
CISC 235: Topic 8

Internal and External Sorting

External Searching

CISC 235 Topic 8 2

Outline

• Internal Sorting

– Heapsort

• External Sorting

– Multiway Merge

• External Searching

– B-Trees

CISC 235 Topic 8 3

Heapsort

Idea: Use a max heap in a sorting algorithm to
sort an array into increasing order.

Heapsort Steps

1. Build a max heap from an unsorted array

2. Remove the maximum from the heap n times
and store in an array

We could keep the heap in one array and copy the
maximum to a second array n times.

CISC 235 Topic 8 4

Heapsort in a Single Array

Heapsort Steps

1. Build a max heap from an unsorted array

2a. Remove the largest from the heap and place it
in the last position in array

2b. Remove the 2nd largest from the heap and
place it in the 2nd from last position

2c. Remove the 3rd largest from the heap and
place it in the 3rd from last postion

 . . . etc.

CISC 235 Topic 8 5

Heapsort :

Start with an Unsorted Array

14 9 8 25 5 11 27 16 15 4 12 6 7 23 20

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

CISC 235 Topic 8 6

Heapsort Step 1:

Build a Max Heap from the Array

27 25 23 16 12 11 20 9 15 4 5 6 7 8 14

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14
 9

25

16 12

15 4 8

11

 6

27

 7

23

 5

20

CISC 235 Topic 8 7

Percolate Down Algorithm
for max heap

// Heap is represented by array A with two attributes:

// length[A] and heap-size[A]

// Percolate element at position i down until A[i]  its children

Max-Heapify(A, i)

 L  Left(i)

 R  Right(i)

 if(L  heap-size[A] and A[L] > A[i])

 then largest  L

 else largest  i

 if(R  heap-size[A] and A[R] > A[largest])

 then largest  R

 if(largest  i)

 then exchange A[i]  A[largest]

 Max-Heapify(A, largest)

CISC 235 Topic 8 8

BuildHeap Algorithm
for max heap

// Convert array A to max heap order using

// reverse level-order traversal, calling Max-Heapify

// for each element, starting at the parent of

// the last element in array

Build-Max-Heap(A)

 heap-size[A]  length[A]

 for i   length[A] / 2  down to 1

 do Max-Heapify(A, i)

CISC 235 Topic 8 9

Heapsort Step 2a: Remove largest and

place in last position in array

25 16 23 15 12 11 20 9 14 4 5 6 7 8 27

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 9

25

16

 5

15

 4 8

11

 6 7

23

12 20

Heap

Portion

Sorted

Array

Portion

CISC 235 Topic 8 10

Heapsort Step 2b: Remove 2nd largest

and place in 2nd from last position in array

23 16 20 15 12 11 8 9 14 4 5 6 7 25 27

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 9

16

 5

15

 4

 8 11

 6 7

23

12

20

Heap

Portion

Sorted

Array

Portion

CISC 235 Topic 8 11

Heapsort Step 2c: Remove 3rd largest

and place in 3rd from last position in array

20 16 11 15 12 7 8 9 14 4 5 6 23 25 27

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

14 9

16

 5

15

 4

 8

11

 6

 7 12

20

Heap

Portion

Sorted

Array

Portion

CISC 235 Topic 8 12

Heapsort at End: All nodes removed

from Heap and now in Sorted Array

 4 5 6 7 8 9 11 12 14 15 16 20 23 25 27

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

All in

Sorted

Array

Portion

CISC 235 Topic 8 13

Heapsort Analysis?

Worst-case Complexity?

Step 1. Build Heap

Step 2. Remove max n times

Comparison with other good Sorting Algs?

Quicksort?

Mergesort?

CISC 235 Topic 8 14

External Sorting

Problem: If a list is too large to fit in main memory,
the time required to access a data value on a disk
or tape dominates any efficiency analysis.

1 disk access ≡ Several million machine instructions

Solution: Develop external sorting algorithms that
minimize disk accesses

CISC 235 Topic 8 15

A Typical Disk Drive

CISC 235 Topic 8 16

Disk Access

Disk Access Time =

 Seek Time (moving disk head to correct track)

 + Rotational Delay (rotating disk to correct
 block in track)

 + Transfer Time (time to transfer block of

 data to main memory)

CISC 235 Topic 8 17

Basic External Sorting Algorithm

• Assume unsorted data is on disk at start

• Let M = maximum number of records that can be
stored & sorted in internal memory at one time

Algorithm
Repeat:

1. Read M records into main memory & sort internally.

2. Write this sorted sub-list onto disk. (This is one “run”).

Until all data is processed into runs

Repeat:

1. Merge two runs into one sorted run twice as long

2. Write this single run back onto disk

Until all runs processed into runs twice as long

Merge runs again as often as needed until only one large run: the
sorted list

CISC 235 Topic 8 18

Basic External Sorting

11 96 12 35 17 99 28 58 41 75 15 94 81

Unsorted Data on Disk

Assume M = 3 (M would actually be much larger, of course.)

First step is to read 3 data items at a time into main memory,

sort them and write them back to disk as runs of length 3.

11 94 81

96 12 35

17 99 28

58 41 75

15

CISC 235 Topic 8 19

Basic External Sorting

Next step is to merge the runs of length 3 into runs of length 6.

11 94 81 96 12 35

17 99 28 58 41 75

15 11 94 81

96 12 35

17 99 28

58 41 75

15

CISC 235 Topic 8 20

Basic External Sorting

Next step is to merge the runs of length 6 into runs of length 12.

11 94 81 96 12 35 17 99 28 58 41 75

15

15

11 94 81 96 12 35

17 99 28 58 41 75

CISC 235 Topic 8 21

Basic External Sorting

Next step is to merge the runs of length 12 into runs of length

24. Here we have less than 24, so we’re finished.

11 94 81 96 12 35 17 99 28 58 41 75 15

11 94 81 96 12 35 17 99 28 58 41 75

15

CISC 235 Topic 8 22

Multi-way Mergesort

Idea: Do a K-way merge instead of a 2-way

merge.

Find the smallest of K elements at each

merge step. Can use a priority queue

internally, implemented as a heap.

CISC 235 Topic 8 23

Multi-way Mergesort Algorithm

Algorithm:

1. As before, read M values at a time into internal

memory, sort, and write as runs on disk

2. Merge K runs:

1. Read first value on each of the k runs into internal array

and build min heap

2. Remove minimum from heap and write to disk

3. Read next value from disk and insert that value on heap

Repeat steps until all first K runs are processed

• Repeat merge on larger & larger runs until have just

one large run: sorted list

CISC 235 Topic 8 24

Multi-way Mergesort Analysis

Let N = Number of records

 B = Size of a Block (in records)

 M = Size of internal memory (in records)

 K = Number of runs to merge at once

Simplifying Assumptions: N & M are an

exact number of blocks (no part blocks):

 N = cnB, a constant times B

 M = cmB, a constant times B

CISC 235 Topic 8 25

Multi-way Mergesort Analysis

Specific Example:

 M = 80 records

 B = 10 records

 N = 16,000,000 records

 So, K = ½ (M/B) = ½ (80/10) = 4

CISC 235 Topic 8 26

Multi-way Mergesort Analysis:

Advantage Gained with Heap

CISC 235 Topic 8 27

External Searching

Problem: We need to maintain a sorted list to
facilitate searching, with insertions and
deletions occurring, but we have more data
than can fit in main memory.

Task: Design a data structure that will minimize
disk accesses.

Idea: Instead of a binary tree, use a balanced
M-ary tree to reduce levels and thus reduce
disk accesses during searches. Also, keep
many keys in each node, instead of only one.

CISC 235 Topic 8 28

M-ary Tree

A 5-ary tree of 31 nodes has only 3 levels.

Note that each node in a binary tree could be at a different
place on disk, so we have to assume that following any
branch (edge) is a disk access. So, minimizing the
number of levels minimizes the disk accesses.

CISC 235 Topic 8 29

Multiway Search Trees

A multiway search tree of order m, or an m-way

search tree, is an m-ary tree in which:

1. Each node has up to m children and m-1 keys

2. The keys in each node are in ascending order

3. The keys in the first i children are smaller than

the ith key

4. The keys in the last m-i children are larger than

the ith key

CISC 235 Topic 8 30

A 5-Way Search Tree

39 35 33

14

5 2

55 40 22 16

19 18

15 9 25

14 13 11 10

CISC 235 Topic 8 31

B-Trees

A B-Tree is an m-Way search tree that is always at least
half-full and is perfectly balanced.

A B-Tree of order m has the properties:

1. The root has at least two sub-trees, unless it’s a leaf

2. Each non-root and non-leaf node holds k-1 keys and k
pointers to sub-trees, where

 m/2 ≤ k ≤ m

 (i.e., internal nodes are at least half-full)

3. Each leaf node holds k-1 keys, where

 m/2 ≤ k ≤ m

 (i.e., leaf nodes are at least half-full)

4. All leaves are on the same level.

CISC 235 Topic 8 32

A B-Tree of Order 5

To find the location of a key, traverse the keys at the root

sequentially until at a pointer where any key before it is less than

the search key and any key after it is greater than or equal to the

search key.

Follow that pointer and proceed in the same way with the keys at

that node until the search key is found, or are at a leaf and the

search key is not in the leaf.

 22 16

 39 35 33 19 18 5 2

CISC 235 Topic 8 33

A B-Tree of Order 1001

CISC 235 Topic 8 34

2-3-4 Trees

In a B-Tree of what order will each internal

node have 2, 3, or 4 children?

CISC 235 Topic 8 35

B-Tree Insertion Case 1:
A key is placed in a leaf that still has some room

39 35 33 9 5

22 16

19 18

Shift keys to preserve ordering & insert new key.

Insert 7

39 35 33 9 7 5

22 16

19 18

CISC 235 Topic 8 36

B-Tree Insertion Case 2:

A key is placed in a leaf that is full

39 35 33 9 7 5 2

22 16

19 18

Split the leaf, creating a new leaf, and move half the keys from

full leaf to new leaf.

Insert 8

39 35 33 5 2

22 16

19 18 9 7

CISC 235 Topic 8 37

B-Tree Insertion: Case 2

39 35 33 5 2

22 16

19 18

Move median key to parent, and add pointer to new leaf in

parent.

Insert 8

9 7

39 35 33 5 2

22 16 7

19 18 9 8

CISC 235 Topic 8 38

B-Tree Insertion: Case 3

The root is full and must be split

39 35 33 5 2

40 22 16 7

19 18

In this case, a new node must be created at each level,

plus a new root. This split results in an increase in the

height of the tree.

Insert 15

14 12 9 8 59 55 43

CISC 235 Topic 8 39

B-Tree Insertion: Case 3

The root is full and must be split

39 35 33 5 2

40 22 16 7

19 18

Insert 15

9 8 14 12

39 35 33 5 2

12 7

19 18 9 8 15 14

40 22 Move 12 &

16 up

CISC 235 Topic 8 40

B-Tree Insertion: Case 3

16

This is the only case in

which the height of the

B-tree increases.

39 35 33 5 2

12 7

19 18 9 8 15 14

40 22

CISC 235 Topic 8 41

B+-Tree

39 35 33 5 2

33 18 8

19 18

A B+-Tree has all keys, with attached records, at the leaf

level. Search keys, without attached records, are

duplicated at upper levels. A B+-tree also has links

between the leaves. Why?

14 12 9 8

42

CISC 235 Topic 8 42

B-Tree Insertion Analysis

Let M = Order of B-Tree

 N = Number of Keys

 B = Number of Keys that fit in one Block

Programmer defines size of node in tree to be

~1 block.

How many disk accesses to search for a key in

the worst case?

CISC 235 Topic 8 43

Application: Web Search Engine

A web crawler program gathers information about web pages
and stores it in a database for later retrieval by keyword by
a search engine such as Google.

• Search Engine Task: Given a keyword, return the list of
web pages containing the keyword.

• Assumptions:

– The list of keywords can fit in internal memory, but the
list of webpages (urls) for each keyword (potentially
millions) cannot.

– Query could be for single or multiple keywords, in
which pages contain all of the keywords, but pages are
not ranked.

What data structures should be used?

