CISC 235 Topic 3

General Trees, Binary Trees, Binary Search Trees

Outline

- General Trees
 - Terminology, Representation, Properties
- Binary Trees
 - Representations, Properties, Traversals
- Recursive Algorithms for Trees
- Binary Search Trees
 - Searching, Insertion, and Deletion
 - Analysis of Complexity

Rooted Trees

In a sequence, each element has zero or one predecessors & zero or one successors

In a rooted tree, each element has either zero or one predecessor (the "parent") and zero or more successors (the "children")

CISC 235 Topic 3

Tree Terminology

B

Ε

Parent of x

The node directly above node x in the tree

Child of x

A node directly below node x in the tree

Siblings

Nodes with common parent

Root

Only node with no parent

Leaf or External Node

A node with no children

Internal Node

Nonleaf node

Н

G

Tree Terminology

B

Ε

Path

A sequence of connected nodes

Ancestor of x

A node on the path from the root to x

Descendent of x

A node on a path from x to a leaf

Empty Tree

A tree with no nodes

Н

G

Tree Terminology

Tree Properties

The number of edges in a tree is one less than the number of nodes.

$$|\mathsf{E}| = |\mathsf{V}| - 1$$

Binary Trees: Recursive Definition

- A *binary tree* is one of:
- An empty tree
- A root with two binary trees as children (its left and right sub-trees)

Tree Implementations

What would a linked representation of a binary tree look like?

What would a linked representation of a general tree look like?

What would an array representation of a binary tree look like?

Representing a General Tree as a Binary Tree

Array Implementation

Traversal Sequences of Binary Trees

- Level Order
- Preorder
 Root LT RT
 Inorder
 LT Root RT
 Postorder
 LT RT Root

F

Inorder Traversal Algorithm

Inorder-Tree-Walk (x) if x ≠ NIL then Inorder-Tree-Walk(*left*[x]) print *key*[x] Inorder-Tree-Walk(*right*[x])

Inorder Traversal Print Method

Preorder Traversal for General Tree

Preorder-Tree-Walk(x)

print *key*[x] for each child w of x do Preorder-Tree-Walk(w)

Application: Expression Trees

Infix – customary form $\log a * (b + c)$ Prefix – every operator before its operand(s) $* \log a + b c$ Postfix – every operator after its operand(s) $a \log b c + *$

Recursive Thinking with Binary Trees

Assume you have the solution for both the left and right sub-tree (i.e., the recursive calls).

Then figure out the solution for the whole tree.

Recursive Thinking with General Trees

Assume you have the solution for all of the sub-trees (i.e., the recursive calls).

Then figure out the solution for the whole tree.

Practice Thinking Recursively

1. Write an algorithm to calculate the total number of nodes in a binary tree.

2. Write an algorithm to calculate the height of a binary tree.

Application: File Systems

1. Print a list of all the files and folders in a hierarchical directory structure

2. Calculate the total number of blocks used by all files in the directory system.

Print a Directory List (pseudocode)

```
void listAll( int depth )
```

ł

printName(depth); // Print name of object
if (isDirectory())
 for each file c in this directory (each child)
 c.listAll(depth + 1);

Calculate Total Size of All Files in a Directory (pseudocode)

```
int size()
{
    int totalSize = sizeOfThisFile();
    if ( isDirectory())
        for each file c in this directory (each child)
            totalSize += c.size();
```

return totalSize;

Binary Tree Properties

Minimum # of nodes, minN, in a tree of height h: minN = _____

Maximum height, maxH, for tree of n nodes:

maxH = _____

Maximum # of nodes, maxN, in a tree of height h:

maxN = _____

Minimum height, minH, in tree of n nodes:

minH = _____

Searching Methods

Search: Given an integer x and a list L, presorted in increasing order, return the location of x in L, or -1 if x is not in L

Algorithms: Linear Search: O(n) Binary Search: O(log n)

Comparison Tree

Binary Search Tree Property

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then $key[y] \le$ key[x]. If y is a node in the right sub-tree of x, then $key[x] \le key[y]$.

CISC 235 Topic 3

Binary Search Tree Algorithms

Find, FindMin, FindMax

Recursive Search Algorithm

// Returns node with key k in BST rooted // at node x, or NIL if not found Tree-Search(x, k) if x = NIL or k = key[x]then return x if k < key[x]**then return** Tree-Search(left[x], k) **else return** Tree-Search(right[x], k)

Iterative Search Algorithm

// Returns node with key k in BST rooted // at node x, or NIL if not found Iterative-Tree-Search(x, k) while $x \neq NIL$ and $k \neq key[x]$ do if k < key[x]then x left[x] else x right[x]

Algorithm to Find Minimum

// Returns minimum in BST // rooted at node x Tree-Minimum(x) while left[x] \neq NIL do x \leftarrow left[x] return x

Algorithm to Find Maximum

// Returns maximum in BST // rooted at node x Tree-Maximum(x) while right[x] \neq NIL do x \leftarrow right[x] return x

Binary Search Tree: Insertion

Recursive Insertion Algorithm for BST with no pointers to parents

// Inserts node y into BST rooted at node root // Only for BSTs with no pointers to parents BSTInsert (y, root) if (root = NIL) // have found where to insert then root \leftarrow y else if key[y] < key[root] **then** left[root] = BSTInsert(y, left[root]) else if key[y] > key[root] **then** right[root] = BSTInsert(y, right[root]) else y is a duplicate; handle duplicate case return root

Recursive Insert Function for BST with no pointers to parents

Node insert (int x, Node root)

- Node p = new Node(x);{
 - if(root == null) // empty tree

root = p;

else if (x < root.data) // goes in left sub-tree

```
root.left = insert( x, root.left );
```

```
else if (x > root.data) // goes in right sub-tree
   root.right = insert( x, root.right );
```

else

}

System.out.println(x + " is already in tree"); return root;

Iterative Insertion Algorithm for BST with pointers to parents

Tree-Insert (T, z) // Inserts node z into BST T y 🗲 NIL x ← root[T] while $x \neq NIL$ // Find position at which to insert do y ← x **if** key[z] < key[x] then x left[x] else x right[x] p[z] 🗲 y // Set parent link of new node if y = NIL// If tree T was empty then root $[T] \leftarrow z$ // New node is root, else else if key[z] < key[y] // Connect node to parent then left[y] \leftarrow z else right[y] ← z CISC 235 Topic 3 35

BST: Find Successor of a Node

BST: Find Successor of a Node

Find Successor Algorithm for BST with pointers to parents

// Returns node in BST that is the successor // of node x, or NIL if no successor Tree-Successor(x) if right $x \neq NIL$ **then** return Tree-Minimum(right[x]) y **←** p[x] while $y \neq NIL$ and x = right[y]**do** x **←** y y 🗲 p[y] **return** y CISC 235 Topic 3

Deletion of Node with Zero or One Child

Deletion of Node with Two Children

Deletion of Node with Two Children

Iterative Deletion Algorithm for BST with pointers to parents

```
// Deletes node z from BST T
Tree-Delete (T, z)
       // Set y to point to node to splice out
       if left[ z ] = NIL or right[ z ] = NIL
               then y \leftarrow z
               else y \leftarrow Tree-Successor(z)
       // Set x to non-NIL child of y,
       // or to NIL if y has no children
       if left[ y ] \neq NIL
               then x 	 left[ y ]
               else x 	 right[ y ]
```

Deletion Algorithm, con.

```
// Splice out node y (next 7 lines)
     if x \neq NIL
            then p[ x ] 	 p[ y ]
     if p[ y ] = NIL
            then root[ T ] ← x
            else if y = left[ p[ y ] ]
                    then left[ p[ y ] ] 
                    else right[p[y]] 	 x
// If successor to z was spliced out, copy y's data to z
     if y \neq z
            then key[ z ] 	 key[ y ]
                         CISC 235 Topic 3
     return y
```

Binary Search Tree: Complexity

Search, insertion, and deletion in a binary search tree are all O(h), where *h* is the height of the tree.

What does this imply about the complexity in terms of n?