
CISC 235:  Topic 8 

Internal and External Sorting 

External Searching 
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Outline 

• Internal Sorting 

– Heapsort 

• External Sorting 

– Multiway Merge 

• External Searching 

– B-Trees  
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Heapsort 

Idea:  Use a max heap in a sorting algorithm to 
sort an array into increasing order. 

 

Heapsort Steps  

1. Build a max heap from an unsorted array 

2. Remove the maximum from the heap n times 
and store in an array 

 

We could keep the heap in one array and copy the 
maximum to a second array n times. 
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Heapsort in a Single Array 

Heapsort Steps  

1. Build a max heap from an unsorted array 

 

2a. Remove the largest from the heap and place it 
in the last position in array 

 

2b. Remove the 2nd  largest from the heap and 
place it in the 2nd from last position 

 

2c. Remove the 3rd largest from the heap and 
place it in the 3rd from last postion 

     . . . etc.  
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Heapsort :  

Start with an Unsorted Array 

14  9  8 25  5 11 27 16 15  4 12  6  7 23 20 

 0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 
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Heapsort Step 1:  

Build a Max Heap from the Array 
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Percolate Down Algorithm 
for max heap 

// Heap is represented by array A with two attributes:   

//             length[A] and heap-size[A]  

// Percolate element at position i down until A[ i ]  its children 

Max-Heapify( A, i ) 

  L  Left( i ) 

  R  Right( i ) 

  if( L  heap-size[A] and A[L] > A[i] ) 

   then largest  L  

   else largest  i 

  if( R  heap-size[A] and A[R] > A[largest] ) 

   then largest  R 

  if( largest  i ) 

   then exchange A[i]  A[largest] 

           Max-Heapify( A, largest ) 
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BuildHeap Algorithm  
for max heap 

// Convert array A to max heap order using  

// reverse level-order traversal, calling Max-Heapify  

// for each element, starting at the parent of  

// the last element in array 

Build-Max-Heap( A )  

  heap-size[A]  length[A] 

  for i   length[A] / 2   down to 1 

   do Max-Heapify( A, i )   
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Heapsort Step 2a: Remove largest and 

place in last position in array 
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Heapsort Step 2b: Remove 2nd largest 

and place in 2nd from last position in array 
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Heapsort Step 2c: Remove 3rd largest 

and place in 3rd from last position in array 
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Heapsort at End: All nodes removed 

from Heap and now in Sorted Array 
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Heapsort Analysis? 

Worst-case Complexity? 

Step 1. Build Heap 

Step 2. Remove max n times  

 

Comparison with other good Sorting Algs? 

Quicksort? 

Mergesort? 
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External Sorting 

Problem:  If a list is too large to fit in main memory, 
the time required to access a data value on a disk 
or tape dominates any efficiency analysis. 

 

1 disk access ≡ Several million machine instructions 

 

Solution:  Develop external sorting algorithms that 
minimize disk accesses 
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A Typical Disk Drive 
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Disk Access 

Disk Access Time =  

 Seek Time (moving disk head to correct track) 

 + Rotational Delay (rotating disk to correct  
     block in track) 

 + Transfer Time (time to transfer block of  

    data to main memory)  
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Basic External Sorting Algorithm 

• Assume unsorted data is on disk at start 

• Let M = maximum number of records that can be 
stored & sorted in internal memory at one time 

Algorithm 
Repeat: 

1. Read M records into main memory & sort internally. 

2. Write this sorted sub-list onto disk. (This is one “run”). 

Until all data is processed into runs 

Repeat: 

1. Merge two runs into one sorted run twice as long  

2. Write this single run back onto disk 

Until all runs processed into runs twice as long 

Merge runs again as often as needed until only one large run:  the 
sorted list 
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Basic External Sorting  

11 96 12 35 17 99 28 58 41 75 15 94 81 

Unsorted Data on Disk 

Assume M = 3 (M would actually be much larger, of course.)  

First step is to read 3 data items at a time into main memory, 

sort them and write them back to disk as runs of length 3. 

11 94 81 

96 12 35 

17 99 28 

58 41 75 

15 
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Basic External Sorting  

Next step is to merge the runs of length 3 into runs of length 6. 

11 94 81 96 12 35 

17 99 28 58 41 75 

15 11 94 81 

96 12 35 

17 99 28 

58 41 75 

15 
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Basic External Sorting  

Next step is to merge the runs of length 6 into runs of length 12. 

11 94 81 96 12 35 17 99 28 58 41 75 

15 

15 

11 94 81 96 12 35 

17 99 28 58 41 75 
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Basic External Sorting  

Next step is to merge the runs of length 12 into runs of length 

24.  Here we have less than 24, so we’re finished. 

11 94 81 96 12 35 17 99 28 58 41 75 15 

11 94 81 96 12 35 17 99 28 58 41 75 

15 
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Multi-way Mergesort 

Idea:  Do a K-way merge instead of a 2-way 

merge. 

 

Find the smallest of K elements at each 

merge step.  Can use a priority queue 

internally, implemented as a heap.   
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Multi-way Mergesort Algorithm 

Algorithm: 

1. As before, read M values at a time into internal 

memory, sort, and write as runs on disk 

2. Merge K runs: 

1. Read first value on each of the k runs into internal array 

and build min heap 

2. Remove minimum from heap and write to disk 

3. Read next value from disk and insert that value on heap 

Repeat steps until all first K runs are processed 

• Repeat merge on larger & larger runs until have just 

one large run:  sorted list 
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Multi-way Mergesort Analysis 

Let N = Number of records 

      B = Size of a Block (in records) 

      M = Size of internal memory (in records) 

      K = Number of runs to merge at once 

Simplifying Assumptions:  N & M are an 

exact number of blocks (no part blocks): 

      N = cnB, a constant times B 

      M = cmB, a constant times B 
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Multi-way Mergesort Analysis 

Specific Example: 

  M = 80 records 

  B = 10 records 

  N = 16,000,000 records 

 So, K = ½ (M/B) = ½ (80/10) = 4  
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Multi-way Mergesort Analysis: 

Advantage Gained with Heap 
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External Searching 

Problem:  We need to maintain a sorted list to 
facilitate searching, with insertions and 
deletions occurring, but we have more data 
than can fit in main memory. 

 

Task:  Design a data structure that will minimize 
disk accesses. 

 

Idea:  Instead of a binary tree, use a balanced 
M-ary tree to reduce levels and thus reduce 
disk accesses during searches. Also, keep 
many keys in each node, instead of only one. 
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M-ary Tree 

A 5-ary tree of 31 nodes has only 3 levels.   

Note that each node in a binary tree could be at a different 
place on disk, so we have to assume that following any 
branch (edge) is a disk access.  So, minimizing the 
number of levels minimizes the disk accesses. 
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Multiway Search Trees 

A multiway search tree of order m, or an m-way 

search tree, is an m-ary tree in which: 

1. Each node has up to m children and m-1 keys 

2. The keys in each node are in ascending order 

3. The keys in the first i children are smaller than 

the ith key 

4. The keys in the last m-i children are larger than 

the ith key 
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A 5-Way Search Tree 

39 35 33 

14 

5 2 

55 40 22 16 

19 18 

15 9 25 

14 13 11 10 



CISC 235 Topic 8 31 

B-Trees 

A B-Tree is an m-Way search tree that is always at least 
half-full and is perfectly balanced. 

 

A B-Tree of order m has the properties: 

1. The root has at least two sub-trees, unless it’s a leaf 

2. Each non-root and non-leaf node holds k-1 keys and k 
pointers to sub-trees, where   

 m/2  ≤  k  ≤  m  

 (i.e., internal nodes are at least half-full) 

3. Each leaf node holds k-1 keys, where 

  m/2  ≤  k  ≤  m 

 (i.e., leaf nodes are at least half-full)  

4. All leaves are on the same level.  
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A B-Tree of Order 5 

To find the location of a key, traverse the keys at the root 

sequentially until at a pointer where any key before it is less than 

the search key and any key after it is greater than or equal to the 

search key. 

Follow that pointer and proceed in the same way with the keys at 

that node until the search key is found, or are at a leaf and the 

search key is not in the leaf. 
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A B-Tree of Order 1001 
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2-3-4 Trees 

In a B-Tree of what order will each internal 

node have 2, 3, or 4 children? 
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B-Tree Insertion Case 1: 
A key is placed in a leaf that still has some room 

39 35 33 9 5 

22 16 

19 18 

Shift keys to preserve ordering & insert new key. 

Insert 7 

39 35 33 9 7 5 

22 16 

19 18 
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B-Tree Insertion Case 2:                 

A key is placed in a leaf that is full  

39 35 33 9 7 5 2 

22 16 

19 18 

Split the leaf, creating a new leaf, and move half the keys from 

full leaf to new leaf.   

Insert 8 

39 35 33 5 2 

22 16 

19 18 9 7 
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B-Tree Insertion: Case 2 

39 35 33 5 2 

22 16 

19 18 

Move median key to parent, and add pointer to new leaf in 

parent. 

Insert 8 

9 7 

39 35 33 5 2 

22 16 7 

19 18 9 8 
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B-Tree Insertion: Case 3              

The root is full and must be split           

39 35 33 5 2 

40 22 16 7 

19 18 

In this case, a new node must be created at each level, 

plus a new root.  This split results in an increase in the 

height of the tree.  

Insert 15 

14 12 9 8 59 55 43 
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B-Tree Insertion: Case 3              

The root is full and must be split           

39 35 33 5 2 

40 22 16 7 

19 18 

Insert 15 

9 8 14 12 

39 35 33 5 2 

12 7 

19 18 9 8 15 14 

40 22 Move 12 & 

16 up 
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B-Tree Insertion: Case 3                       

16 

This is the only case in 

which the height of the 

B-tree increases. 

 

39 35 33 5 2 

12 7 

19 18 9 8 15 14 

40 22 
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B+-Tree           

39 35 33 5 2 

33 18 8 

19 18 

A B+-Tree has all keys, with attached records, at the leaf 

level. Search keys, without attached records, are 

duplicated at upper levels. A B+-tree also has links 

between the leaves.  Why? 

14 12 9 8 

42 
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B-Tree Insertion Analysis 

Let M = Order of B-Tree 

      N = Number of Keys 

      B = Number of Keys that fit in one Block 
 

Programmer defines size of node in tree to be 

~1 block.   

How many disk accesses to search for a key in 

the worst case?   
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Application: Web Search Engine 

A web crawler program gathers information about web pages 
and stores it in a database for later retrieval by keyword by 
a search engine such as Google. 

 

• Search Engine Task:  Given a keyword, return the list of 
web pages containing the keyword.   

• Assumptions:   

– The list of keywords can fit in internal memory, but the 
list of webpages (urls) for each keyword (potentially 
millions) cannot. 

– Query could be for single or multiple keywords, in 
which pages contain all of the keywords, but pages are 
not ranked. 

What data structures should be used? 


