
CISC 235 Topic 3

General Trees, Binary Trees,

Binary Search Trees

CISC 235 Topic 3 2

Outline

• General Trees

– Terminology, Representation, Properties

• Binary Trees

– Representations, Properties, Traversals

• Recursive Algorithms for Trees

• Binary Search Trees

– Searching, Insertion, and Deletion

– Analysis of Complexity

CISC 235 Topic 3 3

Rooted Trees

In a sequence, each element has zero or one

predecessors & zero or one successors

In a rooted tree, each element has either zero or

one predecessor (the “parent”) and zero or more

successors (the “children”)

CISC 235 Topic 3 4

Tree Terminology

Parent of x
The node directly above

node x in the tree

Child of x
A node directly below node

x in the tree

Siblings
Nodes with common parent

Root
Only node with no parent

Leaf or External Node
A node with no children

Internal Node
Nonleaf node

A

H G F E D

C B

I

CISC 235 Topic 3 5

Tree Terminology

Path
A sequence of

connected nodes

Ancestor of x
A node on the path

from the root to x

Descendent of x
A node on a path

from x to a leaf

Empty Tree
A tree with no nodes

A

H G F E D

C B

I

CISC 235 Topic 3 6

Tree Terminology

Height of Tree
Number of edges on

the longest path from
the root to a leaf

Depth of x
Number of ancestors x

has

Level of x
Number of edges on

the path from the
root to x (= depth)

Degree of x
Number of children x

has

A

H G F E D

C B

I

CISC 235 Topic 3 7

Tree Properties

The number of edges

in a tree is one less

than the number of

nodes.

 |E| = |V| - 1

A

H G F E D

C B

I

CISC 235 Topic 3 8

Binary Trees: Recursive Definition

A binary tree is one of:

• An empty tree

• A root with two

binary trees as

children (its left and

right sub-trees)

A

H G

F E D

C
B

I

CISC 235 Topic 3 9

Tree Implementations

What would a linked representation of a

binary tree look like?

What would a linked representation of a

general tree look like?

What would an array representation of a

binary tree look like?

CISC 235 Topic 3 10

Representing a General Tree as a

Binary Tree

I

D B

A

E

C

F G H

I

D B

A

E

C

F G H

CISC 235 Topic 3 11

Array Implementation

 Node Location

Root 1

Left Child of x 2 * location of x

Right Child of x (2 * location of x) + 1

A

E D

C

B

A B C D E

CISC 235 Topic 3 12

Traversal Sequences of Binary

Trees

• Level Order

• Preorder

 Root

• Inorder

 Root

• Postorder

 Root

A

H G

F E D

C
B

I

LT RT

LT

LT RT

RT

CISC 235 Topic 3 13

Inorder Traversal Algorithm

Inorder-Tree-Walk (x)

 if x NIL

 then Inorder-Tree-Walk(left[x])

 print key[x]

 Inorder-Tree-Walk(right[x])

CISC 235 Topic 3 14

 Inorder Traversal Print Method

void printInorder (TreeNode root)

{

 if (root != null)

 { printInorder(root.left);

 System.out.println (root.data);

 printInorder(root.right);

 }

}

CISC 235 Topic 3 15

Preorder Traversal for General Tree

Preorder-Tree-Walk (x)

 print key[x]

 for each child w of x do

 Preorder-Tree-Walk(w)

 A

H G F E D

C B

I

CISC 235 Topic 3 16

Application: Expression Trees

Infix – customary form

log a * (b + c)

Prefix – every operator

before its operand(s)

 * log a + b c

Postfix – every operator

after its operand(s)

 a log b c + *

c

+ log

*

a b

CISC 235 Topic 3 17

Recursive Thinking with Binary

Trees

Assume you have
the solution for
both the left and
right sub-tree (i.e.,
the recursive
calls).

Then figure out the
solution for the
whole tree.

CISC 235 Topic 3 18

Recursive Thinking with General

Trees

Assume you have

the solution for all

of the sub-trees

(i.e., the recursive

calls).

Then figure out the

solution for the

whole tree.

…

CISC 235 Topic 3 19

Practice Thinking Recursively

1. Write an algorithm to calculate the total

number of nodes in a binary tree.

2. Write an algorithm to calculate the height

of a binary tree.

CISC 235 Topic 3 20

Application: File Systems

1. Print a list of all the files and folders in a

hierarchical directory structure

2. Calculate the total number of blocks

used by all files in the directory system.

CISC 235 Topic 3 21

Print a Directory List (pseudocode)

void listAll(int depth)

{

 printName(depth); // Print name of object

 if (isDirectory())

 for each file c in this directory (each child)

 c.listAll(depth + 1);

}

CISC 235 Topic 3 22

Calculate Total Size of All Files in a

Directory (pseudocode)

int size()

{

 int totalSize = sizeOfThisFile();

 if (isDirectory())

 for each file c in this directory (each child)

 totalSize += c.size();

 return totalSize;

}

CISC 235 Topic 3 23

Binary Tree Properties

Minimum # of nodes, minN, in a tree of height h:

 minN = ___________________

Maximum height, maxH, for tree of n nodes:

 maxH = __________________

Maximum # of nodes, maxN, in a tree of height h:

 maxN = __________________

Minimum height, minH, in tree of n nodes:

 minH = __________________

CISC 235 Topic 3 24

Searching Methods

Search: Given an integer x and a list L, presorted

in increasing order, return the location of x in L,

or -1 if x is not in L

Algorithms: Linear Search: O(n)

 Binary Search: O(log n)

CISC 235 Topic 3 25

Comparison Tree

Consider a list of names: Ali, Ania, Chi,
Eva, Guy, Iori, Jen, Jui, Omar, Qi, Reni,
Tess, Val, Zeya

Eva

Jen

Qi

Val Omar Guy

Reni
Chi

Zeya Iori Tess Jui

Ali

Ania

CISC 235 Topic 3 26

Binary Search Tree Property

Let x be a node in a binary search tree. If y is a
node in the left subtree of x, then key[y]
key[x]. If y is a node in the right sub-tree of x,
then key[x] key[y].

2

3

4

8

6

1 9

2

3 7

4

8

6

1

Which is not a BST? Why not?

CISC 235 Topic 3 27

Binary Search Tree Algorithms

Find, FindMin, FindMax

44

29

28

32

54 82

65 97

88 17

80

76

CISC 235 Topic 3 28

Recursive Search Algorithm

// Returns node with key k in BST rooted

// at node x, or NIL if not found

Tree-Search(x, k)

 if x = NIL or k = key[x]

 then return x

 if k < key[x]

 then return Tree-Search(left[x], k)

 else return Tree-Search(right[x], k)

CISC 235 Topic 3 29

Iterative Search Algorithm

// Returns node with key k in BST rooted

// at node x, or NIL if not found

Iterative-Tree-Search(x, k)

 while x NIL and k key[x]

 do if k < key[x]

 then x left[x]

 else x right[x]

 return x

CISC 235 Topic 3 30

Algorithm to Find Minimum

// Returns minimum in BST

// rooted at node x

Tree-Minimum(x)

 while left[x] NIL

 do x left[x]

 return x

CISC 235 Topic 3 31

Algorithm to Find Maximum

// Returns maximum in BST

// rooted at node x

Tree-Maximum(x)

 while right[x] NIL

 do x right[x]

 return x

CISC 235 Topic 3 32

Binary Search Tree: Insertion

Insert 74 44

29

28

32

54 82

65 97

88 17

80

76

74
New

node

Search for the element as if it

were in the tree. When reach a

null node, that’s where to insert.

CISC 235 Topic 3 33

Recursive Insertion Algorithm for

BST with no pointers to parents

// Inserts node y into BST rooted at node root

// Only for BSTs with no pointers to parents

 BSTInsert (y, root)

 if (root = NIL) // have found where to insert

 then root y

 else if key[y] < key[root]

 then left[root] = BSTInsert(y, left[root])

 else if key[y] > key[root]

 then right[root] = BSTInsert(y, right[root])

 else y is a duplicate; handle duplicate case

 return root

CISC 235 Topic 3 34

Recursive Insert Function for BST

with no pointers to parents

 Node insert (int x, Node root)

 { Node p = new Node(x);

 if(root == null) // empty tree

 root = p;

 else if (x < root.data) // goes in left sub-tree

 root.left = insert(x, root.left);

 else if (x > root.data) // goes in right sub-tree

 root.right = insert(x, root.right);

 else

 System.out.println(x + ” is already in tree”);

 return root;

 }

CISC 235 Topic 3 35

Iterative Insertion Algorithm for

BST with pointers to parents
Tree-Insert (T, z) // Inserts node z into BST T

 y NIL

 x root[T]

 while x NIL // Find position at which to insert

 do y x

 if key[z] < key[x]

 then x left[x]

 else x right[x]

 p[z] y // Set parent link of new node

 if y = NIL // If tree T was empty

 then root[T] z // New node is root, else

 else if key[z] < key[y] // Connect node to parent

 then left[y] z

 else right[y] z

CISC 235 Topic 3 36

BST: Find Successor of a Node

Find Successor of 65

44

29

28

32

54 82

65 97

88 17

80

76

If right sub-tree of x is not empty,

successor of x is leftmost node

in its right sub-tree.

CISC 235 Topic 3 37

BST: Find Successor of a Node

Find Successor of 32

44

29

28

32

54 82

65 97

88 17

80

76
If right sub-tree of x is empty, the

successor of x is the lowest ancestor

of x whose left child is also an

ancestor of x

CISC 235 Topic 3 38

Find Successor Algorithm for BST

with pointers to parents

// Returns node in BST that is the successor

// of node x, or NIL if no successor

Tree-Successor(x)

 if right[x] NIL

 then return Tree-Minimum(right[x])

 y p[x]

 while y NIL and x = right[y]

 do x y

 y p[y]

 return y

CISC 235 Topic 3 39

Deletion of Node with Zero or One

Child

Delete 82 44

29

28

32

54 82

65 97

88 17

80

76

74
Bypass the node to be deleted

by setting its parent to point to

its child

CISC 235 Topic 3 40

Deletion of Node with Two Children

Delete 65 44

29

28

32

54 82

65 97

88 17

80

76

74

74

Step1: Overwrite the element of

the node to be deleted with the

minimum element of its right

sub-tree

CISC 235 Topic 3 41

Deletion of Node with Two Children

Delete 65 44

29

28

32

54 82

74 97

88 17

80

76

74
Step2: Recursively delete the

node that contains the

minimum element of its right

sub-tree

Delete

this node

CISC 235 Topic 3 42

Iterative Deletion Algorithm for BST

with pointers to parents

// Deletes node z from BST T

Tree-Delete (T, z)

 // Set y to point to node to splice out

 if left[z] = NIL or right[z] = NIL

 then y z

 else y Tree-Successor(z)

 // Set x to non-NIL child of y,

 // or to NIL if y has no children

 if left[y] NIL

 then x left[y]

 else x right[y]

CISC 235 Topic 3 43

Deletion Algorithm, con.

 // Splice out node y (next 7 lines)

 if x NIL

 then p[x] p[y]

 if p[y] = NIL

 then root[T] x

 else if y = left[p[y]]

 then left[p[y]] x

 else right[p[y]] x

 // If successor to z was spliced out, copy y’s data to z

 if y z

 then key[z] key[y]

 return y

CISC 235 Topic 3 44

Binary Search Tree: Complexity

Search, insertion, and deletion in a binary

search tree are all O(h), where h is the

height of the tree.

What does this imply about the complexity in
terms of n?

