Comparative Assessment of
Testing and Model Checking
Using Program Mutation

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel
School of Computing ® Queen’s University

Kingston ® Ontario ® Canada

{bradbury, cordy, dingel}@cs.queensu.ca

CSER 2007 Spring Meeting ® April 29-30, 2007

SUPPORTED BY @m

In the future applications will

need to be concurrent to
fully exploit CPU throughput
gains [Sut05]

...humans are quickly
overwhelmed by
concurrency and find it
much more difficult to
reason about concurrent
than sequential code.
Even careful people miss
possible interleavings...

- Herb Sutter & James Larus, Microsoft [SLO5]

[Sut05] H. Sutter. The free lunch is over: A fundamental turn toward concurrency in software. Dr. Dobb's
Journal, 30(3), Mar. 2005.

[SLO5] H. Sutter and J. Larus. Software and the concurrency revolution. Queue, 3(7):54-62, 2005.

How can we ensure concurrent programs

are bug free?

2

Concurrency Testing with IBM’s ConTest

Run Test

1. Rerun Test with heuristically
generated interleaving

2. Record interleaving

3. Update Coverage

Not
Reached

Correct Problem

Check Fix Bug
Coverage Rerun test
Torget using replay

Reached

Finish

Model Checking with Java PathFinder (JPF)

* Model checking exhaustively
searches the entire state space of
a program
(i.e., all interleavings)

* Allows for the analysis of
assertions and deadlock detection

[EFN+02] O. Edelstein, E. Farchi, Y. Nir, G.Ratsaby, and S. Ur. Multithreaded java program test generation. IBM Systems Journal, 41(1):111- 125, 2002.

Research Goals

To compare the effectiveness and efficiency of
different fault detection techniques using
mutation

To better understand any complementary
relationship that might exist between different
techniques

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder.
International Journal on Software Tools for Technology Transfer (STTT), 2(4), Apr. 2000.

Our Approach

Conduct controlled experiments to evaluate the ability of
various tools to detect bugs in faulty programs

For example:
— Testing with ConTest
— Model Checking with Java PathFinder

We use mutation to generate the faulty programs
required for our experiments

Our Approach Research Methods

* Mutation [Ham77,DLS78] traditionally used within the

sequential testing community -m Erap -m
—evaluate the effectiveness of test suites e e
» Mutation relies on mutation operators (patterns) to /

generate faulty versions of the original program called

mutants
Method 1 <« Method 2
v

Mutant score of t = % of mutants detected (killed) by a v

(Collection and Display of Results)

technique t (e.g., testing, model 4
. v
checking)

Comparison
Results Database

[Ham77] R.G. Hamlet. Testing programs with the aid of a compiler. IEEE Trans. on Soft. Eng., 3(4), Jul. 1977.
[DLS78] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints for test data selection: help for the practicing programmer. IEEE Computer, 11(4):34-41, Apr. 1978.

Experimental Setup Experimental Setup

Approach Approach
Original

. Original H
Quality II Example Quality II Selection Quality II Example Quality II Selection
Artifacts Program Artifacts Artifacts Program Avtifacts

J 3 Example
Mutant Operators Mutant Operators Pro g ram
O] Lo .. e Selection

v v

s Model Model
i Mutant Checking Testing with Mutant Checking
ConTest Example with Java ConTest | % Example > with Java
Program PathFinder Program PathFinder

v v v v
(Collection and Display of Results) (Collection and Display of Results)
4 4
v v

Comparison Comparison
Results Database Results Database

Experimental Setup

Original
Quali II | Example | ___
Ve Program \
/ \
/ i N\
ConMAnN Operators

v

/" Model "\

— rogram

v

(Collectiol isplay of Results)

_ /
Comparison
Results Database

Testing with Mutant Checking
[ConTest J < Example I > | with Java
\[PathFinder /

Example ConMAn Mutation
SKCR - Shrink Critical Region

Object lock1 = new Object();

public void m1 () {
<statement n1>
synchronized (lock1) {
Ilcritical region
<statement ¢1>
<statement c2>
<statement ¢3>

}

<statement n2>

Approach
Selection

Example
Program
Selection

Mutation
Selection

The ConMAnN Operators

« ConMAnN = Concurrency Mutation Analysis

* What are the ConMAnN operators?

— “...a comprehensive set of 24 operators for Java that
are representative of the kinds of bugs that often
occur in concurrent programs.”

— based on an existing fault model for Java concurrency
[FNUO03]

» Can be used as a comparative metric

[FNUO3] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test them. In Proc. of IPDPS 2003.

Example ConMAn Mutation

SKCR - Shrink Critical Region

Object lock1 = new Object(); Object lock1 = new Object();
public void m1 () { public void m1 () {
<statement n1> <statement n1>
synchronized (lock1) {
/lcritical region <statement ¢1>
<statement c1> synchronized (lock1) {
<statement c2> <statement c2>
<statement c3>
} <statement c3>

<statement n2> <statement n2>

Example ConMAn Mutation

SKCR - Shrink Critical Region

Object lock1 = new Object(); Object lock1 = new Object();

public void m1 () { public void m1 () {
<statement n1> <statement n1>

synchronized (lock1) { /lcritical region
/lcritical region <statement ¢1>

<statement c1> synchronized (lock1) {
<statement c2> <statement c2>
<statement c3>

} <statement c3>

<statement n2> <statement n2>

No Lock Bug!

Example ConMANn Mutation

ESP - Exchange Synchronized Block Parameters

Object lock1 = new Object();
Object lock2 = new Object();

synchronized (lock1) {
<statement c1>

synchronized (lock2) {
<statement ¢2>

=
}

Example ConMANn Mutation

ESP - Exchange Synchronized Block Parameters

Object lock1 = new Object(); Object lock1 = new Object();
Object lock2 = new Object(); Object lock2 = new Object();

synchronized (lock1) { synchronized (lock2) {
<statement c1> <statement c1>

synchronized (lock2) { synchronized (lock1) {

<statement c2> <statement c2>

. .
))

Example ConMANn Mutation

ESP - Exchange Synchronized Block Parameters

Object lock1 = new Object(); Object lock1 = new Object();
Object lock2 = new Object(); Object lock2 = new Object();

synchronized (lock1) { synchronized (lock2) {
<statement c1> <statement c1>

synchronized (lock2) { synchronized (lock1) {

<statement c2> <statement c2>

. .
))

Deadlock bug!

Experimental Setup

Tests
Assertlons

Original
Example
Program

Tests,
Assertlons

Testing with
ConTest

¢ Mutant) !
Example 1
Program PathFinder

Model
Checking
with Java

v

(Collection and Display of Results

D)

A

v

Comparison
Results Database

Approach
Selection

Example
Program
Selection

Mutation
Selection

Program
Artifact
Selection

Experimental Procedure

Tesls
Assertlons

Original

Example

Program
|

Tes15
Asserllons

Testing with
ConTest

v

v

Mutant i
<+ [| with Java
Program PathFinder

Model
Checking

v

(Collection and Display of Results)

A

v

Comparison
Results Database

Experimental Procedure

Tesls
Assertlons

Original

Example

Program
|

Tes15
Asserllons

Testing with Mutant
Example
Program

v

ConMAn Operators

v

Model
Checking
with Java

PathFinder

C

Collection and Display of Results

v
D)

A

v

Comparison
Results Database

Mutant
Generation

Experimental Procedure

Tests, II
Assertions

Original
Example
Program

Tests, II
Assertions

ConTest

v

Mutant
Example
Program

Checking
» | with Java
PathFinder

v

C

Collection and Display of Results)

A

v

Comparison
Results Database

Mutant
Generation

Testing

Experimental Procedure

Mutant

Original .
Tesls Example Tests, II Ge neratlon
Assertlons Program Assertions

Testing

Model
Checking

Testing with Checking
ConTest | % with Java
PathFinder

v

(Collection and Display of Results)

A
v

Comparison
Results Database

Experimental Procedure

Original

Tesls Example Tests, II
Assertlons Program Assertions

Testing with Checking
ConTest | with Java
PathFinder

v

(Collection and Display of Results)

A
v

Comparison
Results Database

Mutant
Generation

Testing

Model
Checking

Collection
and Display
of Result

The ExMAnNn Framework

ExMAnN = Experimental Mutation Analysis

What is ExXMAN?

— “ExMAn is a reusable implementation for building
different customized mutation analysis tools for
comparing different quality assurance techniques.”

— ExMAn automates the experimental procedure
* ExMAnN will be publicly released in the next few months

ExMAnN Architecture

Artifact Artifact
GMutantt (%ortr;gr\]l::') Generator 1 [ll Generator n f§ @A T°°| Sa Tool
enerator P (Optional) (Opt\onal)

[Script Generator & [Plugin Interface Script Generator & J
Executor

Executor

Quality Artifact QA Tool
Compile Selectors Viewers Resul
iler esults
Viewer Viewer Viewer Generator &
(Optional) LN Viewer

1 N/ N/
v Yy

LEGEND

BUILT-IN COMPONENT :]
EXTERNAL TOOL COMPONENT @

Video Demo

806 [CASCON Demo (HD).mp4

» Available at:
http://www.cs.queensu.ca/~bradbury/videos/CASCON2006.mp4

Example Programs

Ticket Order Simulation
— Simulates multiple agents selling tickets for a flight
Linked List
— Involves storing data in a concurrent linked list (data
structure)
Buffered Writer
— Two different types of writer threads are updated a
buffer that is being read by a reader thread
Account Management System
— Manages a series of transactions between a number
of accounts

ConTest vs. Java PathFinder

* How do we better understand the
effectiveness of each technique?

— We measure the mutant score for each
technique (dependent variable)

— We vary the analysis technique (factor)
— We fix all other independent variables

+ quality artifacts (tests and properties),
example programs ...

Quantity of Mutants Killed

Testing with
ConTest

Model Checking
G I EE]
PathFinder (JPF)

of Mutants

M Assertion Violation O Output Different O Deadlock Detected
® No Error Detected O Tool Failure

Mutant Scores of JPF, ConTest and

Detection of Mutants ConTest+JPF

6%

()

6% Example ConTest JPF ConTest+JPF
Program Mutant Score | Mutant Score | Mutant Score

BufWriter 38.9% 50% 50%

LinkedList 50% 50% 50%

TicketsOrderSim 100% 100% 100%

0,
38% AccountProgram 78% 56% 78%
TOTAL 56% 56% 62%

M JPF & ConTest [0 Neither
O JPF i ConTest

Ease to Kill ConTest vs. Java PathFinder

100.00%
80.00% * How do we better understand the
P efficiency of each technique?
— If ConTest and Java PathFinder are both
40.00% 1 capable of finding a fault in a program is either

_H_l_ﬂ of them faster?

20.00% -

% of Mutants Detected

0.00%

¥ L P R & 40 & & &k
¥ EEE

Mutation Operators

M Java PathFinder (JPF) O ConTest

ConTest vs. Java PathFinder

* Experimental Setup

—null hypothesis (H,): Time to detect a fault for JPF > Time
to detect a fault for ConTest

—dependent variable(s): analysis time
—independent variables:
* factor: analysis technique

* fixed: quality artifacts (tests and properties)
software under evaluation

Threats to Validity

internal validity
external validity:
—Threats to external validity include:

* the software being experimented on is not
representative of software in general

» the mutant faults do not adequately represent real
faults for the programs under experiment

construct validity
conclusion validity

ConTest vs. Java PathFinder

» Time for ConTest (seconds)
— Mean = 2.0314
— Median = 1.2030
» Time for Java PathFinder (seconds)
— Mean = 3.2835
— Median = 2.3320
» Conducted a paired t-test for n=19
— P-value = 0.0085 (reject Hy at the 0.05 level)

— JPF is not more efficient than ConTest for our example
programs

Contributions

* A set of generalized mutation-based methods for
conducting controlled experiments of different quality
assurance approaches with respect to fault detection.

The implementation of the ExMAnN framework to
automate and support our methodology.

— The contribution of ExMAn includes its abilities to act
as an enabler for further research

Contributions

* The development of the ConMAnN operators for applying
our methodology with concurrent Java applications.

— The application of the ConMAnN operators provides
the community with a large set of new programs to
use in evaluating concurrent Java applications.

» Empirical results on the effectiveness of testing and
model checking as fault detection techniques for
concurrent Java applications.

Future Work

» Further Empirical Studies... ©

— depth (need more experiments comparing testing and
model checking)

— breadth (other experiments)

Comparative Assessment of
Testing and Model Checking
Using Program Mutation

Jeremy S. Bradbury, James R. Cordy, Juergen Dingel

School of Computing ® Queen’s University
Kingston ® Ontario ® Canada
bradbury, cordy, dingel}@cs.queensu.ca

CSER 2007 Spring Meeting ® April 29-30, 2007

SUPPORTED BY e gl’:zs

