
CISC 235: Topic 5

Dictionaries and Hash Tables

CISC 235 Topic 5 2

Outline

• Dictionaries
– Dictionaries as Partial Functions

• Unordered Dictionaries
– Implemented as Hash Tables

• Collision Resolution Schemes
– Separate Chaining

– Linear Probing

– Quadratic Probing

– Double Hashing

• Design of Hash Functions

CISC 235 Topic 5 3

Caller ID Problem Scenario

Consider a large phone company that wants to
provide Caller ID to its customers:

 - Given a phone number, return the caller’s name

 Key Element

 phone number caller’s name

Assumption: Phone numbers are unique and are in the
range 0..107 - 1. However, not all those numbers are
current phone numbers.

How shall we store and look up our (phone number, name)
pairs?

Caller ID Solutions

Let u = number of possible key values: 107

Let k = number of phone/name pairs

1.Use a linked list

Time Analysis (search, insert, delete):

Space Analysis:

2.Use a balanced binary search tree

Time Analysis (search, insert, delete):

Space Analysis:

 CISC 235 Topic 5 4

Direct-Address Table

CISC 235 Topic 5 5

CISC 235 Topic 5 6

Direct-address Tables

Direct-Address-Search(T, k)

 return T[k]

Direct-Address-Insert(T, x)

 T[key[x]] x

Direct-Address-Delete(T, x)

 T[key[x]] NIL

We could use a

direct-address table

to implement caller-

id, with the phone

numbers as keys.

Time Analysis:

Space Analysis:

CISC 235 Topic 5 7

Dictionaries

A dictionary consists of

key/element pairs in which

the key is used to look up

the element.

Ordered Dictionary: Elements

stored in sorted order by key

Unordered Dictionary:

Elements not stored in

sorted order

Example Key Element

English

Dictionary

Word Definition

Student

Records

Student

Number

Rest of

record:

Name, …

Symbol

Table in

Compiler

Variable

Name

Variable’s

Address in

Memory

Lottery

Tickets

Ticket

Number

Name &

Phone

Number

CISC 235 Topic 5 8

Dictionary as a Function

Given a key, return an element

 Key Element
 (domain: (range:

 type of the keys) type of the elements)

A dictionary is a partial function. Why?

CISC 235 Topic 5 9

Unordered Dictionary

Best Implementation: Hash Table

Space: O(n)

Time: O(1) average-case

Key/Element Pairs

5336666

“Sara Li”

5661111

“Lea Ross”

5336666 “Sara Li”

0

1

2

3

4

5

6

7

8

9

Hash

Function

CISC 235 Topic 5 10

Example Hash Function

h(k)

 return k mod m

where k is the key and m is the

size of the table

Hash Table with Collision

CISC 235 Topic 5 11

CISC 235 Topic 5 12

Collision Resolution Schemes:

Chaining

The hash table is an array
of linked lists

Insert Keys: 0, 1, 4, 9, 16,
25, 36, 49, 64, 81

Notes:

• As before, elements
would be associated with
the keys

• We’re using the hash
function h(k) = k mod m

0

1

2

3

4

5

6

7

8

9

64

81

36

49

0

1

4

25

16

9

CISC 235 Topic 5 13

Chaining Algorithms

Chained-Hash-Insert(T, x)

 insert x at the head of list T[h(key[x])]

Chained-Hash-Search(T, k)

 search for an element with key k

 in list T[h(k)]

Chained-Hash-Delete(T, x)

 delete x from the list T[h(key[x])]

CISC 235 Topic 5 14

Worst-case Analysis of

Chaining

Let n = number of elements in the hash table

Let m = hash table size

Let λ = n / m (the load factor, i.e, the average number of
elements stored in a chain)

What is the worst-case?

Unsuccessful Search:

Successful Search:

CISC 235 Topic 5 15

Average-Case Analysis of Chaining

for an Unsuccessful Search

Let n = number of elements in hash table

Let m = hash table size

Let λ = n / m (the load factor, i.e, the average number of
elements stored in a chain)

CISC 235 Topic 5 16

Average-Case Analysis of Chaining

for a Successful Search

Let n = number of elements in hash table

Let m = hash table size

Let λ = n / m (the load factor, i.e, the average number of
elements stored in a chain)

CISC 235 Topic 5 17

Questions to Ask When Analyzing

Resolution Schemes

1. Are we guaranteed to find an empty cell if there

is one?

2. Are we guaranteed we won’t be checking the

same cell twice during one insertion?

3. What should the load factor be to obtain O(1)

average-case insert, search, and delete?

Answers for Chaining:

1.

2.

3.

CISC 235 Topic 5 18

Collision Resolution Strategies:

Open Addressing
All elements stored in the hash table itself (the array). If a

collision occurs, try alternate cells until empty cell is found.

Three Resolution Strategies:

• Linear Probing

• Quadratic Probing

• Double Hashing

All these try cells h(k,0), h(k,1), h(k,2), …, h(k, m-1)

 where h(k,i) = (h(k) + f(i)) mod m, with f(0) = 0

The function f is the collision resolution strategy and the
function h is the original (now auxiliary) hash function.

CISC 235 Topic 5 19

Linear Probing

Function f is linear. Typically, f(i) = i

So, h(k, i) = (h(k) + i) mod m

Offsets: 0, 1, 2, …, m-1

With H = h(k), we try the following

cells with wraparound:

 H, H + 1, H + 2, H + 3, …

0

1

2

3

4

5

6

7

8

9

What does the table look like after

the following insertions?

Insert Keys: 0, 1, 4, 9, 16, 25, 36,

49, 64, 81

CISC 235 Topic 5 20

General Open Addressing

Insertion Algorithm
Hash-Insert(T, k)

 i 0

 repeat

 j h(k, i)

 if T[j] = NIL

 then T[j] k

 return j

 else i i + 1

 until i = m

 error “hash table overflow”

CISC 235 Topic 5 21

General Open Addressing

Search Algorithm

Hash-Search(T, k)

 i 0

 repeat

 j h(k, i)

 if T[j] = k

 then return j

 i i + 1

 until T[j] = NIL or i = m

 return NIL

CISC 235 Topic 5 22

Linear Probing Deletion

0

1

2

3

4

5

6

7

8

9

 0

 1

 49

 4

 25

 16

 36

 64

 9

How do we delete 9?

How do we find 49 after

deleting 9?

CISC 235 Topic 5 23

Lazy Deletion

0

1

2

3

4

5

6

7

8

9

 0

 1

 49

 4

 25

 16

 36

 64

 9

Empty: Null reference

Active: A

Deleted: D

CISC 235 Topic 5 24

Questions to Ask When Analyzing

Resolution Schemes

1. Are we guaranteed to find an empty cell if there

is one?

2. Are we guaranteed we won’t be checking the

same cell twice during one insertion?

3. What should the load factor be to obtain O(1)

average-case insert, search, and delete?

Answers for Linear Probing:

1.

2.

3.

Primary Clustering

Linear Probing is easy to implement, but it

suffers from the problem of primary

clustering:

 Hashing several times in one area results

in a cluster of occupied spaces in that

area. Long runs of occupied spaces build

up and the average search time increases.

CISC 235 Topic 5 25

CISC 235 Topic 5 26

Collision Resolution Comparison

Advantages? Disadvantages?

Chaining

Linear Probing

Rehashing

Problem with both chaining & probing:

 When the table gets too full, the average search

time deteriorates from O(1) to O(n).

Solution: Create a larger table and then rehash all

the elements into the new table

Time analysis:

CISC 235 Topic 5 27

CISC 235 Topic 5 28

Quadratic Probing

Function f is quadratic. Typically, f(i) = i2

So, h(k, i) = (h(k) + i2) mod m

Offsets: 0, 1, 4, …

With H = h(k), we try the following

cells with wraparound:

 H, H + 12, H + 22, H + 32 …

Insert Keys: 10, 23, 14, 9, 16, 25, 36, 44, 33

0

1

2

3

4

5

6

7

8

9

CISC 235 Topic 5 29

Questions to Ask When Analyzing

Resolution Schemes

1. Are we guaranteed to find an empty cell if there

is one?

2. Are we guaranteed we won’t be checking the

same cell twice during one insertion?

3. What should the load factor be to obtain O(1)

average-case insert, search, and delete?

Answers for Quadratic Probing:

1.

2.

3.

Secondary Clustering

Quadratic Probing suffers from a milder form

of clustering called secondary clustering:

 As with linear probing, if two keys have the

same initial probe position, then their

probe sequences are the same, since

h(k1,0) = h(k2,0) implies h(k1,1) = h(k2,1).
So only m distinct probes are used.

Therefore, clustering can occur around the

probe sequences.
CISC 235 Topic 5 30

CISC 235 Topic 5 31

Advantages/Disadvantages of

Quadratic Probing?

CISC 235 Topic 5 32

Double Hashing

If a collision occurs when inserting, apply a second
auxiliary hash function, h2(k), and probe at a distance
h2(k), 2 * h2(k), 3 * h2(k), etc. until find empty position.

So, f(i) = i * h2(k) and we have two auxiliary functions:

h(k, i) = (h1(k) + i * h2(k)) mod m

With H = h1(k), we try the following cells in sequence with
wraparound:

 H

 H + h2(k)

 H + 2 * h2(k)

 H + 3 * h2(k)
 …

Double Hashing

In order for the entire table to be searched,

the value of the second hash function,

h2(k), must be relatively prime to the table
size m.

One of the best methods available for open

addressing because the permutations

produced have many of the characteristics

of randomly chosen permutations
CISC 235 Topic 5 33

CISC 235 Topic 5 34

Advantages/Disadvantages of

Double Hashing?

CISC 235 Topic 5 35

Collision Resolution Comparison:
Expected Number of Probes in Searches

Let λ = n / m (load factor)

 Unsuccessful

Search

Successful

Search

Chaining λ

(average number of

elements in chain)

 1 + λ/2 - λ/(2n)

 (1 + average

number before

element in chain)

Open

Addressing

(assuming

uniform hashing)

 1 / (1 – λ)

 1 ln 1

 λ 1- λ

CISC 235 Topic 5 36

Expected Number of Probes vs.

Load Factor

1.0

1.0 0.5

Number of Probes

Load Factor

Unsuccessful

Successful

Linear Probing

Double Hashing

Chaining

CISC 235 Topic 5 37

Collision Resolution Comparison

Let λ = n / m (load factor)

 Recommended Load

Factor

Chaining λ ≤ 1.0

Linear or Quadratic

Probing

λ ≤ 0.5 (half full)

Double Hashing λ ≤ 0.5 (half full)

Note: If a table using quadratic probing is more than half full, it

is not guaranteed that an empty cell will be found

CISC 235 Topic 5 38

Collision Resolution Comparison

Advantages? Disadvantages?

Chaining

Linear Probing

Quadratic

Probing

Double Hashing

CISC 235 Topic 5 39

Choosing Hash Functions

A good hash function must be O(1) and
must distribute keys evenly.

Division Method Hash Function for Integer
Keys:

 h(k) = k mod m

Hash Function for String Keys?

CISC 235 Topic 5 40

Hash Functions for String Keys

(assume English words as keys)

Option 1: Use all letters of key

 h(k) = (sum of ASCII values in Key) mod m

So,

�h(k) =

 keysize -1

 (∑ (int)k[i]) mod m

 i=0

Good hash function?

CISC 235 Topic 5 41

Hash Functions for String Keys

(assume English keys)
Option 2: Use first three letters of a key & multiplier

 h(k) =

 ((int) k[0] +

 (int) k[1] * 27 +

 (int) k[2] * 729) mod m

Note: 27 is number of letters in English + blank

 729 is 272

 Using 3 letters, so 263 = 17, 576 possible
combos, not including blanks

Good hash function?

CISC 235 Topic 5 42

Hash Functions for String Keys

(assume English keys)

Option 3: Use all letters of a key & multiplier

 h(k) =

 keysize -1

 (∑ (int)k[i] * 128i) mod m

 i=0

Note: Use Horner’s rule to compute the polynomial

efficiently

Good hash function?

CISC 235 Topic 5 43

 Requirement: Prime Table Size for

Division Method Hash Functions
If the table is not prime, the number of alternative locations can be severely

reduced, since the hash position is a value mod the table size

Example: Table Size 16, with Quadratic Probing

 h(k) + Offset

 0 + 1 mod 16 = 1

 4 mod 16 = 4

 9 mod 16 = 9

 16 mod 16 = 0

 25 mod 16 = 9

 36 mod 16 = 4

 49 mod 16 = 1

 …

CISC 235 Topic 5 44

Important Factors When Designing

Hash Tables

To Minimize Collisions:

1. Distribute the elements evenly.
– Use a hash function that distributes keys evenly

– Make the table size, m, a prime number not near a
power of two if using a division method hash
function

2. Use a load factor, λ = n / m, that’s appropriate
for the implementation.

– 1.0 or less for chaining (i.e., n ≤ m).

– 0.5 or less for linear or quadratic probing or double
hashing (i.e., n ≤ m / 2)

