
CISC 235: Topic 4

Balanced Binary Search Trees

CISC 235 Topic 4 2

Outline

• Rationale and definitions

• Rotations

• AVL Trees, Red-Black, and AA-Trees

– Algorithms for searching, insertion, and

deletion

– Analysis of complexity

CISC 235 Topic 4 3

Balanced Binary Search Trees

Purpose: To achieve a worst-case runtime of
O(log n) for searching, inserting and deleting

Three Types We’ll Look At :

 AVL Trees

 Red-Black Trees

 AA-Trees

There are many types of balanced BSTs

CISC 235 Topic 4 4

AVL Trees
Invented in 1962 by Russian mathematicians Adelson-Velski and Landis

An AVL tree is a binary search tree such that:

• The height of the left and right sub-trees of the root differ
by at most 1

• The left and right sub-trees are AVL trees

Which of these are AVL trees, assuming that

they are BSTs?

CISC 235 Topic 4 5

Valid AVL Tree

Note: it is not a requirement that all leaves
be on the same or adjacent level

44

32

54 82

65 97

88 17

85

99

11

14

CISC 235 Topic 4 6

Minimum AVL Tree of Height H

Let SH be the size

of the smallest

AVL tree of height

H. Then:

S0 = 1, S1 = 2

SH = SH-1 + SH-2 + 1

SH-1

SH-2

H
H-2

H-1

H < 1.44 log(N+2) – 1.328

CISC 235 Topic 4 7

Rotations

Right-Rotate (B)

Left-Rotate (A)

α

B

A

γ

β

α

B

A

γ β

Rotations maintain the ordering property of BSTs.

 a є α, b є β, c є γ implies a ≤ A ≤ b ≤ B ≤ c

A rotation is an O(1) operation

CISC 235 Topic 4 8

Insertions: 4 Cases

1

A

B

2

B

A

4 3

When inserting into a sub-tree of A, there are 4 cases in which a

height violation could occur:

1. Inserting in the left sub-tree of the left child of A

2. Inserting in the right sub-tree of the left child of A

3. Inserting in the left sub-tree of the right child of A

4. Inserting in the right sub-tree of the right child of A

CISC 235 Topic 4 9

Rotations Required for the 4 Cases

1

A

B

2

B

A

4 3

Case 1: Requires a single right rotation to balance

Case 2 and 3: Require double rotations to balance

Case 4: Requires a single left rotation to balance

CISC 235 Topic 4 10

Insertion in an AVL Tree

• First insert node w in AVL tree T as for plain
binary search tree

• Then find the first node x going up from w to the
root that is unbalanced (if none, are finished)

• Apply appropriate rotation (single or double),
which reduces height of sub-tree rooted at x by 1

Since all nodes in T that became unbalanced were on the

path of T from w to the root, restoring the sub-tree rooted
at x to its original height rebalances the entire tree.

CISC 235 Topic 4 11

Insertion in an AVL Tree

What insertion value would cause a Case 1

rotation? Case 2? 3? 4?

44

32

54 82

65 97

88 17

CISC 235 Topic 4 12

Deletion in an AVL Tree

• First delete node w in AVL tree T as for plain
binary search tree

• Then find the first node x going up from w to the
root that is unbalanced (if none, are finished)

• Apply appropriate rotation (single or double),
which results either in the sub-tree rooted at x
being its original height before the deletion, or in
its height being decreased by 1.

Balancing the sub-tree rooted at x may NOT rebalance the
entire tree. O(log n) rotations may be required.

CISC 235 Topic 4 13

Advantages/Disadvantage of AVL

Trees

• Advantages

– O(log n) worst-case searches, insertions and
deletions

• Disadvantages

– Complicated Implementation
• Must keep balancing info in each node

• To find node to balance, must go back up in the
tree: easy if pointer to parent, otherwise difficult

• Deletion complicated by numerous potential
rotations

CISC 235 Topic 4 14

Red-Black Trees

• Improvement over AVL Trees:

– A single top-down pass can be used during
insertion and deletion routines

However, the implementation and number of
rotation cases is still complex, so we will
only look at Red-Black Trees as a step
towards considering AA-Trees.

CISC 235 Topic 4 15

Red-Black Trees

A Red-Black Tree is a binary search tree
with the following ordering properties:

1. Every node is colored either red or black.

2. The root is black

3. If a node is red, its children must be
black.

4. All simple paths from any node x to a
descendent leaf must contain the same
number of black nodes = black-height(x)

CISC 235 Topic 4 16

A Red-Black Tree

1. Every node is colored either red or black

2. The root is black

30

5

15

10 20

70

50 65

85 60

55 40

80 90

CISC 235 Topic 4 17

A Red-Black Tree

3. If a node is red, its children must be

black

30

5

15

10 20

70

50 65

85 60

55 40

80 90

CISC 235 Topic 4 18

A Red-Black Tree

4. All simple paths from any node x to a descendent leaf
must contain the same number of black nodes

 = black-height(x)

30

5

15

10 20

70

50 65

85 60

55 40

80 90

bh = 0

bh = 1

bh = 2

bh = 3

bh = 1

CISC 235 Topic 4 19

Height of a Red-Black Tree

Theorem. A red-black tree with n keys has

height h ≤ 2 lg(n + 1).

INTUITION:

• Merge red nodes

into their black

parents.

CISC 235 Topic 4 20

Height of a Red-Black Tree

Theorem. A red-black tree with n keys has

height h ≤ 2 lg(n + 1).

INTUITION:

• Merge red nodes

into their black

parents.

CISC 235 Topic 4 21

Height of a Red-Black Tree

Theorem. A red-black tree with n keys has height
h ≤ 2 lg(n + 1).

INTUITION:

• Merge red nodes

into their black

parents.

• This process produces a tree in which each
node has 2, 3, or 4 children.

The 2-3-4 tree has uniform depth h′ of leaves.

h´

CISC 235 Topic 4 22

AA-Trees

• Improvement over Red-Black Trees:

– Fewer rotation cases, so easier to code,
especially deletions (eliminates about half of
the restructuring cases)

AA-Trees still have O(log n) searches in the
worst-case, although they are slightly less
efficient.

CISC 235 Topic 4 23

AA-Tree Ordering Properties

An AA-Tree is a binary search tree with the same
ordering properties as a red-black tree:

1. Every node is colored either red or black.

2. The root is black

3. If a node is red, its children must be black.

4. All simple paths from any node x to a
descendent leaf must contain the same
number of black nodes = black-height(x)

 PLUS

5. Left children may not be red

CISC 235 Topic 4 24

An AA-Tree

No left red children

30

15

5 20

35

50

65

85

60

40

10

70

90

55

80

CISC 235 Topic 4 25

Representation of Balancing Info

The level of a node is stored instead of its

color.

30

15

5 20 35

50

40 10

70

60

Red children are considered to be at the level of

their parent. Note that this is the same tree as that

on the previous slide.

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

CISC 235 Topic 4 26

Redefinition of “Leaf”

Both the terms leaf and level are redefined:

 A leaf in an AA-Tree is a node with no

black children.

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

CISC 235 Topic 4 27

Redefinition of “Level”

The level of a node in an AA-Tree is:

• Level 1, if the node is a leaf

• The level of its parent, if the node is red

• One less than the level of its parent, if the node
is black

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1

Level 2

Level 3

CISC 235 Topic 4 28

Implications of Ordering Properties

1. Horizontal links are right links
• because only right children may be red

2. There may not be two consecutive
horizontal links

• because there cannot be consecutive red nodes

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

CISC 235 Topic 4 29

Implications of Ordering Properties

3. Nodes at level 2 or higher must have two

children.

4. If a node does not have a right horizontal

link, its two children are at the same level.

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1

Level 2

Level 3

CISC 235 Topic 4 30

Implications of Ordering Properties

5. Any simple path from a black node to

a leaf contains one black node on

each level.

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

Level 1

Level 2

Level 3

CISC 235 Topic 4 31

Adjustments to AA-Trees: Split
(Color no longer shown for AA-Trees, since only the level is stored)

G

A

R X

B

G

A

B

X

R

G

Problem: With
G inserted,
there are two
reds in a row

The split
procedure is
a simple left
rotation
between X
and R

Red-Black

Tree

AA-Tree

CISC 235 Topic 4 32

Adjustments to AA-Trees: Split

B

G

A

R

X

B

G

A

X

R

G

Problem: With
G inserted,
there are two
reds in a row

The split
procedure is
a simple left
rotation
between X
and R

Red-Black

Tree

AA-Tree

CISC 235 Topic 4 33

Adjustments to AA-Trees: Split

B

G

A

R

X

B

G

A

X

R

G

Note that R’s

level

increases in

the AA-Tree

Red-Black

Tree

AA-Tree

CISC 235 Topic 4 34

Adjustments to AA-Trees: Skew

G

A

P

B

A B

X
Problem:

Horizontal left
link in AA-Tree
(too many black
nodes on one
path)

The skew
procedure is a
simple right
rotation between
X and P

Red-Black

Tree

AA-Tree

X

C

P

C

CISC 235 Topic 4 35

Adjustments to AA-Trees: Skew

A

P

B

B

Problem:
Horizontal left
link in AA-Tree
(too many black
nodes on one
path)

The skew
procedure is a
simple right
rotation between
X and P

Red-Black

Tree

AA-Tree

X

C

A

P

G

X

C

CISC 235 Topic 4 36

Adjustments to AA-Trees: Skew

A

X P

B

B

Problem:
Horizontal left
link in AA-Tree
(too many black
nodes on one
path)

The skew
procedure is a
simple right
rotation between
X and P

Red-Black

Tree

AA-Tree
C

A

P

G

C

X

CISC 235 Topic 4 37

Example: Insert 45

First, insert as for simple binary search tree

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

45

CISC 235 Topic 4 38

Example: Insert 45

Problem: Consecutive horizontal links starting at 35,
so need split

65 55

85

90 80

30

15

5 20 35

50

40 10

70

60

45

After insert to right of 40:

CISC 235 Topic 4 39

Example: Insert 45

Problem: Left horizontal link at 50 is introduced, so
need skew

65 55

85

90 80

30

15

5 20 35

50 40

10

70

60

45

After split at 35:

CISC 235 Topic 4 40

Example: Insert 45

Problem: Consecutive horizontal links starting at 40,
so need split

65 55

85

90 80

30

15

5 20 35

50 40

10

70

60

45

After skew at 50:

CISC 235 Topic 4 41

Example: Insert 45

Problem: Left horizontal link at 70 is introduced (50
is now on same level as 70), so need skew

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

After split at 40:

CISC 235 Topic 4 42

Example: Insert 45

Problem: Consecutive horizontal links starting at 30,
so need split

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

After skew at 70:

CISC 235 Topic 4 43

Example: Insert 45

Insertion is complete (finally!)

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

After split at 30:

CISC 235 Topic 4 44

AA-Tree Insertion Algorithm

// Inserts node y into AA-Tree rooted at node x

// Only for tree nodes with no pointer to parent

AAInsert (x, y)

 if (x = NIL) // have found where to insert y

 then x y

 else if key[y] < key[x]

 then AAInsert(left[x], y)

 else if key[y] > key[x]

 then AATInsert(right[x], y)

 else

 y is a duplicate; handle duplicate case

 skew (x) // Do skew and split at each level

 split (x)

CISC 235 Topic 4 45

Deletion

Same as for simple BST: replace with smallest right
child or largest left child and recursively call delete

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

Two-Child Case,

e.g., 15

CISC 235 Topic 4 46

Deletion

Note that these are all at level one, so everything
boils down to deleting a level one node

65 55

85

90 80

30

15

5 20 35

50

40

10

70

60

45

One-Child & No-Child
Cases,

e.g., 5

CISC 235 Topic 4 47

Deletion at Level 1

In the worst case, deleting one leaf node, e.g., 15,
could cause six nodes to all become at one
level, introducing horizontal left links.

85 90

30

15 50

70

60

However, it turns out that all cases can be handled by three
calls to skew, followed by two calls to split
(implementation can be found in various texts if you
need it someday).

CISC 235 Topic 4 48

BST Applets

http://people.ksp.sk/~kuko/bak/index.html

http://www.site.uottawa.ca/~stan/csi2514/applets/avl/BT.html

http://www.cis.ksu.edu/~howell/viewer/viewer.html

http://people.ksp.sk/~kuko/bak/index.html
http://people.ksp.sk/~kuko/bak/index.html
http://www.site.uottawa.ca/~stan/csi2514/applets/avl/BT.html
http://www.site.uottawa.ca/~stan/csi2514/applets/avl/BT.html
http://www.cis.ksu.edu/~howell/viewer/viewer.html
http://www.cis.ksu.edu/~howell/viewer/viewer.html
http://www.cis.ksu.edu/~howell/viewer/viewer.html

