CISC 235 Topic 3

General Trees, Binary Trees, Binary Search Trees

Outline

- General Trees
- Terminology, Representation, Properties
- Binary Trees
- Representations, Properties, Traversals
- Recursive Algorithms for Trees
- Binary Search Trees
- Searching, Insertion, and Deletion
- Analysis of Complexity

Rooted Trees

In a sequence, each element has zero or one predecessors \& zero or one successors

In a rooted tree, each element has either zero or one predecessor (the "parent") and zero or more successors (the "children")

Tree Terminology

Parent of x
The node directly above node x in the tree
Child of x
A node directly below node x in the tree
Siblings
Nodes with common parent

Root
Only node with no parent
Leaf or External Node
A node with no children
Internal Node
Nonleaf node

Tree Terminology

Path

A sequence of connected nodes
Ancestor of x
A node on the path from the root to x
Descendent of x

A node on a path from x to a leaf
Empty Tree
A tree with no nodes

Tree Terminology

Height of Tree

Number of edges on the longest path from the root to a leaf
Depth of x
Number of ancestors x has
Level of x

Number of edges on the path from the root to x (= depth)
Degree of x
Number of children x has

Tree Properties

The number of edges
in a tree is one less than the number of nodes.

$$
|\mathrm{E}|=|\mathrm{V}|-1
$$

Binary Trees: Recursive Definition

A binary tree is one of:

- An empty tree
- A root with two binary trees as children (its left and right sub-trees)

Tree Implementations

What would a linked representation of a binary tree look like?

What would a linked representation of a general tree look like?

What would an array representation of a binary tree look like?

Representing a General Tree as a Binary Tree

Array Implementation

Node
Root
Left Child of x
Right Child of x

Location
1
2 * location of x
(2 * location of x) +1

Traversal Sequences of Binary Trees

- Level Order
- Preorder

Root LT RT

- Inorder

LT Root RT

- Postorder

LT RT Root

Inorder Traversal Algorithm

Inorder-Tree-Walk (x)
if $x \neq$ NIL
then Inorder-Tree-Walk(left[x])
print key[x]
Inorder-Tree-Walk(right[x])

Inorder Traversal Print Method

void printInorder (TreeNode root)
\{

> if (root != null)
\{ printInorder(root.left); System.out.println (root.data); printInorder(root.right);
\}
\}

Preorder Traversal for General Tree

Preorder-Tree-Walk (x)
print key[x]
for each child wof x do
Preorder-Tree-Walk(w)

Application: Expression Trees

Infix - customary form

$$
\log a^{*}(b+c)
$$

Prefix - every operator before its operand(s)

* $\log a+b c$

Postfix - every operator
 after its operand(s)
$a \log b c+$ *

Recursive Thinking with Binary Trees

Assume you have the solution for both the left and right sub-tree (i.e., the recursive calls).
Then figure out the solution for the whole tree.

Recursive Thinking with General Trees

Assume you have the solution for all of the sub-trees (i.e., the recursive calls).
Then figure out the solution for the
 whole tree.

Practice Thinking Recursively

1. Write an algorithm to calculate the total number of nodes in a binary tree.
2. Write an algorithm to calculate the height of a binary tree.

Application: File Systems

1. Print a list of all the files and folders in a hierarchical directory structure
2. Calculate the total number of blocks used by all files in the directory system.

Print a Directory List (pseudocode)

void listAll(int depth)
\{
printName(depth); // Print name of object
if (isDirectory ())
for each file c in this directory (each child)
c.listAll(depth + 1);
\}

Calculate Total Size of All Files in a Directory (pseudocode)

int size()
\{
int totalSize = sizeOfThisFile();
if (isDirectory())
for each file c in this directory (each child) totalSize += c.size();
return totalSize;

Binary Tree Properties

Minimum \# of nodes, minN, in a tree of height h :

$$
\min \mathrm{N}=
$$

Maximum height, maxH, for tree of n nodes: $\operatorname{maxH}=$
Maximum \# of nodes, maxN, in a tree of height h :
$\operatorname{maxN}=$
Minimum height, minH, in tree of n nodes:
$\operatorname{minH}=$ \qquad

Searching Methods

Search: Given an integer x and a list L, presorted in increasing order, return the location of x in L, or -1 if x is not in L

Algorithms: Linear Search: O(n) Binary Search: O(log n)

Comparison Tree

Consider a list of names: Ali, Ania, Chi, Eva, Guy, Iori, Jen, Jui, Omar, Qi, Reni, Tess, Val, Zeya Jen

Ania Eva lori Jui Qi Tess Zeya CISC 235 Topic 3

Binary Search Tree Property

Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key $[y] \leq$ $\operatorname{key}[x]$. If y is a node in the right sub-tree of x, then $\operatorname{key}[x] \leq \operatorname{key}[y]$.

Which is not a BST? Why not?

Binary Search Tree Algorithms

Find, FindMin, FindMax

Recursive Search Algorithm

// Returns node with key kin BST rooted // at node x, or NIL if not found
Tree-Search (x, k)
if $x=$ NIL or $k=\operatorname{key}[x]$
then return x
if k < key[x]
then return Tree-Search(left[x], k) else return Tree-Search(right[x], k)

Iterative Search Algorithm

// Returns node with key k in BST rooted
// at node x, or NIL if not found
Iterative-Tree-Search(x, k)
while $x \neq$ NIL and $k \neq \operatorname{key}[x]$
do if $k<k e y[x]$
then $x \leftarrow$ left [x]
else $x \leftarrow \operatorname{right}[x$]
return x

Algorithm to Find Minimum

// Returns minimum in BST
// rooted at node x
Tree-Minimum(x)
while left $[x] \neq$ NIL
do $x \leftarrow \operatorname{left}[x]$
return x

Algorithm to Find Maximum

// Returns maximum in BST
$/ /$ rooted at node x
Tree-Maximum (x)
while right $[x] \neq$ NIL
do $x \leftarrow \operatorname{right}[x]$
return x

Binary Search Tree: Insertion

Insert 74

Search for the element as if it were in the tree. When reach a null node, that's where to insert.

$$
\text { cISc } 235 \text { Topic } 3 \text { node }
$$

Recursive Insertion Algorithm for BST with no pointers to parents

// Inserts node y into BST rooted at node root
// Only for BSTs with no pointers to parents
BSTInsert (y, root)
if (root = NIL) // have found where to insert
then root $\leftarrow y$
else if key[y] < key[root]
then left[root] = BSTInsert(y , left[root])
else if key[y] > key[root]
then right[root] = BSTInsert(y, right[root])
else y is a duplicate; handle duplicate case
return root

Recursive Insert Function for BST with no pointers to parents

Node insert (int x, Node root)
\{ Node p = new Node(x);
if(root $==$ null) // empty tree
root $=p$;
else if (x < root.data) // goes in left sub-tree root.left = insert(x, root.left);
else if ($x>$ root.data) // goes in right sub-tree root.right $=$ insert(x, root.right);
else
System.out.println($\mathrm{x}+$ " is already in tree"); return root;

Iterative Insertion Algorithm for BST with pointers to parents

```
Tree-Insert ( T, z ) // Inserts node z into BST T
\(y \in\) NIL
\(x \leftarrow \operatorname{root}[\mathrm{~T}\) ]
while \(x \neq\) NIL // Find position at which to insert
    do \(y \leqslant x\)
    if key[ \(z\) ] < key [ \(x\) ]
                                    then \(x \leftarrow\) left \([x]\)
                            else \(x \leftarrow \operatorname{right}[x\) ]
\(p[z] \leftarrow y \quad / /\) Set parent link of new node
if \(\mathrm{y}=\) NIL \(\quad / /\) If tree T was empty
    then \(\operatorname{root}[T] \leftarrow z \quad / /\) New node is root, else
        else if key[ \(z\) ] < key[ \(y\) ] // Connect node to parent
        then left [ y\(] \leftarrow \mathrm{z}\)
        else right[ \(y] \leftarrow z\)
```

 CISC 235 Topic 3

BST: Find Successor of a Node

Find Successor of 65

BST: Find Successor of a Node

Find Successor of 32

If right sub-tree of x is empty, the successor of x is the lowest ancestor ancestor of x

Find Successor Algorithm for BST with pointers to parents

// Returns node in BST that is the successor
// of node x, or NIL if no successor
Tree-Successor(x)
if right [x] \neq NIL
then return Tree-Minimum(right $[x])$
$y \leftarrow p[x]$
while $y \neq$ NIL and $x=\operatorname{right}[y$]
do $x \leqslant y$
$y \leftarrow p[y]$
return y

Deletion of Node with Zero or One Child

Delete 82

Bypass the node to be deleted by setting its parent to point to its child

Deletion of Node with Two Children

Delete 65

Deletion of Node with Two Children

Delete 65

Iterative Deletion Algorithm for BST with pointers to parents

// Deletes node z from BST T
Tree-Delete (T, z)
// Set y to point to node to splice out
if left[z] = NIL or right[z] = NIL
then $y \leftarrow z$
else $y \leftarrow$ Tree-Successor(z)
// Set x to non-NIL child of y,
// or to NIL if y has no children
if left[y] \neq NIL
then $x \leftarrow$ left[y]
else $x \leftarrow \operatorname{right}[y]$

Deletion Algorithm, con.

// Splice out node y (next 7 lines)
if $x \neq$ NIL
then $p[x] \leftarrow p[y]$
if $p[y]=$ NIL
then $\operatorname{root}[T] \leqslant x$
else if $y=\operatorname{left}[p[y]]$
then left $[p[y]] \leftarrow x$
else right $[p[y]] \leftarrow x$
// If successor to z was spliced out, copy y's data to z if $y \neq z$
then key[z] \leftarrow key[y]
return y

Binary Search Tree: Complexity

Search, insertion, and deletion in a binary search tree are all $\mathrm{O}(h)$, where h is the height of the tree.

What does this imply about the complexity in terms of n ?

