
CISC 235:  Topic 9 

Introduction to Graphs 
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Outline 

 

• Graph Definition  

• Terminology 

• Representations 

• Traversals 
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Graphs 

A graph G = (V, E) is composed of:  

  V:  set of Vertices 

  E:  set of edges connecting the vertices in V 

 

An edge e = (u,v) is a pair of vertices 

 

Example:  

 V = {a,b,c,d,e} 

 E = {(a,b),(a,c),(a,d),(b,e),(c,d),(c,e),(d,e)} 
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Terminology 

An undirected graph has 
undirected edges.  Each 
edge is associated with an 
unordered pair.   

 

A directed graph, or digraph, 
has directed edges.  Each 
edge is associated with an 
ordered pair.  

 

A weighted graph is one in 
which the edges are labeled 
with numeric values. 
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Undirected 

Graphs 

Adjacent (Neighbors):  Two vertices connected 

by an edge are adjacent. 

Incident:  The edge that connects two vertices 

is incident on both of them. 

Degree of a Vertex v, deg(v):  The number of 

edges incident on it  (loop at vertex is 

counted twice) 
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Directed 

Graphs 

Edge (u,v):  u is adjacent to v 

                    v is adjacent from u 

deg -(v) :  The in-degree of v, the number of 

edges entering it 

deg +(v): The out-degree of v, the number of 

edges leaving it 
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Euler & the Bridges of Koenigsberg 

Can one walk across each bridge exactly once and return to the starting point? 
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Eulerian Tour 

What characteristics are required of an undirected 

graph for a Eulerian Tour to be possible? 
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Terminology 

A path is a sequence of 
vertices v1, v2, … vk 
such that vi and vi +1 
are adjacent.  

A simple path is a path 
that contains no 
repeated vertices, 
except for perhaps 
the first and last 
vertices in the path. 

A cycle is a simple path, 
in which the last 
vertex is the same as 
the first vertex. 
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Terminology 

A graph is connected if, for 

any two vertices, there 

is a path between them. 

 

A tree is a connected 

graph without cycles. 

  

A subgraph of a graph G 

is a graph H whose 

vertices and edges are 

subsets of the vertices 

and edges of G. 
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Terminology 

 

A forest is a graph that 

is a collection of 

trees.   

 

More simply, it is a 

graph without cycles. 
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Terminology 

 

 

A complete graph is an 

undirected graph with 

every pair of vertices 

adjacent. 
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Undirected Graphs:  Properties 

  If |E| = |V | -1 and the 

graph is connected, 

the graph is a tree 

 

If |E| < |V | -1, the graph 

is not connected 

 

If |E| > |V | -1, the graph 

has at least one cycle 
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Undirected Graphs:  Properties 

Let n = |V | 

Let m = |E |  
 

Sparse Graphs :  m is O( n )    

Dense Graphs :   m is O( n2 ) 

 
 

Are complete graphs dense graphs? 
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Complete Graphs 
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For Kn, m = n(n-1)/2 
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Representations of Graphs 

Adjacency List and Adjacency Matrix 

Representations of an Undirected Graph 
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Representations of Graphs 

Adjacency List and Adjacency Matrix 

Representations of a Directed Graph 
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Graph Implementation 

Data 
Store two sets of info: vertices & edges 

Data can be associated with both vertices & edges 

A Few Typical Operations 
adjacentVertices( v ) – Return list of adjacent vertices 

areAdjacent( v, w ) – True if vertex v is adjacent to w 

insertVertex( o ) – Insert new isolated vertex storing o 

insertEdge( v, w, o ) – Insert edge from v to w, storing o                           
    at this edge 

removeVertex( v ) – Remove v and all incident edges 

removeEdge( v, w ) – Remove edge (v,w) 
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Graph Representations  

Space Analysis 

 

Adjacency List:   

 

 

Adjacency Matrix:   
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Graph Representations  

Time Analysis 

  A Few Common 

Operations 
  Adjacency List Adjacency Matrix 

areAdjacent( v, w ) 

adjacentVertices( v ) 

removeEdge( v, w ) 
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Traversals:  Breadth-First 

Search & Depth-First Search 
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Breadth-First Search 

 bfs( vertex v ) 

     Create a queue, Q, of vertices, initially empty 

     Visit v and mark it as visited 

     Enqueue ( v, Q ) 

     while not empty( Q ) 

    w = dequeue( Q ) 

    for each unvisited vertex u adjacent to w 

     Visit u and mark it as visited 

     Enqueue( u, Q ) 
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Breadth-First Search on an 

Undirected, Connected Graph 
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Depth-First Search 

 dfs( vertex v ) 

  Visit v and mark it as visited 

  for each unvisited vertex u adjacent to v 

    dfs( v )  



Analysis of BFS & DFS 

Let n = | V | 

Let m = | E | 
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Application:  Java Garbage Collection 

C & C++:  Programmer must explicitly 

allocate and deallocate memory space for 

objects - source of errors 

 

Java:  Garbage collection deallocates 

memory space for objects no longer used.  

How?   
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Mark-Sweep Garbage Collection Algorithm 

• Suspend all other running threads. 

• Trace through the Java stacks of currently 
running threads and mark as “live” all of 
the “root” objects. 

• Traverse each object in the heap that is 
active, by starting at each root object, and 
mark it as “live”. 

• Scan through the entire memory heap and 
reclaim any space that has not been 
marked. 



Algorithms Related to BFS & DFS 

• How could we test whether an undirected graph G is 

connected? 

• How could we compute the connected components of G? 

• How could we compute a cycle in G or report that it has no 

cycle? 

• How could we compute a path between any two vertices, or 

report that no such path exists? 

• How could we compute for every vertex v of G, the 

minimum number of edges of any path between s and v? 

CISC 235 Topic 9 29 


