oh Analysis

• Not appropriate for small amounts of input
– Use the simplest algorithm

• Large constants can affect which algorithm is
more efficient
– e.g., 2nlogn versus 1000n

• Assumption that all basic operations take 1 time
unit is faulty
– e.g., memory access versus disk access

 (1000s of time more)

• Big-Oh can give serious over-estimate
– e.g., loop inside an if statement that seldom executes

37 CISC 235 Topic 1

