
Analyzing Complexity of Lists

Operation Sorted

Array

Sorted

Linked

List

Unsorted

Array

Unsorted

Linked

List

Search(L, x) O(logn) O(n) O(n)

 O(n)

Insert(L, x) O(logn)

+ O(n)

O(n) +

O(1)

 O(1)

 O(1)

Delete(L, x) O(logn)

+ O(n)

O(n) +

O(1)

O(n) +

O(n)

O(n) +

O(1)

1 CISC 235 Topic 2

CISC 235 Topic 2

 Design and Complexity Analysis

of Recursive Algorithms

CISC 235 Topic 2 3

Outline

• Design of Recursive Algorithms

– Recursive algorithms for Lists

• Analysis of Recursive Algorithms

– Modeling with recurrence relations

– Solving recurrence relations

CISC 235 Topic 2 4

Thinking Recursively

1. What is the measure of the size of input?

2. What is the base case?

3. What is the recursive case?

4. In what ways could the input be reduced
in size (and how easy is it to do so)?

5. If we assume that we have the solution
to the same problem for a smaller size
input, how can we solve the whole
problem?

CISC 235 Topic 2 5

Example: Find Largest in List

1. Measure of input size: length of list

2. Base Case: list of length 1

3. Recursive Case: length > 1

4. Ways to reduce in size
a. All except first item in list

b. All except last item in list

c. Divide list into two halves

5. Assume we have solution to smaller size list(s).
a. Take max of first item and max of rest of list

b. Take max of last item and max of rest of list

c. Take max of the max of the two halves

CISC 235 Topic 2 6

Example: Find Largest in Array

// Assumes list is not empty

static int largest (int[] A, int first, int last)

{ int n = last - first + 1;

 if (n == 1)

 return (A[first]);

 else

 return (Math.max(A[first],

 largest(A, first + 1, last)));

}

Version of largest method that

divides list in two halves
static int largest (int[] A, int first, int last)

{

 int n = last - first + 1;

 if (n == 1)

 return (A[first]);

 else

 { int mid = (first + last) / 2;

 return (Math.max(largest(A, first, mid), largest(A, mid + 1, last)));

 }

}

Is there any advantage to dividing the list this way?`

CISC 235 Topic 2 7

CISC 235 Topic 2 8

Design Rules for

Recursive Functions

1. Make sure there’s a base case

2. Make progress towards the base case

Reduce size of input on each recursive call

3. Assume the recursive calls are correct

Write the method so that it’s correct if the

recursive calls are correct

4. Compound Interest Rule

Don’t duplicate work by solving the same

problem instance in different calls

CISC 235 Topic 2 9

Incorrect Recursive Functions
Which design rules do these violate?

static int factorial (int n)

{ if (n == 0)

 return (1);

 else

 return (factorial(n) * n-1);

}

static int factorial (int n)

{

 return (n * factorial(n-1));

}

CISC 235 Topic 2 10

Inefficient Recursive Functions
Which design rule does this violate?

static int fibonacci (int n)

{ if (n <= 1)

 return (n);

 else

 return (fibonacci (n – 1)

 + fibonacci (n – 2));

}

CISC 235 Topic 2 11

Divide and Conquer Algorithms

• Divide the problem into a number of
subproblems of size ~n/2 or n/3 or …

• Conquer the subproblems by solving
them recursively. If the subproblem sizes
are small enough, however, just solve the
subproblems in a straightforward manner.

• Combine the solutions to the
subproblems into the solution for the
original problem.

CISC 235 Topic 2 12

Example: Merge Sort

• Divide: Divide the n-element sequence to

be sorted into two subsequences of n/2

elements each.

• Conquer: Sort the two subsequences

recursively using merge sort.

• Combine: Merge the two sorted

subsequences to produce the sorted

answer.

CISC 235 Topic 2 13

Merge Sort Algorithm

// if p r, subarray A[p..r] has at most one element,

// so is already in sorted order

MERGE-SORT (A, p, r)

 if p < r

 then q (p+r) / 2

 MERGE-SORT(A, p, q)

 MERGE-SORT(A, q+1, r)

 MERGE(A, p, q, r)

CISC 235 Topic 2 14

Merge Algorithm

// preconditions: p q r

// A[p..q] and A[q+1..r] are in sorted order

MERGE(A, p, q, r)

 n1 q - p + 1

 n2 r - q

 create arrays L[1.. n1 + 1] and R[1.. n2 +1]

 for i 1 to n1

 do L[i] A[p + i - 1]

 for j 1 to n2

 do R[j] A[q + j]

 L[n1 + 1]

 R[n2 + 1]

CISC 235 Topic 2 15

Merge Algorithm, con.

 // Merge arrays L and R and place back in array A

 i 1

 j 1

 for k p to r

 do if L[i] R[j]

 then A[k] L[i]

 i i + 1

 else A[k] = R[j]

 j j + 1

CISC 235 Topic 2 16

Recursive Algorithms for

Linked Lists
1. Measure of input size: length of list

2. Base Case: list of length 0 or 1

3. Recursive Case: length > 1

4. Ways to reduce in size on each recursive call?

Start of a Linked List Class

public class List

 private class Node {

 private Node next;

 private int data;

 Node(int data) {

 this.data = data;

 this.next = null; } } // end Node class

 private Node head;

 public List() {

 head = null; } … } // end List class

CISC 235 Topic 2 17

Add Methods to Class

public void append(int x)

public void insert(int x)

CISC 235 Topic 2 18

CISC 235 Topic 2 19

Functions: Complexity Analysis

static int bar (int x, int n)

{ for (int i=1; i<=n; i++)

 x += i;

 return x;

} // end bar

static int foo (int x, int n)

{ for (int i=1; i<=n; i++)

 x = x + bar(i, n);

 return x;

} // end foo

static int m(int y)

{

 int a = 0;

 System.out.print(foo(a, y));

 System.out.print(bar(a, y));

} // end m

What is the measure of the size of

input of these methods?

// Calculates xi

static double pow (double x, int i)

// Counts the number of occurrences of each

// different character in a file (256 possible different chars)

static int countChars (String inFile)

// Determines whether vertex v is adjacent to

// vertex w in graph g

static boolean isAdjacent(Graph g, Vertex v, Vertex w)

CISC 235 Topic 2 20

CISC 235 Topic 2 21

Analysis: Recursive Methods

static int factorial (int n)

{ if (n <= 1)

 return (1);

 else

 return (n * factorial(n – 1)); }

Recurrence Relation:

 T(n) = O(1), if n = 0 or 1

 T(n) = T(n – 1) + O(1), if n > 1

Or:

 T(n) = c, if n = 0 or 1

 T(n) = T(n – 1) + c, if n > 1

CISC 235 Topic 2 22

Recurrence Relations

What if there was an O(n) loop in the base case of
the factorial function? What would its recurrence
relation be?

What if there was an O(n) loop in the recursive
case of the factorial function? What would its
recurrence relation be?

Recurrence Relations

What is the recurrence relation for the first version of the
largest method?

What is the recurrence relation for the version of largest

that divides the list into two halves?

What is the recurrence relation for the fibonacci

method?

CISC 235 Topic 2 23

CISC 235 Topic 2 24

Binary Search Function

// Search for x in A[low] through A[high] inclusive

// Return index of x if found; return -1 if not found

int binarySearch(int[] A, int x, int low, int high)

{ if(low > high)

 return -1;

 int mid = (low + high) / 2;

 if(A[mid] < x)

 return binarySearch(A, x, mid+1, high);

 else if (x < A[mid])

 return binarySearch(A, x, low, mid-1);

 else

 return mid;

}

CISC 235 Topic 2 25

Analysis: Binary Search

Measure of Size of Input:

Recurrence Relation:

CISC 235 Topic 2 26

Analysis: Merge Sort

Measure of Size of Input:

Recurrence Relation:

CISC 235 Topic 2 27

Solving Recurrences

Substitution Method:

1. Guess Solution

2. Prove it’s correct with proof by induction

How to guess solution? Several ways:

– Calculate first few values of recurrence

– Substitute recurrence into itself

– Construct a Recursion Tree for the recurrence

CISC 235 Topic 2 28

Calculate First Few Values

T(0) = c

T(1) = c

T(2) = T(1) + c = 2c

T(3) = T(2) + c = 3c

T(4) = T(3) + c = 4c

 . . .

Guess solution:

T(n) = nc, for all n 1

CISC 235 Topic 2 29

Substitute recurrence into itself

T(n) = T(n-1) + c

T(n) = (T(n-2) + c) + c = T(n-2) + 2c

T(n) = (T(n-3) + c) + 2c = T(n-3) + 3c

T(n) = (T(n-4) + c) + 3c = T(n-4) + 4c

 . . .

Guess Solution:

T(n) = T(n-(n-1)) + (n-1)c

 = T(1) + (n-1)c

 = c + (n-1)c

 = nc

CISC 235 Topic 2 30

Prove Solution is Correct:

T(n) = nc, for all n 1

Base Case: n = 1, formula gives T(1) = c?

 T(1) = 1c = c

Inductive Assumption: T(k) = kc

Show Theorem is true for T(k+1),

 i.e., T(k+1) = (k+1)c:

 By the recurrence relation, we have:

 T(k+1) = T(k) + c

 = kc + c by inductive assump.

 = (k+1)c

