
CISC 235: Topic 9

Introduction to Graphs

CISC 235 Topic 9 2

Outline

• Graph Definition

• Terminology

• Representations

• Traversals

CISC 235 Topic 9 3

Graphs

A graph G = (V, E) is composed of:

 V: set of Vertices

 E: set of edges connecting the vertices in V

An edge e = (u,v) is a pair of vertices

Example:

 V = {a,b,c,d,e}

 E = {(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)}

 a b

 d

 c

 e

CISC 235 Topic 9 4

Example

 TOR

 OTT

 KIN

 ROC SYR

 COR MON

450 km

100 km
150 km

250 km

100 km

100 km

100 km

90 km

170 km

200 km

CISC 235 Topic 9 5

Terminology

An undirected graph has
undirected edges. Each
edge is associated with an
unordered pair.

A directed graph, or digraph,
has directed edges. Each
edge is associated with an
ordered pair.

A weighted graph is one in
which the edges are labeled
with numeric values.

 TO Ott

 Kin

 MO

500

300

200 300

 TO

 Ott

 MO

CISC 235 Topic 9 6

Undirected

Graphs

Adjacent (Neighbors): Two vertices connected

by an edge are adjacent.

Incident: The edge that connects two vertices

is incident on both of them.

Degree of a Vertex v, deg(v): The number of

edges incident on it (loop at vertex is

counted twice)

CISC 235 Topic 9 7

Directed

Graphs

Edge (u,v): u is adjacent to v

 v is adjacent from u

deg -(v) : The in-degree of v, the number of

edges entering it

deg +(v): The out-degree of v, the number of

edges leaving it

CISC 235 Topic 9 8

Euler & the Bridges of Koenigsberg

Can one walk across each bridge exactly once and return to the starting point?

CISC 235 Topic 9 9

Eulerian Tour

What characteristics are required of an undirected

graph for a Eulerian Tour to be possible?

CISC 235 Topic 9 10

Terminology

A path is a sequence of
vertices v1, v2, … vk
such that vi and vi +1
are adjacent.

A simple path is a path
that contains no
repeated vertices,
except for perhaps
the first and last
vertices in the path.

A cycle is a simple path,
in which the last
vertex is the same as
the first vertex.

 a b

 d

 c

 e

 a b

 d

 c

 e

 a b

 d

 c

 e

 a b

 d

 c

 e

abecde cdeb

edc edce

CISC 235 Topic 9 11

Terminology

A graph is connected if, for

any two vertices, there

is a path between them.

A tree is a connected

graph without cycles.

A subgraph of a graph G

is a graph H whose

vertices and edges are

subsets of the vertices

and edges of G.

 a b

 d

 c

 e

 a b

 d

 c

 e

 a b

 c

 e

graph G1 graph G2

graph G3 graph G4

 a b

 d

 c

 e

CISC 235 Topic 9 12

Terminology

A forest is a graph that

is a collection of

trees.

More simply, it is a

graph without cycles.

 a b

 d

 c

 e

 a b

 d

 c

 e

 a b

 c

 e

 a b

 d

 c

 e

CISC 235 Topic 9 13

Terminology

A complete graph is an

undirected graph with

every pair of vertices

adjacent.

 a

 b

 e

 c

 d

 a

 b c

 b

 c

 a

 d

 a b a

CISC 235 Topic 9 14

Undirected Graphs: Properties

 If |E| = |V | -1 and the

graph is connected,

the graph is a tree

If |E| < |V | -1, the graph

is not connected

If |E| > |V | -1, the graph

has at least one cycle

 a b

 d

 c

 e

 a b

 d

 c

 e

 a b

 d

 c

 e

CISC 235 Topic 9 15

Undirected Graphs: Properties

Let n = |V |

Let m = |E |

Sparse Graphs : m is O(n)

Dense Graphs : m is O(n2)

Are complete graphs dense graphs?

 a b

 d

 c

 e

 a

 b

 e

 c

 d

CISC 235 Topic 9 16

Complete Graphs

K2

K3

K4

 a

 b

 e

 c

 d

 b

 c

 a

 d

 a

 b c

 a b n = 2

m = 1

n = 3

m = 3

n = 4

m = 6

K5

n = 5

m = 10

For Kn, m = n(n-1)/2

CISC 235 Topic 9 17

Representations of Graphs

Adjacency List and Adjacency Matrix

Representations of an Undirected Graph

CISC 235 Topic 9 18

Representations of Graphs

Adjacency List and Adjacency Matrix

Representations of a Directed Graph

CISC 235 Topic 9 19

Graph Implementation

Data
Store two sets of info: vertices & edges

Data can be associated with both vertices & edges

A Few Typical Operations
adjacentVertices(v) – Return list of adjacent vertices

areAdjacent(v, w) – True if vertex v is adjacent to w

insertVertex(o) – Insert new isolated vertex storing o

insertEdge(v, w, o) – Insert edge from v to w, storing o
 at this edge

removeVertex(v) – Remove v and all incident edges

removeEdge(v, w) – Remove edge (v,w)

CISC 235 Topic 9 20

Graph Representations

Space Analysis

Adjacency List:

Adjacency Matrix:

CISC 235 Topic 9 21

Graph Representations

Time Analysis

 A Few Common

Operations
 Adjacency List Adjacency Matrix

areAdjacent(v, w)

adjacentVertices(v)

removeEdge(v, w)

CISC 235 Topic 9 22

Traversals: Breadth-First

Search & Depth-First Search

 TOR

 OTT

 KIN

 ROC SYR

 COR MON

450 km

100 km
150 km

250 km

100 km

100 km

100 km

90 km

170 km

200 km

CISC 235 Topic 9 23

Breadth-First Search

 bfs(vertex v)

 Create a queue, Q, of vertices, initially empty

 Visit v and mark it as visited

 Enqueue (v, Q)

 while not empty(Q)

 w = dequeue(Q)

 for each unvisited vertex u adjacent to w

 Visit u and mark it as visited

 Enqueue(u, Q)

CISC 235 Topic 9 24

Breadth-First Search on an

Undirected, Connected Graph

CISC 235 Topic 9 25

Depth-First Search

 dfs(vertex v)

 Visit v and mark it as visited

 for each unvisited vertex u adjacent to v

 dfs(v)

Analysis of BFS & DFS

Let n = | V |

Let m = | E |

CISC 235 Topic 9 26

CISC 235 Topic 9 27

Application: Java Garbage Collection

C & C++: Programmer must explicitly

allocate and deallocate memory space for

objects - source of errors

Java: Garbage collection deallocates

memory space for objects no longer used.

How?

CISC 235 Topic 9 28

Mark-Sweep Garbage Collection Algorithm

• Suspend all other running threads.

• Trace through the Java stacks of currently
running threads and mark as “live” all of
the “root” objects.

• Traverse each object in the heap that is
active, by starting at each root object, and
mark it as “live”.

• Scan through the entire memory heap and
reclaim any space that has not been
marked.

Algorithms Related to BFS & DFS

• How could we test whether an undirected graph G is

connected?

• How could we compute the connected components of G?

• How could we compute a cycle in G or report that it has no

cycle?

• How could we compute a path between any two vertices, or

report that no such path exists?

• How could we compute for every vertex v of G, the

minimum number of edges of any path between s and v?

CISC 235 Topic 9 29

