CISC 235: Topic 9

Introduction to Graphs

Outline

- Graph Definition
- Terminology
- Representations
- Traversals

Graphs

A graph $G=(V, E)$ is composed of:

V : set of Vertices

E : set of edges connecting the vertices in V

An edge $e=(u, v)$ is a pair of vertices
Example:

$$
\begin{aligned}
& V=\{a, b, c, d, e\} \\
& E=\{(a, b),(a, c),(a, d),(b, e),(c, d),(c, e),(d, e)\}
\end{aligned}
$$

Example

CISC 235 Topic 9

Terminology

An undirected graph has undirected edges. Each edge is associated with an unordered pair.

A directed graph, or digraph, has directed edges. Each edge is associated with an ordered pair.

A weighted graph is one in which the edges are labeled with numeric values.

Undirected Graphs

Adjacent (Neighbors): Two vertices connected by an edge are adjacent.
Incident: The edge that connects two vertices is incident on both of them.
Degree of a Vertex $v, \operatorname{deg}(v)$: The number of edges incident on it (loop at vertex is counted twice)

Directed Graphs

G
Edge (u, v) : u is adjacent to v v is adjacent from u
$\operatorname{deg}(v)$: The in-degree of v, the number of edges entering it
deg ${ }^{+}(v)$: The out-degree of v, the number of edges leaving it

Euler \& the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return to the starting point?

CISC 235 Topic 9

Eulerian Tour

What characteristics are required of an undirected graph for a Eulerian Tour to be possible?

Figure 98. Geographic Map:
The Königsberg Bridges.

Terminology

A path is a sequence of vertices $v_{1}, v_{2}, \ldots v_{k}$ such that v_{i} and v_{i+1} are adjacent.
A simple path is a path that contains no repeated vertices, except for perhaps the first and last vertices in the path.
A cycle is a simple path, in which the last vertex is the same as the first vertex.

Terminology

A graph is connected if, for any two vertices, there is a path between them.

A tree is a connected graph without cycles.

A subgraph of a graph G is a graph H whose vertices and edges are subsets of the vertices and edges of G.

graph G1

graph G̛3

graph G2

Terminology

A forest is a graph that is a collection of trees.

More simply, it is a graph without cycles.

Terminology

A complete graph is an undirected graph with every pair of vertices adjacent.

Undirected Graphs: Properties

If $|E|=|V|-1$ and the graph is connected, the graph is a tree

CISC 235 Topic 9
14

Undirected Graphs: Properties

Let $n=|V|$
Let $m=|E|$
Sparse Graphs : m is $O(n)$

Dense Graphs : m is $O\left(n^{2}\right)$

Are complete graphs dense graphs?

Complete Graphs

K_{2}

$$
\begin{aligned}
& n=3 \\
& m=3
\end{aligned}
$$

K_{4}

Eor $K_{n} n=n=n(n-1) / 2$

Representations of Graphs

Adjacency List and Adjacency Matrix Representations of an Undirected Graph

(a)

(b)

	1	2	3	4	5
1	0	1	0	0	1
2	1	0	1	1	1
3	0	1	0	1	0
4	0	1	1	0	1
5	1	1	0	1	0

(c)

Representations of Graphs

Adjacency List and Adjacency Matrix Representations of a Directed Graph

(a)

(b)

	1	2	3	4	5	6
1	0	1	0	1	0	0
2	0	0	0	0	1	0
3	0	0	0	0	1	1
4	0	1	0	0	0	0
5	0	0	0	1	0	0
6	0	0	0	0	0	1

(c)

Graph Implementation

Data

Store two sets of info: vertices \& edges
Data can be associated with both vertices \& edges
A Few Typical Operations
adjacentVertices(v) - Return list of adjacent vertices areAdjacent(v, w) - True if vertex v is adjacent to w insertVertex(o) - Insert new isolated vertex storing o insertEdge(v, w, o) - Insert edge from v to w, storing o at this edge
removeVertex (v) - Remove v and all incident edges removeEdge(v, w) - Remove edge (v, w)

Graph Representations Space Analysis

Adjacency List:

Adjacency Matrix:

Graph Representations Time Analysis

A Few Common Operations	Adjacency List	Adjacency Matrix
areAdjacent(v, w)		
adjacentVertices(v)		
removeEdge(v, w)		
	CISC 235 Topic 9	

Traversals: Breadth-First Search \& Depth-First Search

Breadth-First Search

bfs(vertex v)
Create a queue, Q , of vertices, initially empty
Visit v and mark it as visited
Enqueue (v, Q)
while not empty(Q)
$w=\operatorname{dequeue}(\mathrm{Q})$
for each unvisited vertex u adjacent to w
Visit u and mark it as visited
Enqueue(u, Q)

Breadth-First Search on an Undirected, Connected Graph

(a)

 Q| $\quad s$ |
| :---: |

(c)

Q | r | t | x |
| :---: | :---: | :---: |
| 1 | 2 | 2 |

(e)

(g)

 Q| u | y |
| :---: | :---: |
| 3 | 3 |

(b)

(d)

 Q| t | x | v |
| :---: | :---: | :---: |
| 2 | 2 | 2 |

(f)

 Q| v | u | y |
| :---: | :---: | :---: |
| 2 | 3 | 3 |

(h)

(i)

Depth-First Search

dfs(vertex v)
Visit v and mark it as visited for each unvisited vertex u adjacent to v dfs(v)

Analysis of BFS \& DFS

Let $n=|V|$
Let $m=|E|$

Application: Java Garbage Collection

C \& C++: Programmer must explicitly allocate and deallocate memory space for objects - source of errors

Java: Garbage collection deallocates memory space for objects no longer used. How?

Mark-Sweep Garbage Collection Algorithm

- Suspend all other running threads.
- Trace through the Java stacks of currently running threads and mark as "live" all of the "root" objects.
- Traverse each object in the heap that is active, by starting at each root object, and mark it as "live".
- Scan through the entire memory heap and reclaim any space that has not been marked.

Algorithms Related to BFS \& DFS

- How could we test whether an undirected graph G is connected?
- How could we compute the connected components of G ?
- How could we compute a cycle in G or report that it has no cycle?
- How could we compute a path between any two vertices, or report that no such path exists?
- How could we compute for every vertex v of G, the minimum number of edges of any path between s and v ?

