CISC235
 Winter 2007
 Homework for weeks 10 and 11 in preparation for quiz 5 Solutions

Note: I received help for preparing these solutions from Yurai Nuñez and Henry Xiao.
Questions from section 7.5 of the text
2. As was discussed in class the number of keys stored in an m-way search tree of height h is given by the sum

$$
(m-1) \sum_{i=0}^{h-1} m^{i}=m^{h}-1
$$

3. A function that prints out the contents of a B-tree in ascending order is shown below
```
BTreePrintAscend (BTreeNode *node ) {
// keyTally keeps track of the number of keys in this node
    for (int i = 0; i <= node->keyTally; i++) {
        if (i > 0 )print key[i-1];
        if (node->pointers[i] != 0) BTreePrintAscend( node->pointers[i] );
    }
}
```

5. The B-trees that result from the two insertion sequences are shown below. The trees are not identical. One can intuitively imagine that a "random" sequence of inserts may result in fewer split operations, however, the overall complexity of building a tree with n keys, or searching in the tree would only differ by a constant. Fewer nodes also represents less memory used, as was mentioned in class when I presented the solutions.

Sequence 1, 5, 3, 2, 4

Sequence 1, 2, 3, 4, 5

Figure 1: The tree on the left has one less node, and also incurred on less split than the tree on the tree on the right.
6. The asymptotic worst case of inserting into a 2-4 tree is characterized by an insertion at a leaf node and this is h the height of the tree. However, this can differ by a constant factor. If all of the nodes on the search path to the node where the insertion occurs are "full", then h split operations will also take place.

Solutions to week 11 problems.

1. The maximum number of keys that a B-Tree of order 6 (at most five keys per node) and of height 4 can hold is $6^{4}-1$. Four disk accesses are needed in the worst case. A B-Tree of order m and of height h can hold as many as $m^{h}-1$ keys.
2. There are $2 n\left(\left\lceil\left(\log _{2} n\right)\right\rceil\right)=2^{*} 32(5)=320$ external memory accesses (reads and writes) are used to sort the data using a 2 -way merge sort. Note that no pass 0 is used to obtain initial sorted runs.
3. There are $2 n\left(\left\lceil\left(\log _{4} n\right)\right\rceil\right)=2^{*} 32(3)=192$ external memory accesses (reads and writes) are used to sort the data using a 4 -way merge sort. Note that no pass 0 is used to obtain initial sorted runs.
4. If we have enough internal memory to make initial runs of 8 sorted records then we end up with 4 runs. A binary merge uses $\log _{2} 4$ passes after the intial sorts for $2 * 32(2+1)$ $=192$ external memory accesses. For the 4 -way merge sort one pass is needed after the initial sort, that is $\log _{4} 4$ so we use $2 * 32(1+1)=128$ memory accesses.

5 The original list of unsorted numbers is:
41403567488789992428441993236391457057385934838346185317
Using 2-way merge sort
After pass 0:
68354041748789

28192324449399
45385759637091
34171846538383
pass1 yields:
2688192324354041447487899399
3445171838465357596370838391
And pass 2 yields the sorted list.
23445688171819232435384041444653575963707483838789919399
Using a 4-way merge sort
After pass 0:
68354041748789
28192324449399
45385759637091
34171846538383
And pass 1 yields the sorted list.
23445688171819232435384041444653575963707483838789919399
6. One possible insertion sequence leading to the given skip list is: $(20,1),(42,4),(12,2)$, $(17,5),(39,1),(48,3),(24,4),(31,3),(50,1),(44,2)$, where the pair (k, h) denotes a key with value k , and a tower of height h .
7. We average over all search paths. I will count the number of nodes in the search path rather than actual comparisons. The paths taken in sequence are $(6+3+8+5+7$ $+10+6+9+8+11) / 10=7.3$.

