CISC 271
Scientific Computing
Notes by Randy Ellis
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Topicsto be covered:

A.

Representationsf FloatingPointNumbers,Taylor SeriesApproximations,
andRepresentationd&rror Sources(4 hours)

Root-findingin non-linearfunctions: BisectionMethod,Newton'’s, Secant
andFalse-PositioMethods.Propertieof thesemethods (4 hours)

Interpolationl: PolynomialsLagranges Method,Newton Divided Differ-
encesandFinite DifferencesandInterpolationErrors. (5 hours)

LinearSystemsGaussiarkElimination,andusingScalingandPivoting. Er-
ror analysisof Gaussiarelimination. Generallinear systemcomputations.
(4 hours)

. Interpolationll: Piecavise Polynomials.CubicSplines.(2 hours)

F. Functionalapproximationsandleastsquaresappproximations(2 hours)

. QuadratureNewton-Cotedntegration,andadaptve integration. Gaussian

quadrature(4 hours)

. OrdinaryDifferentialEquationsEulerMethod,HigherOrderTaylor Meth-

ods,andRunge-KittaMethods.(3 hours)



CISC 271 Class1

Taylor Series Approximation

Motivation
Suppose we have the following problem:

e We want to computeos(0.1).
e We don’t have access to a calculator or ancient look-up $able
e We know the value of theos(z) function for a nearby number, say= 0.

e We stayed awake during our calculus classes, and so knoofld¢sivatives
of cos(z) atz = 0.

Question: Can we use what we know to approximatg0.1)? And, if so, what
will be the error of our approximation?
Taylor Series

To solve this problem, we introduce the Taylor Series, whvdhbe used exten-
sively in this course.

Taylor Seriesif f*)(x) existatr = cfork = 0,1,2, ... then
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In this definition,c is a constant and much is known abg{ft(c), whereas: is a
variable near: and the value of (z) is sought. Ifc = 0, this series is known as
the Maclaurin series.

So, suppose that we terminate the series afterms, what would be the error in
our approximation. To find the answer, we again turn to Taylor

Taylor's Theoremif f(z) and(n+ 1) derivatives off (x) are contin-
uous on(a, b), andc € (a, b), then for anyz € (a, b)
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oy (x—c)" + . (z —c)"t?
. f(k)(c) k f(n+1)(€(x)) nt1
= kz::O X (x —¢) +7(n+1)! (x —c)"",

where¢(z) is between: andz.

The last term is known as the trunction error, due to endiegrifinite series at
then-th term. The trunction error gives us an idea how good ancmiation of
the function will be at: terms.

Therefore, to use the Taylor Series Approximation, we ddalewing:

Write the formulae folk derivatives off (x), f*)(x).

Choose, if not already specified.

Write out the summation and the error term.

If the error term goes to zero as— oo, then the seriesonvergesand the
infinite Taylor series representgz).

If we don’t know if the error term goes to zero as— oo, we can still estimate
the size of the error term.

EXAMPLES

Since the Taylor series will be so helpful, let’s considens@examples.
Example 1
What is the Taylor series fof(x) = €, |z| < 00?

We know thatf ®)(z) = e, for all k. Next, we choose = 0. Therefore f¥)(c) =
e’ = 1, for all k, such that

er — Z xn+1
kz:% K (n+ 1)

Also, the error term goes to zero as— oo (since(n + 1)! always grows faster
thanz"*! asn — oo for any choice ofr < o0), so
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Example 2
What is the Taylor series fof(z) = sin(x), |z| < 00?

We know thatf*)(z) = sin (9: + %’f) for all k. Next, we choose = 0. There-
fore, we have

n gin [Tk m(n+1)
sin(x 2:: ( 2 ) sm (§§2)++1)! 2 )x"ﬂ

Since the error term goes to zeroras~ oo, so the upper limit fok is co. Also,
note that the eveh terms are zero (sineén(0) = sin(7) = sin(27) = --- = 0).
Suppose, then that was change the summation parameteanother parameter
[ where none of the terms of the summation is zero. l.e], fet0, 1, 2... where
k — 20 + 1. Therefore, the Taylor series fein(z) becomes

0o o w(201+1)
sin(z) = 7sln( 2 )93(21“)
P CTESY

o0 1)1 20+1

- Z 20+ 1)!

=0

3 2

Example 3
What is the Taylor series approximation fass(0.1)?

Using the same derivation process as for Example 2, abovinavihat the Taylor
series forcos(x) with respect to expansion poiat= 0 is

0o lc2k
cos(z) = Z
k=0
x2 934
= 1=t

The actual value isos(0.1) = 0.99500416527803... The Taylor approximations
for different orders of. of cos(0.1) are (for the error, recall that the maximum
value for| cos(z)| is 1):



n | approximation lerron <
01 0.01/2!
110.995 0.0001/3!
21 0.99500416 0.000001 /4!
3

0.99500416527778 | 0.00000001 /5!

So, after just a few terms, we have an accurate approximetiass(0.1).

PROXIMITY OF z TO ¢

Suppose we have the problem where we want to approximé2¢. What we
would like to know, is how important is the proximity of thelua z to the expan-
sion pointc of the Taylor series approximation. So, let's consider twitecent

solutions.

Solution 1:In this solution, we use the Taylor approximation faf1 + x) about
the expansion point= 0 with z = 1. Note thaiz —¢| = 1. Therefore, the Taylor
approximation is

1

In2=1 +1 1+1 1+1 1+
n’z2—= — - — — - — - — —
2 3 4 5 6 7 8

Solution 2:In this solution, we use the Taylor approximation an(f_r—i) about

the expansion point = 0 with 2 = ;. Note that|z — ¢| = 1. Therefore, the

3
Taylor approximation is
m2=2(3"+334+374+37+...)
So, how good are these approximations?

e Solution 1, with 8 (n = 7) terms: 0.63452
e Solution 2, with 4 (n = 3) terms: 0.69313

The actual value, rounded, is 0.69315 . Therefore, we cathsg¢¢he choice of

¢ andx and their relative proximity is important to the accuracyaofaylor ap-
proximation. The smalldr: — ¢|, in general, the more accurate the approximation
given a fixed number of terms.



NOTE ON&(x)
Consider the following special case of the Taylor seriesaagmpn.
Mean value theorem (Taylor, n = O)f f(x) is at least once differ-

entiable on [a, b], then the = 0 Taylor expansion off (x) about
expansion point = a and evaluated at = b is

f(b) = f(a)+ (b—a) f'(£), § € (a,b)

or

It is easy to see thdtin this case always exists.



CISC 271 Class?2

Number Representation

BASE REPRESENTATION

Base 10

We, humans, often represent numbers in the decimal formt i$hae use base
10.

1234 =1x1042x10°+3x104+4x1

We are used to numbers in this form, and know instantly thatntmber repre-
sented is one thousand, ... .

In general, base 10 numbers represent

n
ApQp_1...Qo = Z a,10F
k=0

Base 16

Equally, we could use other forms to represent number. Fameke, the hex-
adecimal form, i.e., base 16.

(1234)1=1x16°+2x 16> +3 x 16 +4 x 1 = (4660)10

This number in hexadecimal form has a different meaning thanmber in dec-
imal form. To distinguish it, we use thgs subscript. Note that the digits of
a hexadecimal number can range from— F, where F represents number 15.
Hence, 16 possible digits.

'S
6’s

—h—h —h—h
|

HHHH
OO0 OO0
— =

62's
63's



In general, base 16 numbers represent

n
ApQp_q...0o = Z a,16*
k=0

Base 2

Computers often use base two to store numbers. Base 2 jushh@sand '1’, or
for computers: an “off” and “on” for a “bit” which holds our bary digit. Base 2
numbers are called binary numbers.

(1012 =1x224+0x22+1x2+1x1=(11)
E#omo’s
#of 2’

# of 2%’s

# of 2%'s

Of course, numbers could be represented in basderes is any natural number,
but these above, including base 8 or octal numbers, are tsegommonly used
in numerical analysis.

BASE CONVERSIONS

To convert a binary number to a decimal form is easy. You gmigllow the
above rules. For example,

(110); =1 x4+ 1x 2+ 0 = (6)1.

Now let us try to do it the other way - convert a decimal numlmeratbinary
number. First, consider an example from base 10 to base §,0324a into ones
(1), tens (2), and hundreds (3):

321 remainder
10 l

}quotient

;1% remainder 5 321 = (321)1

}quotient )

3 remainder

10 . 3
yquotient

0




Now consider the analogy of the above conversion to thevatig conversion of
a number from base 10 to base 2:

6 = (?)2
g remainder 0
}quotient ind
% remainder 1 6 = (110),
}quotient )
1 remainder
3 1
}quotient
0
Or
9 remainder
5 1
}quotient .
4 remainder
3 0
uotient 9 = (1001
iq remainder ( )2
3 0
}quotient .
1 remainder
3 1
}quotient
0

Now, let’s convert the latter binary number back to base 1€heck: (1001), =
Ix2240x2240x2'+1x22=1x8+0x4+0x2+1=(9)i.

Note that the binary numbers are generated from the smdilgis{i.e., number
of 2s) to the largest digit (e.g., the number2¥fs in the latter example).

FRACTIONS

Up to now, all the numbers were integers. What if the numbepsasented were
fractions?

First, a base 10 example:



(01234),,=1x10""+2x1072+3x107° +4 x 107"

Recall the general representation for real numbers in base 1

n@0-biba. = > ap10% + > b 107"
k=0 k=1
Real numbers in bases other than 10 are represented the samEar example,
in base 2:
(110.01): =1x22+1x2'+0x2°4+0x271+1x272

L = (6.25)10
#0f272%s
ﬁ_ of2-1's
inar

y point

# of 20's
#of2l's

The general representation for real numbers in base 2 is

(an...ao.blbg...)g = Z aka + Z bk2_k
k=0 k=1

Or the general representation for real numbers in a Base

(an...ao.blbg...)ﬁ = Z akﬁk + Z bkﬁ_k

k=0 k=1
Fractional base conversions
So, how do we represent a decimal form fraction in binary fd@onsider

6.25 = (?)s.

First, put break the number into its integer and its puretyifmal parts:6.25 =
6 + .25. Its integer part of6),0 = (110),, as before. Now for the fractional part:

10



integer

25 X 2 0
lfractlonal integer

5 X2 1 25 = (.01),
lfractional
0

Therefore(6.25)10 = (110.01).

Note that we could use a shortcut to generate base 2 numberdase 10 num-
bers. We do this by first converting the base 10 number to hake®from base 8
to base 2. The former conversion produces about one ociafaligvery step of
the hand conversion of the decimal digit of an integer. Arall#iter conversion
is trivial with each octal digit resulting in three binarygds (bits). For example:

(361.8125)10 = (551.64)s = (101 101 001.110 100),

Finally, let us consider

(0= (?)
integer

fractional integer
\ fr;ctlonal integer ,
‘ Xfractiona| 1 = (.0001100110011...)y
integer — (00011
8% 2 9 L (.00011),
fractional integer
¥ fractional
2

Notice that).1 cannot be represented by a finite number of digits in basesb, Al
recall that some numbers cannot be represented by a finitberuof digits in
base 10, for example,

1

Indeed, there are some numbers that are irrational in atinaltbase represen-
tations: e.g.;r, e, v/2. But note that needing an infinite number of digits in a

11



base, as with oug example above, does not mean that the number is necessarily
irrational.

FLOATING-POINT NUMBERS

If a number is not an integer, we often write it in “scientifictation.” E.g.,

18.25 = 0.1825 x 102

—0.056 = —0.56 x 107! } basell

and
(110.01); = 0.11001 x 23

(27.25)10 = (11011.01), base2
= 0.1101101 x 2°

General Form

sign
éO.x «— exponent (or characteristic)
radix pointf Tbase (radix)

mantissa or fraction

In the aboveg is the base that the number is represented in. Therefgresifl 0,
then the number is in decimal form; if = 2, then the number is in binary form.
Also, 0.a1a5...as is the mantissa anelis the number of significant digits in the
mantissa. Ana is the exponent of the number.

s,aq,as,...,as, 3, e are all integers

=10 = a;=0,1,2,3,4,5,6,7,8,9
=0,1

eacha; < (3, therefore { =2 = q 7

Some examples of numbers in different bases in scientifiatioot are:

0.1295 x 10°, —0.1276 x 82, —0.10101 x 23

However, a number may have many such representations:

18.25 = 0.1825 x 102

12



= 0.01825 x 10?
= 0.001825 x 10*

Normalised form

For a unique representation - the first digit after the radilnpmust be greater
than O.
e, 1<ay<pf, 0<a;<f,i=2,...,8

This is called thenormalised fornof the number — each number can be uniquely
represented in the normalised form. Zero? Zero is repreddaytpossibly).0000...0 x
3% or0.0000...0 x 3%, whereL is the smallest possible exponent (this will be in-
troduced later).

What does this notation used for the general form represent?

0.a1az...as X B¢ = <%+%+...+%> x (3¢

— alﬁe—l + a266—2 4. +asﬁe—s

For example(.101 x 22 =1 x 2271 + 0 x 2272 + 1 x 2273 =2+ 2 = (2.5); .

FLOATING-POINT SYSTEM

If we collect all the numbers of the above general form, weagstt of numbers.
This set of numbers is denoted by:

F(p,t,L,U); p(,t,L,U are given integers.

This is a collection of all floating-point numbers in basewith a mantissa that
has exactlyt digits (i.e.,s = t). Also, the exponent is in between the integers
LandU,or L < e < U. Therefore,F(5,t,L,U) contains all floating-point
numbers of the form

+0.a1a0...a; X B¢, With L < e < U,

and one additional number - zero.

The exponent is called theharacteristicwhen a constant, usually, is added to
the exponent such that the actual stored integer is posiitrough extra work,
this increases the exponent range by one value (consider@esexample with

13



three bits, one bit representing the sign of the exponentwadbits representing
the range of the exponent, versus all three representingitige of the character-
istic).

Examples of systems:

F(10,1,0,1) = {#0.a; x 10°le =0,1;a; = 1,2,...,9} U {0}
= {40.1 x 10°,40.2 x 10°, ..., 0.9 x 10°,+0.1 x 10', ..., 0.9 x 10'} U {0}
= {£0.1,£0.2,...,+£0.9, £1,+2,..., 9} U {0}
Total : 37 numbers

F(2,1,-1,1) = {#£0.a; x 2°le = —1,0,1;a;, = 1} U {0}
= {40.1x27',£0.1 x2°,40.1 x 2'} U {0}
= {#£0.05,£0.1,£0.2} U {0} (in base 10)
Total : 7 numbers

Properties ofF'(5,t, L, U)
How many numbers id'(/3,t, L, U)? Count all the possible choices farande.

representation:  +0.aqas...a; X 3°
# of choices:  2(8— 1) (U -~ L+ 1)
Total= 2(B3—-1)B"(U—-L+1)+1

Largest numbex, in F'(3,t, L,U)? Take the largest possible for eachuptind
c.

Q = (B-1)(B-1)(8—1)xp

t

= <ﬁﬁ:1+ﬁﬁ;1+,,.+%> XﬁU

— BU _6U_t — ﬁU(l —ﬂ_t)

Smallest positive numbeg, in F(5,t, L, U)? Take the smallest possible value
for the mantissa and the exponent,

1
w = 0.100...0 x ¥ = 3 x gt = gt

14



EXAMPLE

IBM 360/370 Mainframes
Some IBM mainframes arg' (16, 6, —64, 63) - single precision.

Register L EXP|1]az[as]as]as]ds]
32bits 1 7 4 4 4 4 4 4

sign 1bit +
exp 7 bits — 128 numbers (-64, 63)
a; 4 bits —16 numbers (0,1,...,.E,F)

Example, some properties 6f(16, 6, —64, 63):

Total # of fl-p numbers: 2 x 15 x 16° x 128 + 1 = 4,026, 531, 841
Q= 16% —16°7 ~ 7x10™
w= 167% ~ 5x 1077

For double precisio’(16, 14, —64, 63) — 64 bits — 32 more bits are added to the
mantissa. Total number of floating-point numbers = 34,358,369.Q) andw are
almost the same as with single precision.

Extra Notes

IEEE Standard
The IEEE is approximately’(2, 24, —126, 127), but is more complicated.

Single precision ELSXPT___mantissa ]
32 bits 1 8 23

Only 23 bits are assigned to the mantissa. Whya24?

In the representation df(2, 24, ...) — *+.ajas...as4, €aCha; = 0 or 1, buta; > 0,
soa; = 1. Sinceq; is always 1, there is no need to store it, so this is a hidden bit
This unused bit in the mantissa is then given to the expowlenithling its range
with 8 bits compared to 7 for the IBM 360/370 mainframe.

15



So = eXP [az]as] -+ |24
N
23 bits

Note, the IEEE standard it implemented exactly a&'(2, 24, —126, 127). For
example, zero is represented in a special form.

Double precisior: F'(2,53, —1022,1023).

Double precision ELEXPT_ mantissa ]
64 bits 1 11 52

Also, an added degree of precision has been added with exdgurdcision num-
bersa~ F(2,64,—16382,16382). In this case,l5 bits are used in the exponent,
and there is no hidden bit in the mantissa. There is a totaDdifif$ in this repre-
sentation.

End of Extra Notes
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CISC 271 Class 3

Error sources in Number Representations

REPRESENTATION OF A REAL NUMBER IN A FLOATINGPOINT SYSTEM

Any F(5,t, L,U) contains only a finite number of numbers. So, since the set of
real numbers is infinite, many real numbers are not contaméd

E.g., (10,4, —3,3)

12.34 =0.1234 x 10> € F
12.345 = 0.12345 x 102 ¢ F, 5 significant digits
1234 =01234x10°¢ F, e=4>3

1 _ . oy . .
3 =0333.. ¢ F, oo number of significant digits

Consider the floating-point system(3, ¢, L, U). A real number is in F' only if

a) the sum terminates beforefdermsand

b) L<e<U.

If x does not satisfy both of the above, it is notAn If a computer useg’ to
represent real numbers, therwan not be stored exactly.

Rounding and Chopping

How can we do computation with? We needto approximater by a nearby
floating-point number it’(5,t, L, U).

17



Such a nearby floating-point number is called a floating{p@presentation of
denoted byfi(x).
i.e., approximate: by fl(x) € F.

Supposer is a real number, we can always write it in the form

: ﬂe = (O.CLlCLQ...) X 66,

but the sum may have more tharterms, or may not terminate. E.@.35 =
0.010110 x 2°.

So, how to findfI(z)? Consider the-th andt+1-th terms of the above summation.

ai a9 ay Q41 e
= 0.a109...a1a441... X B¢, assumd. < e < U
If « & F(B,t,L,U), we can findfI(z) in two ways:

1. Chopping, where we ignore the tail (;a;5...)
fl(x) = 0.a1az...a; X (3¢
2. Rounding up

0.@1&2...(Clt + 1) X ﬁe; if (o] 2
0.a1as...a; X (3% if a;q <

oo [@

fita) = {

Chopping is easier to implement using computer hardwarereds rounding is
more accurate, as we will see.

18



E.g.,F(10,4,-3,3)
r=12.345 = 0.12345 x 10* € F.

chopping  fI(z) = 0.1234 x 10% = 12.34
rounding  fl(x) = 0.1235 x 10> = 12.35

5 =0.3333... = fl(r) = 0.3333
0.1234 x 10> € F = fl(z) = z = 0.1234 x 10?
0.33333,y = 0.33334 = fl(z) = fl(y) = 0.3333

T
T
Xz

On computers, everything is done within the floating-poygtem. Ifx is a real
number, if is first represented by(z) on the computer, and then all computations
are carried out by usingl(z).

E.g., inF (10,4, -3, 3), any computations involving = 0.33333 are the same as
those involvingy = 0.33334.

Aside: You can think of your two hands as two digits of baseé (you can store
0,1,2,3,4,5 on either hand). How could you storg3 x 62?

Overflow, Underflow
Consider the following real number,= (0.aias...a;a441...) X 3°.

If L <e < U,thenwe can find gl(z) € F representation of the number using
chopping or rounding. |.e; has a representatidtfi(z)) in F.

However, if
e<L ore>U — NoRepresentation!

e < L — underflow e > U — overflow
E.g.,F (10,4, —3,3)
x=12345=10.12345x 10° e=5>3 overflow
x=0.00001 =0.1 x107* e=—4< -3 underflow

MACHINE EPSILON

If x is a real number, and if > 0, then we always have

l+x>1

19



no matter how smalt is. However, in a floating-point system, thisnsttrue.
E.g.F(8,t,L,U) = F(10,4, -3, 3). Takex € F'to be

x=0.1x 1072 =0.0001 > 0.
Take sum
14+2=1+0.1x10"%=1.0001 = 0.10001 x 10

Note that
1+ =0.10001 x 10" ¢ F(10,4,—3,3).

We must represent it by
fI(14 z) = f1(0.10001 x 10') = 0.1000 x 10* = 1.

So in a floating-point system, it is possible that when a pasitumber is added
to 1, the result is still 1.

Define themachine epsiloffalso called machine unit),, to be the smallest posi-
tive floating-point number i’ (3, ¢, L, U) such that

fl(l+p) > 1.

Note thaty is different thatw, the smallest positive number ifi, and is nearly
always larger.

E.g.,F(10,4,-3,3) :

F1(1+0.0009) = f1(1.0009) = 1

1. ChoppINg) "1 4 0.0010) = f1(1.001) = 1.001 > 1.
sou,. = 0.001 = 107
» Roundingd /(1 +0-0004) = f1(1.0004) = 1

FI(1 4 0.0005) = fI(1.0005) = 1.001 > 1

1 1
pr = 0.0005 = 0.5 x 107 = 510—3 = She

20



Position in Mantissa

1 2 3 ottt
1.000..0(0(0 L .
+ 0.000..1/0/0 = = gV
5t
1 .000..1/0[{0 < (Result of addition)
1.000..1[{0{0 < (Converted into
floating-point form)

Figure 3.1: Value of: when chopping is used.

When rounding is used, the machine epsilon is smaller. Alste that in com-
parisonw = 1074

In general for F'(53,t, L, U), we can show:

| p~**  chopping
H= 1671 rounding

For examples consider Figures 3.1 and 3.2, where the ditfersdues ofy, are
shown relative to 1. The largeris, the smaller: is, and more precision the
system has. l.e., double precision is better than singlegon.

An aside:u can be calculated on a binary base machine using choppingibg u
following Pascal code:

var
mu : real;
mu := 1.0;
while ((1.0 + nu) > 1.0) do begin
mu = nu/ 2;
end;

return (2*mu);

Consider why.
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Position in Mantissa

1 2 3  t1ft|wl
1.000..0(0|0 -(t-1)
+ 0.000..080 =Pt - B~
2 2 Bt 2
1.000..0 % 0 = (Result of addition)
1.000..1[{0{0 < (Converted into
floating-point form)

Figure 3.2: Value of: when rounding is used.

On a more generat base machine;' (5, ¢, L, U), we would replace:/2 by 1./ 3,
and the returned value isu.

ROUND-OFF ERROR

If z isreal and ifr ¢ F(5,t,L,U), we represent by fi(z). There is an error
in this presentation — round-off error: which is the errorépresenting a real
number by a floating-point number (using rounding or chogpin

Let's consider the round-off error associated with usingoatfhg point system
using chopping

T = %+---+%+giﬂ+---)><ﬁe
fllz) = (% +-+%) x

The error is then:

,I'—fl({)j’): <at+1 _|_> Xﬁe

ﬁt—i—l
So the absolute error in the representation is:
. (/6 - 1) e e—t
Absolute Error= |z — fl(z)| < +- | xp=p

ﬁt-‘rl

Equivalently, when using rounding the absolute error inréesentatiory (z)
is:

o = fi(a)] < 55

22



RELATIVE ERROR

The errors above are absolute errgrs £ fi(x)|) — the differences between
the true value and its floating-point approximation. Butabte error does not
usually tell the true story. For example, the error might he mch in sending a
rocket to the moon, or one inch in making a table. Obvioubly atter is of more

relevance.

We will definerelative error— error in reference to the true value:
| Absolute Errot

hE. = | True Value|
Therefore, for chopping,
2= fi(a) g g 5!
|z| ~ (0.a1ag...as...) x B¢~ (0.1000...) x F° (%) x 3¢

For rounding,
PR LGP

||

Thus in general,

r— fl(z . .
% < . —machine epsilon.
x
w—small =
T round-off error is small.
t—large =

Thus the range of values that are represented by a floatimgqepresentation is

fllz) = x(l +¢), |e] < p

EXAMPLES USING A FLOATING POINT SYSTEM

Consider the following floating point systen#’(10, 4, —20, 20) using rounding.

First, determiné?, w, andy.

Q = 10*(1-10"") =9.999 x 10"

w = 107271 =10x 1072

10—4+1
= 5 =50x107*
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Note that the machine epsilgnis much larger than the smallest representable
numberw, in F(10, 4, —20, 20).

Suppose we have the following real numbers; 0.68335 x 108, b = 0.986 x
1077, andc = 0.25 x 10%. What are the absolute errors and relative errors of the
foIIowing operations done i#'(10, 4, —20, 20), using rounding? i} + b + ¢?,

i) &% — £?, and iii)a % b * ¢? First note thatfi(a) = 0.6834 x 108, fi(b) =
0.9867 x x10-7 ,andfl(c) = 0.2500 x 102,

i) The exact solution i6.6834002500000009867 x 10%. In F'(10, 4, —20, 20)
we have

a+b+c = fl(fl(a+b)+c)
fUSfU(flU(a) + f1(D)) + fl(c))
(fl
(

f1(£1(0.6834000000000009867 x 10%) + fi(c))
£1(0.6834 x 10°® + fI(c))

£1(0.68340025 x 10°)

= 0.6834 x 10°

Absolute Error: = |Exact Soln— Floating Point Soln
= ]0.6834002500000009867 x 10° — 0.6834 x 10°|
= ]0.2500000009867 x 10?|
= 0.2500000009867 x 10?

0.2500 x 10°
|Exact Soln— Floating Point Solp

|Exact Soln
0.2500000009867 x 102
0.6834002500000009867 x 108|
0.3658 x 1076
0.3658 x 10~*% of Exact Soln

Relative Error: =

Q

Q

ii) The exact solution is-0.2556981859 x 10%. In F'(10, 4, —20, 20) we have
= ((55) - 1(3))
- (%) (Giw)
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= f1(£1(0.2278 x 10°) — f1(0.2533698186 x 10°))

= f1(0.2278 x 10° — 0.2534 x 10°)

= f1(—0.2560 x 10%)
= —0.2560 x 10°

Absolute Error: =

Relative Error: =

Q

Q

|Exact Soln— Floating Point Solp
| — 0.2556981859 x 10° — (—0.2560 x 10%)|
0.3018141 x 10°

0.3018 x 10°
|Exact Soln— Floating Point Solp

|Exact Soln
0.3018141 x 10°
| — 0.2556981859 x 108|
0.1180 x 1072
0.118% of Exact Soln

iii) The exact solution i$).168577695 x 103. In F'(10, 4, —20, 20) we have

axbxc =

Absolute Error:

Relative Error:

£l
£l

fl(axb)x*c)

FU(fU(a) = fL(D)) = fl(c))
FI(f1(0.67431078 x 10%) * fl(c))
f1(0.6743 x 10 * fI(c))
f1(0.168575 x 10?)

0.1686 x 10°

o~ o~ o~ —~

= ]0.168577695 x 10° — 0.1686 x 10|
= | —0.22305 x 107"

0.2231 x 107"
0.22305 x 101

0.168577695 x 103|
0.1323 x 1073
0.1323 x 107'% of Exact Soln

Q

Q
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CISC 271 Class 4

Error Propagation and Avoidance

SUBTRACTIVE CANCELLATION

Consider the following calculation.

F(10,2,—10,10) wherex = —.119 andy = .12, such that-fl(z) = fl(y) =

.12. The relative error is

(= +y) — FIlfl(x) + [l{y)| _ ‘ 001 -0
(x +vy) .001

Let us analyse why this relative error can be large. Whentsatisg two num-
bers of the same sign, with similar magnitude, significagitgimay be lost. This
results in a large relative error — called subtractive chaiien, or cancellation
error.

RE. =

‘ =1 Large!

The reason for this is as follows. Considery & F.

fllz) = .a1---ap_1ay---a x 3°
flly) = .ay-- ~ap_1bp-~-l~9t x 3¢
fl(z) — flly) = .0---0¢p---¢ x ¢
p—1

= CpC X PP

wherea, and¢, denote inaccurate values. Originally, the inaccuratet asgin
thet-th place (with a maximum relative error of the floating papresentation
on order~"). After subtraction, the inaccurate digit is in the— p) — th place
(with a relative error on order gf—*~?), larger by a factor ofs?). I.e., the most
significant digits have been cancelled out. In an extreme, @kthe digits except
the last are the same, whereupon they are cancelled ousabtaction with only
the largest digit left, but it is in error in the first place.

AVOIDING CANCELLATION ERROR

Essentiallyavoid subtracting two nearly equal numbers.

E.g., ifz ~ 0, thencos(z) ~ 1. Thus =% may result in cancellation. So,
rewrite the equation to avoid the problem:

l—cosz (L—cosz)(l4+cosxz)  1—cos’z 1

sinfz sin®z(1+cosz)  sin’z(1+cosz) (1+cosz)
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There is no cancellation error in+ cos z, whenx ~ 0.
Example: above with#'(10, 4, —10, 10) with chopping withz = 0.05 radians.

exact solution:ls‘irj%j ~ 0.5003126
with F(10,4, —10, 10):

cosr = .9987 x 10°

1—cosz = .1300x 1072
sinx = .4997 x 107"
(sinz)? = .2497 x 1072
1 _
T 5206 x 10°
SIN~ &
1
= 5005 x 10°
1+ cosx

) . 126 — .52
Relative Error = H003126 — 5206

.5003126
= 0.04
= 4%
Another solution would be to use a Taylor expansiorc@fz about0. So for
COS T,
o1 1’2 1.4
cosx ~ 1 — o + i
ignoring the smaller terms, sinaex 0.
Therefore, ) \
l—cosz 5 — 7
sinfz  sin’z

which does not suffer as much from cancellation error.

Another example. Suppose we want to compute-ee2* atx ~ 0? Use the
Taylor series for €twice and add common terms (details left as an exercise).

AVOIDING ROUND-OFF ERROR GROWTH

The procedure used for avoiding round-off error growingcglyi very much de-
pends on the problem at hand. Some useful stategies are:
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e Double or extended precision
Sometimes this is the only solution to deal with canceltagoror.

e Taylor expansion
e Changing definition of variables
e Rewriting the equation to avoid cancellation error

e Grouping equivalent terms
Here, we try to avoid summation of numbers of different osdefr mag-
nitude. One approach is to sum from the smallest number tdatigest.
For example, consider the following summationfi10, 3, —10, 10) with
rounding:
1+ .002 + .002 + .002

Rather than summing as
FUFL(fI(1 +.002) 4 .002) +.002) =1
we sum as

FUL+ £1(.002 + £1(.002 4 .002))) = 1.01

SUMMARY OF WAYS ERRORS CAN BEINTRODUCED

In summary, ways that errors may be generated:

e Mathematical modelling
e Programming errors
e Uncertainty in Physical Data

e Machine errors (finite representation - ex., round-off ercancellation er-
ror, propagated error, changing base representation)

e Truncation error (ex., Taylor series)

¢ Algorithmic design errors (ex., the function may be welkpd but the al-
gorithm used is not)
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ARITHMETIC RULES

With real numbers, arithmetic rules hold. For example, thesadkiative rule:
x,y,zreal= (x+y)+z = z+(y+2). But in floating-point operations, the usual
arithmetic rules do not hold in general. Ll fl(x+y)+2) # fl(z+ fl(y+2)).
E.g.,

A0 +5 + 5 = ia+ By =1

2 2 2
F1(1+ fz(g n g)) — Fl(1+p) > 1
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CISC 271 Class5

Rootfinding: Bisection

Consider the following example. We want to comput8. |.e., find  where

x =/3.
x:\/g = =3 orz?—-3=0.

So, the problem reduces to findingamt of 22 — 3 = 0.
In many applications, we need to find a root of

f(z) =0, f(x)isacontinuous functiory, : R — R, on|a,bl.

See Figure 5.1 for a generic function example.

f(x)

D
o
X

X* XM*
Figure 5.1: A generic function example.
In the above examplé,(z) = z* — 3.
Definition: root: A root of f(x) is az* € [a, b] such thatf (z*) = 0.

Aroot of f(z) = 0 is also called aeroof function f(z).
So, we may restate our problem as:

find anz* such thatf (z*) = 0 fora givenf : R — R.

But, since we are dealing with floating point representatioims problem usually
restated as:

find anz* such thatf (#*) < e for a givenf ande,

wherez = fi(x). Thee is the tolerance of error in our solution.

Generally stated, the approach to finding a root of a funasdo, given one or
more guesses, iteratively generate a better guess. Inaleti@re are two kinds
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f(x)=x 2-3

e
N
x

x* = sgri(3) = 1.732

Figure 5.2: Picture of root far> — 3 = 0.

of methods, global and local. A global method will always wenge, whereas a
local method will converge if the guess is “close enough.” Wi consider both
types of “root-finding” methods. An ideal code will start wia [slower] global
method, and then switch to a [faster] local method later tbageore precise
answer quickly.

Global Algorithms: Bisection, false position
Local Algorithms: Secant, Newton’s method

BISECTION
Let us first consider an intuitive approach to finding a roatof- 3 = 0.

See Figure 5.2: Picture of the functigiix) = z*> — 3 = 0.

Sincel? < 3 and2? > 3, then we know that* € [1,2]. So, as a first approxima-
tion, we taker; = 1.5

17 =225<3 = 2"€[l5 2
A second approximation ig, = 1.75
r3=306>3 = 2*c[l.5 1.75

After many iterations, we havg,, b,], andz* € [a,,b,]. If b, — a, is small
enough (to meet a certain accuracy requirement, or tolejatiten we can use
any pointz,, € [a,, b,] to approximate:* = /3.
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More formally:
Supposef (x) is continuous o, b] and f(a) and f(b) have opposite signs, i.e.,

f(a)f(b) <0,

then there exists a roat € [a, b].

To find an approximation of*, we proceed as follows. First, assume, for demon-
stration purposes, thgta) < 0, andf(b) > 0.

See Figure 5.3: Picture of the starting point for the Bisetthethod.

0 f(b) >0

D

X*

f(@ <0
Figure 5.3: Picture of starting point for Bisection method.

Letz; = “2 (mid-point).

]

a o b
Sketch of the the Bisection Algorithm

if f(x1) =0 = I've found the rootr; = z*, and stop
f(z1) >0, thenz* € [a, 2] = zp = “EH
f(z1) <0, thenz* € [z,b] = x5 = 22
if f(z2) = 0= I've found the rootz, = z*, and stop,
otherwise find the sign of (x2) and determine;, etc.

otherwise{

We continue this to get;, =, 3, ...
Are we guaranteed to find a root?
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In general, none of, z, ..., x,, ... Will be z*, even if we continue forever. So
why do this? Even though we may never findthis way, we hope that, will
get closer tar* asn gets large.

xy: x* € [a, 2] OF [y, b] SO|z* — x| < B¢
Ty o —xg| < 1050

Tn o |7F — 7| < B2

We may never find:*, but we can findz,, which can be as close i as we please
within the constraints of the floating point system. Notet tfig) need not be
continuous.

STOPPING CRITERIA

This brings us to the question of an appropriate stoppingraosh. We may con-
sider using

[f(an)] <e

There are two possible problems with this choice. Firstha there may not
exist any suchr,,. Consider a function which is nearly vertical as it crossesth
axis. Then it may be that;,, — z,, 1| < u, wherey is the machine epsilon, but
|f(z,)| > €. Since we can't subdivide the interval any further, the metfails.
Also, since the Bisection method does not require ffat) be continuous, then
itis possible that the function be vertical across the é&&exond, if the function is
very flat as it crosses the axig(z,)| < €, butz, still be very far from the actual
root.

Rather than the above criterion, we use a stopping criteidine form

b0,
(a+0b)/2|

which is a variation ofb — @| < e. This can be considered as the relative tolerance
for the accuracy of the root. This is tricky to use if the raohear zero.

In pseudocode, the Bisection algorithm looks like:

| nput : a, b, f(),tol;
Algorithm set epsilon = mu + tol;
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m:= (a + b)/2
fa:=f(a); fb:=f(b); fm:=f(m
while (fmnot= 0 and (| b-a]/max(1,
s :=sign(fa);
if (s*fm< 0) then
b:=m fb :=fm

irﬂ)) > epsilon) do begi

el se
a:=m fa:=fm
end if;
m:= (atb)/2; fm:=f(m;
end whil e;
return (m;

Analysis: Note the special setting fepsi | on. This is because if the given
relative error tolerance is less than the machine unit, therighm may never
terminate. Also, the usual condition f§x) * f(m), but asm — z*, this can
cause underflow ag(z) — 0. If z* is huge, may need to normalizie— a|, or
change the variable used (— %). If z* is tiny, need to avoid round-off and
underflow.

To use the algorithm, one needs to find such thatf(a) f(b) < 0. Choosen as
such,[a, b] always contains a root.

Convergencelogarithmic (1 binary bit/iteration).

Example. We want to find/3 by the bisection method, starting with 2]. If we
want the solution to be correct up to 5 digits, how many stepse need?

b—a_ 1

o’
For accuracy of 5 digits, we Ig% < 1075, and solve fom to find out how many

steps.
In1
2" > 10° n>6<—0) ~ 20.
In2
l.e., after 20 steps, we are guaranteed to have 5 correts.dile know this in

advance.

Another example.Consider[a,b] = [0,1] wherez* = 0.1 x 272 (in base 2).
Thereforer, = %22 = 0.1 x 20, Thenz, = X2 = (.1 x 271, etc., gaining
one bit of accuracy with each iteration.
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There is a possible problem with the Bisection method in thatmethod may
catch a singularity (wheré(z* — ) — +oc and f(z* + §) — —oc asé — 0) as
if it were a root. So, the algorithm used should ched¥ {tz,,) — f(z,—1)| — 0.
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CISC 271 Class 6

Newton’'s Method, Secant Method

Although the Bisection method is easy to compute, it is sidaw, we will con-
sider more interesting methods of root-finding. The first twethods are local
methods, and the last, which will be discussed in next classglobal method.
All the methods are based on using lines to get better iterapproximations for
the root of a function.

NEWTON' S METHOD

One of the most widely used methods is Newton’s method. @aity, Newton
used a similar method to solve a cubic equation. It has sieea lextended to
differential equations. Over a very small interval, mostdtions can be locally
approximated by a line. This idea is the basis of Newton’shoet

The idea is to start with an initial guess for the root, Then draw a line tangent
to the function at the pointzy, f(z1)). The tangent line’s intersection with the
x-axis is defined to be,. We repeat this process to get, zo, z3, ....

Figure 6.1 - Example of Newton’s Method.

f Tangential
/ Lines

(%) x*

Figure 6.1: Example of Newton’s Method.

Why a tangent line? If the functiofi(z) is a linear function, i.e.,

f(z) =ax + 0,
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theny = f(z) is a line. If we start off with any guess;, the tangent line at
(x1, f(z1)) agrees withy = f(z). Thereforez, = x*. l.e., for linear functions,
Newton’s method yields an exact solution after one iteratio

Now, if f(x) is any function, we may approximate if by a linear functiort.tihe
pOint ('Tl? f(x1>)7

Taylor expansion: f(z) = f(z1) + f'(z1)(x — 21) + - - -

Figure 6.2 - Picture of the Talyor approx at a point

f(x,) \
FO) =f(xy) + & )(x- Xy)

f(x)

Figure 6.2: Picture of the Talyor approx at a paint

Let f(z) =~ F(x) = f(x1) + f'(x1)(z — x1) which is linear. Instead of looking
for the root of f(x) = 0, look for a root of F/(z) = 0.

e, f(z)+ fl(x1)(x—21) =0
= o =m — H8 —— rootof F(z) = 0.

Regard it as a good approximationid. So, letxy = x; — Jf,(éll)). Repeating the
process, we have

n

We hoper,, — z* asn — +oo.

The algorithm would have the form:

guess X;

for n =1,2,... do

X :=x - f(x)/f"(x);
end;
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Example. Want to evaluatg3. f(z) = 2> — 3 andf/(z) = 2u.

22-3 1 3
:—gjn—|——

T+l = Tp — 9 9
n

22,

sy=la=3+3=203=242=1752 =5 x 175+ ;25— =17321.
The exact solution is 1.73205....
1

Second Example. We want to now evaluétéo, we wantf(z) = - —7 = 0,
with f'(z) = — 2.

Tpi1 = Ty — (xin — 7) (—xi) =2z, — 7xi

So, by using only the-, —, andx functions, we can calculate grfunction.
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f(x)

Figure 6.3: Picture of a potential problem function for New's Method.

Notes regarding Newton’s Method:

¢ Need only one initial guess, whereas bisection neeatsdb.
e Need to compute the derivatiyé&(x).

e Requires thaf’(x) # 0 in the neighbourhood of*. Otherwise, denomina-
tor blows up.
See Figure 6.3 - picture of a potential problem function.

e At each iteration evaluatg(z) and f'(z) (two function evaluations).
So why use this rather than bisection? — Fast.
SECANT METHOD
In Newton’s methodf’(z) is needed. But

e f’(x) may be difficult to compute.

e may not ever know’(z); e.g., if f(z) is provided by a subroutine.

ldea: do not comput¢’(x,,) explicitly. Instead, approximatg(x,,) as follows:

f(xn> - f(xn—l)

f,(xN) ~ .
Tp — Tp—1
Newton Secant
_ f Tn . f Tn _ ITn— f Tn _xnf Tn—
Tnt1 = Tn — f'((xn)> = Tngl = Tn % - }(agn)zf(:cnf(n .
In—Tn—1
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Tangent Line
// g

f(x)

Figure 6.4: Picture comparing Newton and Secant lines ometitan.
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See Figure 6.4 comparing Newton and Secant lines for a fumcti
Observationiim,_,,, J%=/70) — ¢/(3). So, in the limit (which is also at a root

T—x0

of the function), the Secant method becomes Newton’s method
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The Secant algorithm would have the form:

guess x_1, x_2;

for n =1,2,... do
new : = (x_1*f(x_2) - x 2*f(x_1))/(f(x_2) - f(x_1));
X 1 :=X_2; X_2 := new,

end;

This is a fast, single-point local iterative method. Goauni@ation criteria are

[f(zn)| S e or [zp1 — 2| < €z
Some comments:

e Two initial guesses are needed, but does not reqifire) f (x2) < 0, unlike
bisection. But there might be problems if the root lies alggihe conver-
gence range.

e Must havef(z,) # f(zn,—1) V n (similar to f'(z,) # 0 in Newton’s
method). l.e., a very flat function.

e Another problem case might occur is a generated guess isathe as a
previous guess, resulting in the possibility of an infinb@p that never
reaches the root.

e Again, two function evaluations per iteration.

See Figure 6.5 - Picture of possible problem case for secatitad.

The Secant Method is a local method and requires a pair okgadhat are rea-
sonably close to the desired root. If they aren't, the newealn bdurtherfrom
the root (and there is no way of telling). However, once tha i® bracketed, the
Secant method is no worse than the False Position methodhwi@ will discuss
next.

Calculation note For the Secant method, the basic update looks like

xn—lf(xn) - xnf(xn—l)

T T () — (@)

42



f(x)

Figure 6.5: Picture of possible problem case for secant ogeth

Becausef(x,) and f(x,_;) may have the same sigfi(z,) — f(z,_1) may go
to zero, due to subtractive cancellation. However, altioitigloes not cure the
problem, if it is rewritten as

Lp — Tp—1

Tnp1 = Tp — {f(xn) — f(n-1)

it is far more stable.

f(zn) } «— corrective term
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CISC 271 Class7

False Position Method

FALSE POSITION

This method is also calleRegula Falsimethod of false position). This method
is similar to the Bisection method, since the root is braettdty an interval. It is
a globally convergent form of the Secant method.

The idea is to use information at two endpoia@ndb to choose a better iterative
value. We start witha, b] where f(a) f(b) < 0. Join points(a, f(a)), (b, f(b)) by

a line, and letr; be the intersection of the line with theaxis. Then check the
sign of f(zy). If

f(z1)f(a) <0 = Takela,x;] as the new interval
f(z1)f(a) >0 = Take[zy,b] as the new interval

and repeat.
Figure 7.1 of the False Position Method at starting position

f(x)

Figure 7.1: False Position Method at starting position.

Again, we have a sequence of intervals, b,], [az, b2, ... Each contains a root,
howeverb, 1 — a,1] is not necessarily equal t&%.
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Line joining (a, f(a)), (b, f(b)):
y = fla)+ 3= (F(b) = f(a)

b—a af(b) —bf(a)
y=0 = r1=a-— fla) =
=@ T e - @
Bisection False Position
_ af(b)—bf(a)
r = A —Fla) —w1a+wgb
n = 3b+ 30 o — IO e
f(b)—f(a)’ - f)—f(a)
average ot andb weighted average af, b
does not use uses information abgt)
information aboutf (x) which may give some idea of
where root is located.

Algorithm (False Position)

find a, b, f(a)*f(b) < 0;

for n =1,2... do
new := (a*f(b) - b*f(a))/(f(b) - f(a));
if sign(f(a))*f(new) > 0 then

a = new,
el se

b := new,
end;

if (convergence condition satisfied) exit for | oop;
end;
return (new;

What is the convergence criterionff (z)| < ¢, but this may be impossible.
|(zn, — xn—1)/xn| < €2, but this may take dongtime.

How fast does it converge? In general, False position mayeberh but there
are exceptions. For locally convex functions, could be siothan the bisection
method.

See Figure 7.2 - picture of locally convex function.
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)

Figure 7.2: picture of locally convex function.

Extra Notes

We can consider a speed-up for the False Position methodsldWweconvergence
of the False Position method is because the update looks like

la,b] — [a, 1] — [a,z3] — [a, 23] — -+ [Stationary
and a faster one is

[a,b] — [z1,b] — [z1,22] — [23,22] — -+ [nON-Stationary

I[LLINOIS METHOD

The lllinois method (or modified position method) is to ngf(c) instead of
f(c) if cis a stagnant end point has been repeated twice or more, witetee
number of times the end point has been repeated.

See Figure 7.3 - A picture of the lllinois method.

This modification markedly improves the rate of convergeoicthe method in
general.

End of Extra Notes
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Figure 7.3: A picture of the lllinois method.
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CISC 271 Class 8

Root-Finding Methods - Properties

CONVERGENCE

In all the above methods, we've found a sequece of
X1, x9, X3, ...
We would like to answer the following questions:
1. Does the sequence converge:toi.e., isz,, close toz* if n is large?
|z, — " —50 asn — 400

2. If the sequence is convergent, how fast does it approacito

fast = few iterations needed for a given accuracy

CONDITIONS FORCONVERGENCE

Bisection Method — fla)f(b) <0
Newton’s Method — f'(z1) # 0, x; close tor*
Secant Method —f(z2) — f(x1) # 0, z1,x, ClOSe toz*

Regula Falsi/lllinois Method —f(a)f(b) <0

CONVERGENCERATE

Supposez,, —z*| — 0, i.e., we have a convergent method. A sequence converges,
within an error constant, > 0, as

which for largen approximates to

|Tps1 — 2% = cpla, — 2"P,
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0|1 II 677, ln X 9
P

Then we say that,, converges ta:* with orderp.
p — order of convergence¢, — convergence rate

p =1-linear,1 < p < 2—superlinear.

To see better what’s happening, take logarithms i, ifs the number of correct
decimal digits inz,, (i.e., |z, — z*| = 107*|2*|), then

10~ Fnt1|2*| & ¢, 107Pkn | %P
=  —knp1 +109,0|7*| = —pk, + l0g;5cp|7*|P
= kn—i—l ~ pky, — loglocp‘x*‘p_l

So,p is related to the number of digits we will gain after eachatem.
Example
Let's consider the order of convergence of Newton’s Method.

Newton’s Method is a special case of what are called Fixadtmdethods. For
the Fixed-Point Method, the error at step- 1 is

lens1] < K™ 'e]

where X' = maxi<;<,{|¢'(&)|} < 1. Therefore,p = 1, and the Fixed-Point
method is linear.
With Newton’s Method, we have

n

= g(n)
Since this is a special form of the Fixed-Point method, tbisverges if¢'(x)| <

1, 0or
_ f(=) N f(@)f" (@) | f@)f"(z)
fiz)  [f'(2)]? [f'(x)]?
If this holds on an intervals, then the method will converge. Sineg.; = g(z,),
then

lg'(x)] =1 = <l

Tpy1 — 2" = g(z,) — g(a").
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Use a special form of the Taylor expansion §dr,, ), expanding around*,

o) = gla*) + 9/ (2 (a — ") + L (0, a2,

where the last term is the remainder term withe [z*, z,,].
NOW, g,(ﬂf*) — fa) (@) — 07 Sincef<.]}*) =0. SO,

[f/ (z*)]2
o 9"(&) ;
g(an) = g(a) = T @, — )2,
or, recalling thatr,, ., — =* = g(x,) — g(z*),
* g// gn
Tpy1 — T = €Epy1 = %(6n)2~
Therefore,
9" (&)
|enta| = T \en\2-

So, we can see that= 2 for Newton’s method. Also, note that as — x*, so
doest,, — z*.

Comparison of methods:

Bisection Method: p =1
Fixed-Point Method: p =1
Regula Falsi: p=1
lllinois Method: p &~ 1.442
Secant Method: p ~ 1.618
Newton’s Method: p=2 !

Hence, we can say that Newton’s method has a quadratic ordeneergence.

Note that the convergence rate is not enough, we need to ridoouhe “cost” of
each iteration of a method, ex., by counting the number oftfon evaluations.
But, the quicker the convergence, the fewer the number odtims needed to
converge close to the root, and the less round-off errorishiatroduced into the
solution.

STOPPING CRITERIA

|deally, we stop wheff,, — 2*| < e. This is impossible, since we don’t know.
We several alternate approaches:
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(1.) We can stop iff(x) = 0 or nearly so (problem is solved). l.e., given a
toleranceg; = small
stop if | f(za)| < €

(2.) We can stop ifr,, has “converged” or nearly so. In this case, no further
improvement can be made. l.e., given a tolerance

Stop If‘xn — J}n—l‘ < €x

(3.) We can stop if the method is not working, i.e,,fails to converge (method
fails). If after a large number of iterations, none of 1. oi2satisfied, then
we should stop. l.e., given a large numBér

stopifn > M

If the values of either the root or the function are unknowentuse relative forms
of the above stopping criteria, i.¢zr,, —z,_1| < €.|z,|. Thisis especially true for
methods where the root is not bracketed, i.e., Newton’'s ha®ecant methods.

Extra Notes

ABSOLUTE ERROR

As mentioned, the methods we have used generate a sequeama @imations
{z,} to atrue rootr*, i.e., f(z*) = 0. According to the Mean Value Theorem, if
f(z) is continuous and differentiable,

flxn) — f(x*) = f(x,) — 0= f'(&)(x, —x*) for somet € [z, z"].
Thus, the absolute errey, = x* — xz,, is such that

W)
SVIG]

Assuming thatf’(xz*) # 0, there is a small regiofy aroundz* where

Is=[z"— 0,2+ 0] and f'(x) A0V zx € ;.
By the extreme (minimum) value theorem, there is a minimuluesas > 0 such
that
| ()] >msVx e ;.
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Asn — oo, x,, Will eventually fall into 75, and so will¢. Thus

el

mgs

len| <

Thisms is a bound ory’(z) nearz*, and so we have method-independentea-
sure of the absolute error.

If ms is large, the problem iwell-conditionedand we can get very near the root.
If ms is small, the problem igl-conditionedand all methods will behave poorly
near the root.

ROUND-OFF ERROR

Newton’s iteration looks like,,.; = g(z,), SO
jn+1 = g(jn> + 5n

whered,, is the round-off error from true,,.; = g(x,). The difference from the
real root is

sincex* = g(z*).
The mean value theorem gives an absolute bound of

vt — i’n—kl = g,(fn)(l'* - i’n) - 5n
where¢,, € [z*, x,]. Subtracty’(¢,,)(z* — Z,41) from both sides,
[1—g'(€)](@" = Tni1) = g'(&) (@ns1 — Tn) — bn

Asn — +o00, the method in question convergesito so|g¢’(&,)| < 1.

If we can find the maximund/ so that|¢’'(£,)| < M < 1, we can get a bound on
the round-off error as

—1-M 1-M

If we know the real root, we can access the method.
End of Extra Notes
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CISC 271 Class 9

Polynomial Interpolation

POLYNOMIALS
Examples of polynomials

22 —x+1 —degree 2 (polynomial im)
ar + bz? — ¢ —degree 4
at> + bt + ¢t —degree 3 (polynomial it)

A polynomial of degree::
P,(z) = ag + a17 + agx® + - - - + a,2™, a, # 0.

ag, ay, as, ..., a, are constants, andis a variable.
A n-degree polynomial is uniquely determined byrits- 1 coefficientsag...a,,.

Pn = Q...

EVALUATION OF POLYNOMIALS
ComputeP;(z) atz = 2, where
Ps(z) = 52° 4+ 22 — 3z + 2.

Py(z) =5(2)3 +2(2)2—3(2) +2 =5x8+2x4—3x2+2
—40+8—6+2
=44

Alternative.

Piy(z)=(bz+2)x—3)x+2 =((bx2+2)x2-3)x2+2
=(12x2—-3)x2+2
=21x242
=44

P,(x) =ap+a1x+ -+ aa™
=ag + x(al + l’(ag + l’(&g + l'( o (an—z + x(an—l + anx)) e ))))
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For example,
Psy(x) =ay+ z(a1+x(as+xas))

}

as + xy
a1+
apg+
Y
Horner’s Rule for computindg,(x) = ag + a1z + ... + a,z".

We can write an algorithm to evaluate a polynomial via Homktethod, where
the coefficients defining the polynomial are kept in a arry.n|.

y 1= a[n];

for i = n-1 down to O do
y r=ali] + x*y;

end;

return (y);

At the end of the programy, has the value’, (x) for the givenz.
Sometimes, a polynomial can be written as

Po(z) = ag + a1(z — 20) + as(z — 20)* + - - 4+ an(z — 20)".
E.g..Ps(x) =2+ 3(x —1) —5(z — 1)+ 3(z — 1)3. In this case, Horner's rule is
the same as above with— (z — z).

Aside:Given a polynomial, the polynomial has a finite number of zems deriva-
tives. Therefore, the Taylor series of the polynomial leadbe original polyno-
mial since the error is zero.

POLYNOMIAL INTERPOLATION
Givenn + 1 points

(.Z’(], y0)7 (Jfl, y1)7 EERE) (J;na yn)a

find a polynomialP, (x) which passes through these points. Thus we could es-
timate the values in between the given values. This is c#éiflednterpolation of
these given points.

Figure 9.1: General example of an interpolation.
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f(x)

Figure 9.1: General Example

Examples.

Suppose we were given two points,, x; } and the values at those points? We
would draw a line.

Figure 9.2: Linear example.

Line
\

(X1:Y1)

(X0+Y0)

Figure 9.2: Linear example

Suppose we were given three poifits, 1, 25 }? We would draw a parabola.
Figure 9.3: Parabolic interpolation example.

So, forn = 1, we have a line and fat = 2, we have a parabola. How about- 1
points,{z, =1, ..., x, } ? We would then draw a polynomial, P, (z).

Let P,(z) = ap+ a1z + - - - + a,2™. Theproblemis to finday, a4, ..., a,, such that
Pn<x) passes throughrOu y0)7 ('Tlv y1)7 sy (xrw yn)
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Parabola
/

Figure 9.3: Parabolic interpolation example.

Conditions:
(0,%0), Pu(z0) =30 ap + a1zo + -+ + apy = Yo
(x1,11), Pulz1) =0 ap + a1z + -+ a2 = Ys
(Tny Yn), PulTn) = yn ay + a1Ty, + -+ apT) = Yy

In the abovegy, a4, ..., a,, are unknowns, andz;} and{y;} are known values.
We can find the polynomial, if we solve the above dgraq, ..., a,.

Example. FindP,(z) passing throughiz, yo) and(x,y1). Pi(x) has the form
Pi(z) = ap + ayz.

Pi(z) = ap+ a1m0 = yo

Pl(.Il) = Qo —+ a1r; = Y1 } 1( 0 1) Yo n

gy = N if zo # 21

To — 1
. . Yo — U1 _ ToY1 — 1Yo
Gy =Y — 1 To=Yo — —— o= —— -
To — I Ty — 1

Pi(z) = ToY1 — T1Yo 4 Yo _ylm
! o — X1 o — X1

If 0 = yo = 0,21 = y; = 1, Pi(x) = z. l.e., the polynomialP, (z) = = passes
through(0,0) and(1, 1). Is this the only possible solution? Yes. Why?

56



Fact. For any givern + 1 points(zo, yo), (x1,41), (%0, Yn), If 2o, x1, ..., x, are
distinct, i.e.,z; # xz; if ¢ # j, then there exists a unique interpolating poly-
nomial P,(z) of degreen; i.e., there is a uniqué’,(x) which passes through
(20, %0), (z1,41), ---(zn, yn). This can be proved by constructing a linear system
of n-th order equations.

Example. Ifxg, x4, ..., z,, are distinct. Suppose we have a polynonia(z) of
degreen, so that
P,(x;) =0 for i =0,1,...n.

What is P,(z)? P,(z) = 0,i.e.,a0 = a; = --- = a, = 0. Why? P,(z) =0
interpolates(zy, 0), (z1,0), ..., (x,,0), and this is a unique interpolation of the
points.
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CISC 271 Class 10

Lagrange’s Method

LAGRANGE POLYNOMIALS

Given distinctzg, x4, ..., ,,, there is a unique polynomial of degreepassing
through
(20,1), (z1,0), (22,0), ..., (z4,0) = ().

See Figure 10.1: Picture ¢f(z).

Figure 10.1: Picture of}(z).

In fact, we can construct a whole set of these polynomialsh @assing through
1 for a differentz; value.

ly(z)  (xo,1),(x1,0), (22,0), ..., (xn,0) {(xg) =1, (x1) =0,15(x2) =0,...,{(x,) =0
IP(x)  (20,0), (z1,1), (22,0), ..., (z,0) 1}(xg) =0,17(x1) = 1,7 (x2) =0,.... % (x,) =0
I5(x)  (20,0),(1,0),(x2,1), ..., (2, 0) 15(x0) =0,15(x1) = 0,15 (x2) = 1,..., 5 (x,) =0
lZ(m) (20,0), (21,0), (22,0), .0, (Tn, 1) 1(x0) = 0,12(z1) = 0,1 (z2) =0, ... [ z,) =1

A general short form for these polynomials is
li(x)

wheren is the degree andis the place in the sdtr; } where it has valué.
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" 0, 1#]
li(xj):{ 1, i=j

Example.n = 1. we haver,, z; such that

l(l](xO) = ]-7
li(z0) =0, li(z1) =

See Figure 10.2: A picture &f(z) and/} (z).

1N o M
X X

Xo Xy Xo Xy

Figure 10.2: A picture of}(z) and] ().
How to find /7 (z)?

nioN ] 0 atzy, o, ...,y
ly(z) — degreen _{ | atay
Consider the following polynomial of degree

G(r) = (z—21)(® —22) - (¥ = 20)

= 0 atz, zo, ..., T,

¢n(z) is almostij(x), but ¢, (zo) = (vo — x1)(zo — x2) - (xg — ) # 1IN
general. But

Qn(x) - ($ - «TI)(x - $2) T (x — $n) { 0 atxy,zo,..., T,
qn (o) (2o — @1)(z0 — T2) -+ * (T0 — T4)

~ 1 1 ata

and is a degree polynomial.
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n — an(x) _ _(z—z)(@—z2)-(z—2n)
lg(z) = an(z0) ~ (zo—z1)(T0—22)(T0—2n)

This polynomial interpolate&ey, 1), (x1,0), ..., (x5, 0). Similarly

l"(x) _ (x—$O)<x—$1)~.~($—$i_1)(l’—xi+1)...(x_xn) _ %g(;(x «T])
i (x; —xo)(xs — x1) -+ (w5 — 1) (g — i) -+ (w5 — 1) Hg;%(xi —2)

interpolategx, 0), (z1,0), ..., (z;, 1), ..., (x,, 0).
Why Lagrange polynomials?
For a given(xo, o), (€1, Y1), -+, (Tn, Yn), CONSider
Po(2) = yoly (x) + y1li' () + -+ + yalyy ()

where

1. P,(x) has degree.

In other words P, () is the interpolating polynomial fdtz, yo ), (1, ¥1); -, (Tn, Yn)-
LAGRANGE FORMULA

The interpolating polynomial fofzo, yo), (z1,v1), -, (Zn, y») iS given by

Pa(@) = yolg () + y1li (2) + - - + ynli(2) = Xio will' (2)

providedz; # z;,¢ # j.

What does this interpolating formula look like? Considet 1.

(1) (x — )
Pi(z) = yo (70— 1) + (1 — 7o)

INTERPOLATING FUNCTIONS BY POLYNOMIALS

If we have a complicated functiofi(x), we may want to approximate it by a
polynomial of degree, P, (z).

See Figure 10.3: A picture of general example.
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Figure 10.3: A picture of general example.

How to approximate this functiorf,(z)?

We requireP,(x) and f(z) to have the same values at some given setiof,
XQy L1y ooey Ty 1€, Pp(x) = f(2),i=0,1,2,...,n

Therefore,P, (x) must interpolatézy, f(xo)), (x1, f(21)), .., (Tn, f(z2)).
Use the Lagrange formula,

Zf )Mz
=0

This is a polynomial of degree which interpolates (x) atzg, x1, ..., .

Example. Suppose a functigifz) is given by the following table
i 01 2 3
x; 01 3 4
fxz) 13 2 1 0

Find the interpolating polynomial and use it to approxintagvalue off (2.5).

1. Find the Lagrange polynomials.

3 (z—1)(x—3)(xz —4) 3 z—0)(z—3)(z—4
lo(x) C(=3)(—4) li(z) ((1 03E1—3§E1—4))
50 @=0)(z-1(x—-4) 2—0)(a—1)(a—3
5@ = 5oE nE1 @ = EEni



2. Find interpolating polynomial.

P3(x) = 313 (x) + 203(z) + 13 (x) + 013 (z),

o (2% —82%4192-12) (23722 +122) (23 -5z +4x)
=3 —12 +2 6 + -6

_ (—2%+622—172+36)
- 12

3. UsePs(2.5) to estimatef (2.5),

(—(2.5)% + 6(2.5)% — 17(2.5) + 36)

= 1.28125

Therefore,f(2.5) ~ 1.28125.
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CISC 271 Class 11

Newton Divided Differences

There are two problems with Lagrange’s form for the uniquerjolating for-
mula:

1. Itis expensive computationally.

2. If we haveP,(z), we can’t use it to find?, . (z).

The Lagrange formulation

Pu(x) =) f(x:)}(2)
=0
is simple in form, but it is difficult to compute the coefficisn So, we will look
for another form forP,(x). Note that we are not looking for another polynomial,

since there is only one unique interpolating polynomial.atde are looking for
is another form to express the same polynomial, that is ems@mpute.

We write the interpolating polynomial in the following form
P,(x) = Ao+ A (z—x0)+As(x—x0) (x—21 )+ - -+ An(x—20) (x—271) - - - (T—Tp—1).

And try to determine the coefficienty), A4, ..., A,,.

(w0, f(20)) Pu(zo) = f(m0) = Ao = f(20)

(o, f(2)) Paln) = flan) = {iﬁi%““‘%’

T1—x0
flzo)—f(z1) _ f(=z1)—f(=zqg)

(22, [(22)) Pulze) = f(22) = Ap=—2_——=
Az, Ay — too complicated

NEW NOTATION

We can note in the above expressionsAgrand A, a relationship in the forms of
the expressions, which leads us to the following new natatio
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We call f[z;, 25] = f(“ffx“ thedivided differencat [z, 2], etc.

f[x(]] ( ) = A(]
flxo, x1] = [xll] flzo] =4
flzo, x1, x2) = M A

T2—T0

etc.

Thus, the polynomial which interpolates

($0,f($0)),crl,f($1)),”w

can be written as

We can build a divided difference table very easily:

= f[wo]
::j{$0,$ﬂ

= flwo, x1, 7]

(@n, f(2n))

P,(x) = flzo] + flzo, z1](x — x0) + flzo, 21, 22](x — 20) (2 — 21)
+ -+ flro, @1, o ) (= x) (2 — 21) -+ (2 — 1)
n—1
= Pn—l(x> + f['r(b Iy, 7'rn] H(SL’ - xl)
1=0
flzo] = f(zo)
_ flzil—fl=o]
aj — g7 JI7EL
Tliwo, @] Lo Newton’s
f [:c I I Divided
Floyn, ] = sl o) Difference
flxo, @1, oy ] = flz1,32,. 0] = fl20,@1, . Tn—1]

Tp—Io

Z; f[xz] f[xi, $i+1] f[%', Tiy1, $i+1] f[%" Tiy1, $i+1]
Zo f[xo] To. 1
. ;Fjl% i%x(l):'rj ;{I‘O?ml?xz% f['r07x17'r27'r3] f[ ]
X T T1,T2,T Lo, L1,T2,T3, T4
oo Sl IO g e SEemenad SRR
x [ f[l’g, 1'4]

4 5174]

Example. Find the interpolating function for the followitaple

¢t |0 1 2 3

01 3 4
F@) |3 2 1 0
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1. Find Newton'’s divided difference.

v flxi]

O = N W
|
— =
|®I)—l
D=
i

B W R o

2. Find the interpolating function.

Pya) =3+ (~1)(z—0) + £ (r=0)(z 1)+ (~5)(z — 0)(z — 1)z ~3)

65



COMPUTING THE DIVIDED DIFFERENCE

Give[n(xo, f(xo)),](xl,f(xl)), ey (T, f(2,)), how can we computé|zo], f|xo, 1],
ceuy f Loy L1y .eey Ty ?

We use two vectors, /. Their initial values are

(.To, L1y eeny Jj‘n)

7= (f(20), £ (21)s oo £ ()

l.e.,yo = f(x0), ..., yn = f(zn)

—
Zo Yo
i T1 U1 ‘Z; Yo Ys
1) Y2 Ys Y3
xs3 Y3

Ty —Tj—1 Ty — Xj—2 Ty — X4—3

After the first column is completedy, = fxo], y1 = f[zo, 21]
After the second column is completedjy = f[zo|, v1 = f|xo, z1], y2 = f|xo, T1, 22]
After the third column is completed:yy = f[zo], 1 = flxo, z1], ..., y3 = flxo, 1, T2, 23]

and then we have all Newton'’s Divided Differences.

Algorithm
let y[O] := f(x[0]), y[1] :=f(x[1]), ..., y[n] :=f(x[n]);
for j =1, 2, ..., ndo
for i =n, n-1, ..., | do
ylil = (y[il - yli-1)/(x[i] - x[i-j]);
end;
end;

The result of this algorithm is thgtcontains the divided difference
Yi = f[x())xl) ceey xz]
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Recall Horner’s rule,

P.(z) =yo+yi(x—z0) +ya(x —x0)(x—21) + -+ yp(x —20)(x — 1) - - (x — )
=yo+ (. —20)(y1 + (x — 1) (Y2 + )

This requires only half as many multiplications as the o

SUMMARY

The polynomial of degree which interpolates

(IOa f($0)7 (1’1, f(zl))a X (xna f(IN))

is given by
ﬁ’n(x) = f(zo)lg(x) + -+ + f(2n)ly(x) = X1 f(7:)I} (x) ~Lagrange formula
P,(x) = flxo] + flzo, x1](z — xo) + - - - + flxo, 1, oy xp](x — xo)(x — 1) -+ (2 — 1)

=>" flro, 1, ..y xi](x — xo)(x — 1) - - - (x — x;_1) —Newton’s Divided Difference
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CISC 271 Class 12

Finite Difference, Errors

Consider if the point$z; } are evenly spaced. Létbe the fixed distance between
the points. Then we can define

Af(z;) = flzi+h)— f(z:)
= f(@iy1) — f(z3)
orAfi = fir1i—fi, fi= f(x)

This quantity is called the forward difference ffx) at z;. Since the points are
evenly spaced;; = zo + th,i=0,1,2,...,n.

Forr > 0, we can further define
ATy = AT fin — A" fi,
with A°f; = f;. For example,
A’fi = AAf) = Alfiyr—=fi) = Afii=Afi = (fire=fir)) = (fin—fi) = fiya—2 i1+ /i

Now, let us consider the form of the Newton Divided Differenwith evenly
spaced points.

fl_fO

Iy — X

f[l’o, xl] =

= A%
flar, wa] — flzo, 7]

T2 — To

flzo, 1, 20] =

1 /1 1

= o (52h - 50)
1

= gEth

In general, and this can be easy proved via proof by indugction
1
flro, x1, .y p] = WAkfo
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We can now modify the Newton interpolation formula to aniiptdation formula
based on forward differences. Since the polynomial is ddfooatinuously, rather
than with respect to the discretely spaced points, we wilhédor the valuer at
which the polynomial is defined,

_[L’—IL’O
/’L_ h )

wherey is a continuous parameter.

Therefore,
r—x; =xo+ ph —x9—ih=(u—1)h

which leads to the following form for the interpolating foula
Pua) =3 ( f ) A o,
=0
where we have used thenomial coefficients

(u)zu(u—1)~-(u—i+1)

( 2!

, ©>0

and<g>:1.

For examplen = 1.
Pi(z) = fo+ pAfo

As with Newton divided differences, we can easily consttabtes to evaluate the
forward differences.

Z; fi Afi Ain A3fi
Zo fo

Afo 2
Y AN
no g ARy, A
Ty Ja fs

Example. Find the interpolating function for the followitaple
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1 0
f(z:) |3

1. Find the forward differences.

Z; f[xi] Af; Azfz' A?’fi
0 3 4

1 2 —1

2 0 :? 2
3 -1

Note: forward differences of order greater than three armat entirely the result
of differencing the rounding errors in the table entriegréfore, interpolation in
this table should be limited to polynomials of degree lessttour. (See example
in Atkinson text, p. 151; G & W, p. 232).

As you can see, there is nothing particularly special albowtard differences.
We can equally definbackwarddifference interpolating functions based on

Vfi=fi = fia

Extra Notes

ERRORS INDATA AND FORWARD DIFFERENCES

One use of the finite differences it the detection of noiseatagdwhen the noise
is large with respect to the rounding errors or uncertaintyre of physical mea-
surement.

First, let us consider a property of the forward differenedsich derives from the
fact that they are linear:

A'(af(z) + By(x)) = aA"f(z) + BA g(z)
This can easily be proved using proof by induction.
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Let {f;} be our experimental results, add;, = e(z;)} be an error larger than
rounding error, and f; } be our desired function. Therefore,

fi=Ti—e
with f; being our table value that we used to construct our differeable. Then
A"f, = A'f;—Ae;
R'rlfxiy oy ie] — ATe;

(r) (¢,
— hr'f’!f (52) _ Arei
r!

= W fO&) - Ae;

Where& € (Zlfi, ey xi—i—r)-

So the first term becomes smalleramcreases, as we saw in an earlier forward
difference table. But what is the behaviour of the error? Siagr an error of the
following form:

6_{0i#k

e 1=k
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The forward difference table for this function is:

X

Lg—4
Tp—3
Tp—2
Tp—1
Lk

Tr41
LTk42
Tp43
T4

™
Sh

oo OO

O O OO N OO0 OO -
o O O

A€Z‘ A2€i A3€i

—3€
3¢

Therefore, the effect of the single rounding error will prgpte and increase in
value as the larger order differences are calculated. Buiding errors are a
general error function composed of a sum of the above erratifon at eachr;.
As their differences grow in size, the higher ordetf; become dominated by the
rounding errors (especially when they start growing in)size

NOISE IN DATA

Suppose our data has an isolated error that dominates thdinguerrors. We
would then look for a pattern like that above for a singleConsider the following

example:

fi
10396
12096
13782
15451
17101
18738
20337

21919
23474

Af;

.01700
.01686
.01669
.01650
01637
.01599
01582
.01555

A2,

—.00014
—.00017
—.00019
—.00013
—.00038
—.00017
—.00027
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A3,

—.00003
—.00002
.00006
—.00025
.00021
—.00010

Error Guess

Guess A3 f;
0 —.00003
0 —.00002
€ —.00002
—3€ —.00002
3€ —.00002
—€ —.00002



Usingr = 3 and one of the errors is choosen randomly, say the first, viveeat
a guess of = —.00008. We could have guessed= —.00007. Therefore, we can

correct one of the entries:

fi = fi + e; = 18738 + (—.00008) = .18730

If there are more errors, their results might overlap.
End of Extra Notes
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CISC 271 Class 14

Interpolation Errors

In all the above we have been using a polynomigdlr) to interpolate and approx-
imate a functionf(x). Why should we use a polynomial? Because

Weierstrass Approximation Theoreh f(x) is continuous on a finite
interval [a, b], 3 a polynomialP, (x) of degreen such that

|[f(2) = Pu(z)] <,

throughout the intervdk, b], for any givene > 0. (The degree re-
quired of P,,(x) is a function ofe).

So, we can get uniform approximation using polynomials.

We have discussed the order of the polynomial beifgr » + 1 given points. But
why is the polynomial unique? Consider the following arguati®y contradiction:

Suppose there are two different polynomials of degragerpolating
the same:+1 points. Call these polynomial3,(x) and@,,(z). Their
difference is a polynomial of at most degnee

D(x) = Pu(x) — Qu(x).

Of course,D(z) is zero at the given + 1 points, such thaD(z) is a
polynomial of at degree at mostwith n+ 1 distinct zeros. But this is
not possible unlesB (z) is identically zero. Hencé, () and@,,(x)
are the same polynomial.

One consequence of this result is that if we have a uniqueiumg(z) and a
unique interpolating polynomidt, (x), then we also have a unique error function:

PROBLEMS IN POLYNOMIAL INTERPOLATION

We know
# of interpolating point- degree of polynomiak
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So with
more points= more places wherg, (z) = f(z)

But is it true that

asn — 400 :?> P,(x) agrees withf (x) everywhere ota, b 7

Le., |Po(z) — f(z)] =2+ 0 asn — +oo
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This depends on

1. the functionf(x) and

2. the interpolating pointsg, x4, ..., z,,.

But, as a rule,

|Pn(x) = f(2)] # 0

ReasonA polynomial of degreen hasn — 1 turning points (i.e., the number of connecting
segments define unique directions). If the degree is verly, liige polynomial turns up
and down very quickly. High degree polynomials tend to havigyles” or oscillations.
We should try to avoid using high degree polynomials.

Therefore, we end up with two main problems:
1. The error is ill-behavednd
2. The polynomial is not what you might think.

Classical Example
A bell shaped function (Runge):

1
1) = T

If x9,21,..., x, are evenly spaced (i.e., sampled uniformly), then

x € [-1,1]

rr[lalxll |P.(x) — f(z)| = 400, asn — +oo
xe|—1,

The behaviour between the sampled points grows without.limi
See Figure 14.1: A picture of this function, and an interpotapolynomial.
This leads us to two unusual results:

1. If f/(x) is bounded on—1, 1], then the sampling sequence
Sn = {zi|x; = — cos (iw) ,1=0,...,n}
n

givens an approximating polynomiél,(x), using the same interpolation
method, that uniformly converges ¢n1, 1]. These are calle@€hebyshev
points.
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Figure 14.1: A picture of this function, and an interpolgtpolynomial.

2. For any sampling sequencg on [a,b] wherei # j = z; # x;, there
exists a continous functiofi(x) on [a, b] that cannot be approximated, i.e.,
limy, oo (Pn(z) — f(x)) = 0.

ROUND-OFF ERRORS

The value atf (z;) can only be approximated, within a round-off errorepf

fi=f(x) + e

This round-off then propagates through the differencirgause

) f[l“o] = Jo

f[x(]?'rl] = T1—70

and so on, so our ideal polynomial, in divided differencexfor
n k—1
Pyz) =) (f[xo, T, xg [[ (@ — [,UZ)>

k=0 1=0
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is deviated.

If we supposed that the points are equally spaced,land lete be the largest;,
we can derive 3 .
max |P,(z) — P,(z)] < 5(2" +1)

a<z<b -

and finally,
Y RIM, o e(2741)
4(n+1)! 2

whereM,, . is the discretization error term.

[f (@) = Bu(2)] <

Comment: errors can be decreased if thealue to be approximated is centered
on the points used for the interpolation.
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CISC 271 Class 15

Piecewise Polynomials

In general, what we observed before was that the polynomp@ab&imation error
decreases as we add points, and then begins to worsen. Tothgpform of
an approximation to a large number of points, leeally interpolate. E.g., if
quadratic interpolation has the best error, then find amiatér;, x;, ] containing
x;4+1 and use those three points.

Fact: degree of interpolating polyn’l=# of interpolating points - 1

degree = small # of points = large

Want: (avoid oscillating) (good approximation)

So, this is the idea. We hawve + 1 points, xg, ..., z,, € [a,b]. If we use one
polynomial to interpolate all the points, we have a polyralnoif degreen. But
suppose that we break {ip b] into m pieces:

[ala bl]a [a27 b2]7 ceey [am7 bm]a
with n; 4+ 1 pointsinjay, by ], no + 1 points infaz, bs), ..., nm + 1 poiNts infa,,, by, ].
Eachn, is much smaller that. Also, b; = a;,1.
See Figure 15.1 for a picture of the subdivision of the oagjinterval.

P,,(x), degree= n,

Use a polynomiaP,, (=) to interpolate all points i, b, | )
P,,(z), degree= n,

=
Use a polynomiaP,, () to interpolate all points ifug, by] =
Use a polynomiaP,,, () to interpolate all points ifa,,, b,,] = P, (x), degree= n,,

Thus the polynomial®,, (x), P,,(x), ..., P,,, (z) are low degree polynomials, but
none of{ P,,(z)} interpolates all of the pointsy, z1, ..., ,,.

a n+1 points b
\ | | | |
{ ] T T . T 1
a, = n, +1 points—> b, az=ng + 1 points- b,

a,= n, +1 points=b, a;n,+1 points-b,

Figure 15.1: A picture of the subdivision of the originaléntal.
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1
T

a b, as by
a, b,

Figure 15.2: Picture of the possible subintervals and jpaiating polynomials.

Define a new functioP ()
P, (z) x € |ay,b]
Pla) = P,(x) =€ [a'g,b2]
Pu(2) € [am by
1. P(x) is a polynomial on each subintervial;, b;], with possibly different

degrees in each subinterval, but not necessarily a polyadamni the total
interval(a, b].

See Figure 15.2 for a picture of the possible subintervalsamresponding
interpolating polynomials.

2. P(x) interpolates all pointsg, x4, ..., z,.

Definition: A function P(x) is said to be a piecewise polynomial pn b if there
are pointsa = 2y < z; < --- < z, = b such thatP(z) is a polynomial on
21, zi41] for each.

Suppose on the intervéd;, z;.1],
P(z) = P,,(xz), degree=n,,
how to computeP(z) for z € [a, b]?
(a) locate the intervdk;, z;,1] which containst. l.e.,

findi such that; < 7 < z;44
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Figure 15.3: Picture of linear interpolation.

(b) apply Horner's method to compute the polynomial

B, (7)

Let us consider an example with linear interpolation, wleareh interval between
points{z;} is interpolated by a straight line.

See Figure 15.3 for a picture of a linear interpolation ofteo$@oints.
For a given pair of points, we define the interpolation dverz; ]

g2(x) = f(x:) + flvi, via](x — 24),

whereg,(z) is a linear interpolation of two points.
From our previous theorems, we have

/(&)
2

f(@) = go() =

( —2)(z — 2ip1)

for some¢; € (z;,x;11). SupposeM, boundsf”(z) on [z;, z;11], and leth =
211 — x| Then the largest possible value far— z;)(z — ;41) is % - 4, so

£(2) — ga(e)| < SR

Thus, to increase accuracy, we just need to add more points.
Three observations:
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1. For akth-order piecewise polynomial, the error bound is

R2((1+1/2)h)((2+1/2)h) - ((k — 1/2)h) _  BF*!
Jaax |f(z)—gr(x)] < Mkz Gt 1) < T 1)Mk

So, these become more accurate as the order increasesgaaslbh is
well-behaved a& gets larger.

2. At theknots thosex; where we switch polynomials, we may have a com-
pletely useless estimate 6f(z).
E.g., linear and quadratic interpolations hawspsat [some] points. See
for example, figure 15.3.

3. These are essentially local, and information outsida sabinterval has no
effect.
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CISC 271 Class 16

Cubic Splines

Cubic spline interpolates address these latter two problaentioned at the end
of Class 22. The major problem with the previous piecewiserpolates is that
they are not smooth everywhere @nb).

A cubic spline,S(x), is a piecewise polynomial such that
1. S(z) = polynomial of degree 3 on each subinterjgl ;1]
2. S(x),S'(x), S"(x) are continuous ofu, b).

Interpolation by Cubic Splines
Givenz, < x; < --- < z,, find a cubic splineS(z) which interpolates (=) at

{z:}.

Here we taker; as the end points of the subintervals. l.e.,

[a,b] = [xo, 21| U [z1,25] U -+ U [x—1,2,] mnintervalsin total.
So, givenzy < xy < -+ < xy, f(xo), f(z1), ..., f(xn), find S(z).

2. S(z) = apolynomial of degree 3 on each inter\al =, 1], =0,1,...,n—
1.

3. S(x) is smooth, in that (z), S’(z), S”(z) are continuous ofu, b).
So, on each;, x;11],
S(z) = a; + bix + c;x* + dia®
So, S(x) is determined byi;, b;,¢;,d;, i = 0,1,...,n — 1. Therefore, since we

have 4 unknown coefficients in each of thsubintervals, we havé&: unknowns
in total.

Equations
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1. S(z) interpolates g, f(xo)), ..., (xn, f(z2)).
S(z;) = f(zy), i=0,1,....,n
This givesn + 1 equations:
Qo —+ bgl’o -+ CO.T02 -+ d0$03 = f(.l’o)
a; + biit1 + i + diwi = f(®ip1), i=0,..,n—1
2. Continuity inS(z). lL.e., fori = 0,...,n — 2, S(x;) has the same value
whether{z;, z; 1] Or [x;41, z;42] IS Used. This gives — 1 more equations:
a; + by + Cix?+1 + dixfﬂ = ait1 +biy1mi1 + Ci+1$z2+1 + di+1x§+1
3. Continuity inS’(x). l.e., fori = 0,...,n — 2, §'(z;) has the same value
whether{z;, z;11] Or [x;41, z;42] IS USed. This gives — 1 more equations:
bi + 2Ci«ri+1 + Bdﬂ,’?_i_l = bi+1 + 2Ci+1«ri+1 + Bdi+1$?+l
4. Continuity inS”(x). l.e., fori = 0,...,n — 2, S”(z;) has the same value
whether{z;, z; 1] Or [x;41, z;42] IS Used. This gives — 1 more equations:
2¢; + 6d;wip1 = 2¢i41 + 6dip17i4
So the total number of equationstis — 2, whereas the total number of unknowns
is 4n. Note that we could not have added another derivatb/€)( or level of

smoothness, to the definition of the cubic spline since thermptoblem would be
over constrained.

Conclusion:Sincedn—2 < 4n, there are more than one cubic spline interpolating
([L’o, f(l'o)), LS (xna f(xn))

To find a unique cubic spline, we need to impose two more caimss. There are
three commonly used conditions. Each one gives a uniquesspli

1. Complete Cubic Spline.
If f'(x¢) andf’(x;) are known, we require that

§'(wo) = ['(x0), §'(2n) = f'(2n)

With these two additional constraints, there is a uniquaaspline inter-
polation for(zo, f (o)), ..., (zn, f(zn))
Figure 16.1: Complete Cubic Spline.
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P (x6)=S" (x,) _ -

y ~e_ ' (x,)=S"(x,)

Figure 16.2: Natural Cubic Spline.

2. Natural Cubic Spline.
In this condition, we require that

S"(x9) =0, §"(x,) =0

Again, there is a unique natural cubic spline.
Figure 16.2: Natural Cubic Spline.

3. “Not-a-knot” Condition.
In this condition, we require that

S"(z) is continuous at; andx,,_,

l.e.,

S"(xy) = same value when eithéty, =] or [z, z2] is used
and S”(x,_;) = same value when eithét,,_», x, ;] or [x,_1, z,] iS used
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S’ %, ) = constant S™" X ., ) = constant

, ; E— | = X
Xo X1 Xo X Xpa X

n

Figure 16.3: “Not-a-knot” Condition.

With these two constraints, there is a unique cubic spline.

Why “not-a-knot”™? SinceS(x), S’(x),S”(x), and.S” (x) are all continous
atxq, S(z) is in fact a polynomial orxg, z5]. Similarily, S(x) is a polyno-
mial on[z,_2, x,]. ThusS(x) is a piecewise polynomial on subintervals

['T()u .IQ], ['T27 .’,173], “eey [.’,Un_g, xn—2]7 [xn—27 xn]

So, 1, r,_1 are not end-points of a subinterval so they are not knots. Of
course,zy, x,—; are still interpolating points sinc8(z;) = f(x;), and

S(wn-1) = f(Tn-).
Figure 16.3: “Not-a-knot” Condition.

How TO COMPUTES(x) AT Z.

1. Decide which condition, out of the three outlined aboweeyse to define
which cubic spline to be used.

2. Computeu;, b;, ¢;,d;(i = 0,...,n — 1) by solving4n equations, which we
can do by using Gaussian Elimination, or more advanced igeés (e.g.,
Matlab’sspl i ne() function).

3. Locate the intervdlr;, z;1] such thati € [z;, x;11].

4. Using Horner’s method to compute

S(j) = Qjt1 + bz’—i—li’ + Ci+1i’2 + di+1i’3.
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Note: Usually we writeS(x) on [x;, z;+1] @s
S(z) = a1 + bis1(x — ) + i1 (@ — 23)* + diga (v — 7).

In this way,a;,; can be easy found siné&z;) = f(x;). Thus we haves(z;) =
a;+1 = f(x;). Thus on the intervdlz;, z; ]

S(x) = f(x;) + bigr (@ — 2) + cipa (v — ;) + dig1 (. — 3;)°.
Of coursep;, ¢;, d; still need to be found by solvingy: equations. This can usually
be done using library subroutines.

Example

Consider a Natural Cubic Spline fitted to the functjfix) = €” sin x at the fol-
lowing points

8
—
—
5

W N R oS
o
\‘
N

Therefore,S” (zy) = S"(z3) = 0.
Sincen = 3, we have 12 equations:

ao + bo0 + 0> + dp0® = 0

ap +bol + col2 +dp1®> = 2.29
ay + b2+ 22 +di2° = 6.72
ag + bo3 + 3% + dy3® = 2.83

&0—|—bol—|—0012—|—d013—a1—611—0112—61113 =
ay + 612 -+ 0122 + d123 — Q9 — 622 — 0222 — d223 =0

bo + 2¢ol + 3dg1% — by — 2¢;1 — 3d,12 = 0
bl + 2012 + 3d122 — b2 - 2022 - 3d222 ==

200—|—6d01—201—6d11 =0
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201 + 6d12 — 202 — 6d22 =0

200+6d00 =0

262+6d23 =
which in matrix form is
1000 0 O O O O O O 0 J[al [ 0 ]
1 111 0 0 0 0 0 0 0 0 bo 2.29
00 00 1 2 4 8 0 0 0 0 Co 6.72
0000 O O 0 o0 1 3 9 27 do 2.83
1111 -1 -1 -1 -1 O 0 0 0 a 0
0000 1 2 4 8 -1 -2 —4 =8 by | 0
0123 0 -1 -2 -3 0 0 0 0 ca | 0
00 0O0 O 1 4 12 0 -1 —4 -12 dy 0
00 26 0 0O -2 -6 0 0 0 0 Qo 0
Oooo0oo0 o0 0 2 12 0 0 -2 —12 by 0
0020 0 O O O O 0 o 0 Ca 0
0000 0 O 0 0 0 0 2 18 ||d]| | 0
which has the solution
[a07b07007d07

ai, by, ci,dy,
a2752702>d2] ~
[O, 1.16,0,1.13,
4.61,—12.67,13.84, —3.49,
—42.17,57.50, —21.25, 2.36].

See figure 16.4 for a plot of the Natural Spline.

If the two additional conditions for the Natural Cubic Sgiare changed to that
of the Complete Cubic spline§’(zo) = f'(zo), S'(zn) = f'(zn), We get the
Complete Spline in figure 16.5.
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f(x) = e”x*sin(x) interpolated by P_3(x) and a Natural Spline

— exact \
-2+ |— — Lagrange Polynomial \\ -
Natural Spline !
-3t (.
1 1 1 1 1 1 1 !
-0.5 0 0.5 1 15 2 25 3 35

Figure 16.4: A comparison of a Natural Spline and a Lagrarggi®mial inter-
polating the same function? ein .
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f(x) = e™x*sin(x) interpolated by a Complete Spline
T

-2 — exact §
Complete Spline
_3 - -
| | | | | |
-0.5 0 0.5 1 15 2 25

Figure 16.5: A Complete Spline interpolatingysén .
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CISC 271 Class 19

Numerical Integration

Quadrature — comes from the process of “squaring”, of findirgguare equal
in area to a given area, e.g., finding the area of a circle. Neams numerical
integration.

The problem is either

e Given f(z) defined ora, b), find I = [* f(x)dx or
e Givenf(x;) defined on{z;}, find I = [ f(x)dx

o

Figure 17.1: Picture of an example of an integration. Tha af¢he shaded region
is the result of the integration.

See Figure 17.1 for a generic example.

Easy examplel = [ vdx = 1(b* — a?) or more generallyy! P, (v)dx
Hard examplel = [ e5(®)dgz =?

In many applications,

f(z) — complicated
ff f(x)dx — cannot be calculated analytically
— must be approximated by a numerical value

The approach:

1. Locally interpolatef(x) by a simple functiory(z), e.g., a polynomial in-
terpolationP, (=), whose analytical integral is known.

2. Use the integral of the simpler function to approximﬁftgc(x)dx locally,
summing the local results as we move along.
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Our goal is to get as accurate an answer as possible, withvesifietion evalua-
tions as possible.

Quadrature can be done wiilkedor variable &daptivg spacing. We will look at
two fixed rules: Trapezoid and Simpson’s; and one adaptiee Twapezoid.

TRAPEZOID RULE

The simplest polynomial approximation to a function is acpigise linear inter-
polation. See Figure 17.2.

()

X

a b

Figure 17.2: Picture of a piecewise linear approximatiothefunction, and the
corresponding resulting integration.

Consider a linear interpolation ¢f(z) between points; andz; .
Therefore [+ f(x)dr ~ (241 — @)W

So, if the stepsize iB, then the area of any trapezoid is
h
9 (fi + fir1)

The integral is thus approximately, far+ 1 points,

I(f) ~ Tn(f) = ?:_01 % : (fz + fi+1)
= % ( o i fi+1)
[(fo+ it fot -t facat fumt) + (i + fot -+ facr + fo)]
(fo+2fi+2fo+2fs+ - +2fu1+ fr)
(fo+25i5 fit fa)

wherefy, = f(a) andf, = f(b).

DISCRETIZATION ERROR

SIS NIy ST
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To perform the integration using the Trapezoid Rule, we ppg@imatingf(x)
on [z, x1] by a first-order polynomiaP; (z). Thinking of this as a Taylor expan-
sion aboutry, we know that

f(x) = Pi(z) + Ra(zo)
T — 19)3

= A+ I g B
(x — 3)?

2

" (o) + O(R")

(x — 39)3
6

Q

Pi(z) + f"(x0) + f"(20)

and in particular
h? h3
f(z1) =~ Pi(z1) + gf"(f’fo) + gf'"(fo)
The errorE(R) inthe integrall (f) — I(P,) is

E(R)

2 0
25
g s
S~ |
SR 8
—~ o
SN—

=

H /—:

SN—

[\ ~—
QL QL

S S

Q

Q

Thus, the total error is the Trapezoid Rule minus the infegfaP;(x) minus
E(R):

2 3
E xR+ 1)~ o)~ )~ ) - B()
W
~ ol (@)
h3
~ EMQ

for a boundM/; on f”(xz) over|zg, z1].
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The total possible quadrature error is the sum of all thereror each of the
panels|z;, x;1],

IA

L) - 1(F) g«%ﬁj

Msyh3n
12
My (b — a)h?
12
= O(h?)

Therefore,
Mg(b — a)

()~ 1) < 2220

so this is a second-order method.
Example

Evaluatel = [; € cos (x)dxz by composite trapezoidal rule using 4 subintervals
(panels).

Solution:[a, b] = [0, 7], f(z) = €* cos (x)

b—a m T T 37
n=4h= o :ZSUChthaR’O:O,JIl:Z’IQ:§,I3:Z$4:7T.
X x

7(5) = WY 4 )+ fl) + g+ T

1 ~93.141
= %[5 +1.5500 + 0 + (—7.4605) + %}

— —13.336
n=8 To(f) = —12.382

True Sol'n ~ —12.0703
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CISC 271 Class 20

Simpson’s Rule and Newton-Cotes Integration

SIMPSON'S RULE

Now, let’s locally approximatg () by a quadratic polynomiab,(x). Hereafter,
we will alwaysassume that is even (for deep reasons).

See Figure 18.1. The knots fér occur at the even points. The regions between
knots are calleghanels With n + 1 points, the number of panelsnig2.

knots

f(x)

X

a b

Figure 18.1: Picture of a function approximated by piecevgaadratic polyno-
mial.

We can develop Simpson’s Rule by using Lagrangian intetjpoldo find P (z)
over|z;, z;12| and then integrate it to finfl( ). See Figure 18.2.

P2

x[i] x[i‘+l] x[i+2]

Figure 18.2: Picture of a function locally approximated lmuadratic polynomial,
between the points; andzx; 5.

The interpolation function is

Py(z) = f(@)l§(x) + fzi) (@) + f(2i2) 13 ()

where

2 _ (= 2i1) (0 — Tiy2) 2(0) — (z — 7)) (x — 7i19)
folw) = (Ti = i1 ) (75 — Tiga)’ o) = (Tig1 — i) (Tip1 — Tig)’
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Y (D [ ey
) G ) — )

Then
Ti42
I(P) = / Py(z)dx
Tito — T 4 ipo — ;) Tito — T
= flvi)————+ f(rip) ———— + [(Big2) ————
6 6 6
Therefore,

/:HQ f(x)d$ ~ ](P2) = g (fz + 4fz'+1 + fi+2> )

whereh = x; 11 — ;.
To get the sum over the entire intery@l b|, we sum over all the panels, noting that
the end points of the panels are have even numbered indidtes; = (b—a)/n,

S = Mot a4 )+ D (A ) b S Gt ah 1)

h
= > 3 (fi +4fis1 + fizo)
i—even

n/2—1

= X 3 (Pt dfasi+ faiso)

=0

h
= 3 (fo+afi+2fo+4fs+2fs+4fs+- +4fus+2fno+4fu1+ fr)
h n/2—1 n/2—2
= 3 (f0+4 S far1+2 D foire +fn>
=0 =0

By using more advanced techniques, we can show that forsevend f (x) four
times differentiable, the local error per panel (contagrtinree points) is
M,
I1(P) -1 e —
1(P) ~ 1(f) < W55
with M, being the bound orf¥(z). For the composite Simpson’s Rule over the
entire domain the upper bound on the error is

M4(b—a) 1 M4(b—a)5

Su(f) — 1) < st - S 2l
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Therefore, Simpson’s Rule feurth-order.
Example

Evaluate/ = [ €” cos (x)dx by composite Simpson'’s rule using 2 subintervals
(panels).

Solution:Again, [a, b] = [0, 7], f(x) = €” cos ()

b—a T T 3
n=4h= " :ZSUChthaYL’OIO,JIl:Z,$2:§,$3—Z$4—ﬂ'
h
CSR = g[f(xo) +4f(w1) +2f (22) +4f(23) + f(24)]
= 17T—2[1 + 4(1.5509) + 2(0) + 4(—7.4605) + (—23.141)]
= —11.985

The exact solution is-12.0703. Thus withn = 4, the Composite Simpson’s Rule
has an error 00.08528, as compared to the Composite Trapezoid Rule for the
samen, which has an error 0f1.2657. With n = 8, the result of the CSR has
the same magnigude of error as the result using512 with the CTR. Since our
goal is to have an accurate a result with a few a number of inmet/aluations as
possible, the CSR is a marked improvement for this function.

Assessment

o If the function is smooth, Simpson’s Rule is better.
¢ If the function has abrupt changes, then Trapezoid is better
e Higher-order methods exist, but are tedious.

e A simple, interesting extension $pline quadrature
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N N L

NEWTON-COTES INTEGRATION

Consider the following:

l.a<zy<x <--- <z, <bwherexy, andzx,, may not be the endpoints.
2. interpolatef (z) atxy, ..., z,, by a Lagrange formula.
Pr(x) = flao)lg' (z) + - -+ + fam) L (2)
so that
b b b
[ Pu@)dz = o) [ @) e+t flan) [ @)
= wOf(xO) + wmf(xm)
wherew; = [?17(x)dz.

3. [P f(z)dx ~ wof(zo)+ -+ + wmf(zm). This is theweighted averagef
f(@o), f(@1), - flam).

Some commonly used Newton-Cotes formulae< bﬁ”). Note that the error is

I(f) = NCu(f).

rule ~ [° P, (z)dx error Rule
hf(et?) B f(g)  midpoint
5f(a) + £(0)] —f()  trapezoid
Sf(a) +4f(%52) + f(b)] —S—%f“)(&) Simpson’s
3h(f(a)+3f(a+h)+3f(b—h)+ f(b)] —%f(‘*)(g) three-eights rule

2Tf(a) +32f (a+ h) + 12f(4E2) +32f (b — h) + 7f(b)] —2=f®(¢) Boole’s rule
If his small, then the error is also small. In practiee; « is fixed, e.g.,

1 2
foer
0 0

So, we divid€a, b] into small intervals (panels).

COMPOSITERULES

Composite rules are constructed in the following manner:
1. Divide[a, b] into p subintervals (panelsy, 1], [t1, t2], ..., [t,—1, b].
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2. Apply the basic rule (i.e., one of the Newton-Cotes formeudbove) to each
of [t;, tiv1].

3. For convenience, we assume edght; 1] has equal length and one basic
rule is applied to each interval.

Note that if there are panels each using a rule usimgt+ 1 points on each panel,

thenn = mp Leth = =2 andx; = a + ih. For example, look at figure 18.3.
Note thatt; =
t[q] t[1] 2]
| | | | | | |
[ \ \ | \ \ |
X0 X1 X2 X3 x4 x5 6]
a b

Figure 18.3: Picture showing= 2, m = 3, andn = mp = 6.

Then

I = /abf(x)dx

_ /tt f(x)dm+/t1t2f($)d$+"'+/:1 f(x)da

Composite Trapezoidal Rule
tit1 Tit1 h
/ti f(z)dx = /m f(z)dx ~ §[f(x2) + f(xig1)]

b

I = flz
_ I:zé/:”lf
= 550 + )
= I gy st ey + 1)
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Composite Simpson’s Rule

/titiﬂ f(x)dx _ /:2i+2 f(g;)daj >~ g[f(l’gz) + 4f(l’22‘+1) + f($2i+2)]

21

I = /ab f(z)dz
L
= ;/t f(x)dx

n__
2

=S [ pwas

i=0 VT2
2 g[f(%z) + 4f (@2i41) + [ (%2i42)]
—0

n/2—1 n/2—2
(fo +4 > far1+2 ) faso+ fn)
=0 i=0

12

w| s

Example (again)

Evaluatel = [; € cos (x)dxz by composite trapezoidal rule using 4 subintervals
(panels).

Solution:[a, b] = [0, 7|, f(z) = €* cos (z)
b—a

d ™ ™ 3
n=4h= n - Z such thatry = 0,21 = Z7$2 = §,$3 = Zm =T.
z x
CT.R = h[f(QO) + f(@1) + fl@2) + flas) + f(24)]
1 —923.141
= %[5 + 1.5509 + 0 + (—7.4605) + %}
= —13.336
n=38 CTR = —12.382

n = 64 CTR = —-12.075
n = 512 CTR = —-12.070
True Sol'n ~ —12.0703

So in a composite method, aggets larger=- the error gets smaller. But how do
we know whichn to take for a given accuracy?
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CISC 271 Class 21

Adaptive Integration

LoCcAL ERRORESTIMATES

When we do the quadrature @n, ¢,,,] we have to pick a stepsize; let’s break the
interval into 4.

To T1 T2 T3 T4

ti it

If we do the quadrature with the Composite Simpson’s Rulequsi, x, andzx,,
we get

. 'y
SU(f) = 3 [fo+4fa+ fi].

How accurate is this?

Try the quadrature on the left interval, x2] and then onz,, x4).

SL(f) = [fo +Afi+ o Sk(f) = [fz +4fs+ fil

to get a better estlmaté"( ) =8L(f) + S&(f).

The local errors are (assumisg(f) > I ( ) andS’(f) > I'(f))
)=
)=

Ii(f) = S'(f “f D)
and Ii(f) — Si(f [f<4 (8:) + O ()]

Assume thaf ™ (z) is nearly constant ofx,, z,]. We can then set

f(4)(ai) = f(4)(/6i) = f(4) (i) = M;.

Then,
i i 2 .5 i & 2° 5
I'(f) = $'(f) & =5 hIM; and(f) = §'(f) ~ S i
and since 5
SUf) = S(f) = =g hi (2 = )M,



2,5, S = S(f)
= TR T

and so |
ERR' ~ I'(f) — §i(f) ~ 2 = 5')

This leads us to an algorithm, given an error tolerance afaps

sumall the ERR[i] over all the panels for a given interval
if (total of ERR[i] < epsilon) then

use result = sumfromi=0 to p-1 of S[i](f);
el se

break each [t[i], t[i+1]] into 2 subintervals (panels) and repeat;
end if

This may not terminate due to round-off error or some othiéicdity (e.g., /™ (z)

is not really constant). So, it is necessary to subdividengtéid number of times
(e.g., 10).

Also, this approach may be inefficient, in that we may be demme work that is
unnecessary.

Example
See Figure 19.1.
Using C.T.R. First calculaté,, /.
I, — I is large, so subdivide panels

1y — I is large, so subdivide panels
Ig— 1, is large, so subdivide panels, etc.

f(X) .- 11 (area below line)

a (a+b)/2 b

Figure 19.1: Picture of a global adaptive approach to irstnggaccuracy.
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This is not a good way to do this calculation, for the follog/reasons:

In computing eacHi,,, we always work with the whole intervat, b].

We did not realize after the first step that the integral“#, b] had been
obtained exactly.

The error inl, is from [a, 2t2], notfrom [<2, b).

Therefore, in the subsequent steps, we should only d[uid!(g—b] into small
intervals. No need to further dividét?, o).

This leads us to a better method.

ADAPTIVE METHOD

In this method we

e Use more subintervals in places whefier) is “badly” behaved. Hence,
a large number of subintervals are used in the places wferechanges
rapidly.

¢ Use fewer subintervals in places whefer) is “well” behaved. Hence a
small number of subintervals are used in the places whgrgis smooth.

The method is outlined as follows, given a tolerance

1. Computel; and/,

If ‘12 — Il‘ <€
I, = result andstop
Else

Note thatl, = I3 + I3
where I} =TRin [a, %]
I2=TRin % ]

2

See Figures 19.2 and 19.3.

2. Now, we computd, = I} + I7 + I} + I}
Letl;> =1} + I?andl}* = I3 + I}

?
We won't comparel, — I1| < e but rather
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f(x)

a (a+b)/2 b

Figure 19.2: Calculation of;.

a (a+b)/2 b

Figure 19.3: Calculation af;.

1M — I} < £ and| I3 — I2| < £ If none satisfied
Go to next step.
However, if| I} — I3| < & then
TakeI." as the approximate faf f(x)dz in the corresponding
interval 252, ], and never come back again.
See Figure 19.4

3. Assume thall;"! — 13| < £ so that we don’t have to consid&}. Compute

a (a+b)/2 b

Figure 19.4: Calculation of;.
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f(x)

14[3]+14[4] (done)

z; | | | (a+‘b)/2 | | | ‘b
Figure 19.5: Calculation af; on [a, “£2].

116(2] 116041  116[6]
I16[1]l‘. 16[3] | 11601, 116(7]

- / /' efg]
) /

14[3]+14[4] (done)

a (a+h)/2 b

Figure 19.6: Calculation aof;s on[a, “T“’].

Is, but only onla, “2].
Ly=1I3+ I+ 13+ I

Again, letlg? = I} + 12, and Iy = I3 + I}
See Figure 19.5.

Compare
? ?
[Ig? — I}| < Sand| 5" — I3 < ¢
Suppose none are satisfied, so we go to the next step.

. Compute, again ofa, %],
Le=Tig+ i+ + Il + 15

See Figure 19.6.
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Compare
1,2 e 734 e 756 Loe 1778 ?
11 — I3] < 39 [Ig —I3] < 3 lllﬁ - < D Iy — Ig] <
Suppose none are satisfied bijt’ — I3| < ¢ Then
Iy =resultinfa + 2%5%, a + 3%5°].
And we repeat for the other intervals.

£
g
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CISC 271 Class 22

Gaussian Quadrature

The Newton-Cotes rules and Composite rules:

n

[ feyde =3 wife)

=0
e 1 is fixed

e 1, are fixed
E.g. In trapezoidn = 1, 2o = a andx; = b.

e w; can be computed when the; } are given; i.e., they are determinedy
E.g. In trapezoiduw, = 4 = w;.

Disadvantagest; are chosen artificially — how do we know they give us the best
result?

Note that we are considering just one panel here.
Another approach

I~ zn:wlf(xl)

=0
e 1 is fixed

e w,;, x; are to be determined, so that

n

> w; f(x;) gives the “best” result.
=0
“best:” it givesexactresult for polynomials of highest degree possible.
l.e., we want/ = > w; f(z;) if f(z)is a polynomial of some degree, and we

)

want the degree to be as high as possible.
Example

n=1, [a,b] =[-1,1]
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/_11 f(z)dz ~ wof(wo) +wif(z1)

To, X1, Wo, w; are to be determined such that

1
/ P (z)dr = woPp(zo) + w1 Py(x1) (Equation A)

-1
for m as large as possible.
1. Exact for polynomial of degree 0, i.e., Equation A holds fo
Po(ﬂf) =1
1 = o+ = [ T w1 =]
2. Exact for polynomial of degree 1, i.e., Equation A holds fo

Py(x) ==z

1
J2 xdx = woxy + w1 = ‘ WoLy + WL = 0‘

3. Exact for polynomial of degree 2, i.e., Equation A holds fo

Py(z) = 2?

1 _ 2 2 2 2 _ 2
Jo1 xdr = worg + wix] = | worh + wir] = 3

4. Exact for polynomial of degree 3, i.e., Equation A holds fo

Py(z) = 2*

! _ 3 3 3 3 _
J21 vdr = woxy + wixy = |wexy +wizy =0

Can we expect the method to be exact for still higher degrgampmials? No.

We have 4 unknowns;g, x1, wg, wr, and if the method is exact for polynomials
of degree 3, we already have 4 equations. This is enough &yndiete the 4
unknowns.

By solving the four equations in boxes above, we find

V3 V3

To=—"—",01=—,wyg=1L,w =1
0 3 0 32 Wo 1
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Thus

[ e (Y2 + (2

This is Gaussian Quadrature pnl, 1] with two nodes.
From above, we know that(— ) +f ( 3) is exact if

_ 2 .3
f=1ux2x" 2"

Is it exact for all polynomials of degre€ 37

Yes:

f(z) = ag + a17 + axx® + azx®

-1

1 1
/ flx)dx = ao/ d:r+a1/ a:dx+a2/ 2dx+a3/ 23dx
1 1

= alt+ 1+ a2 X Dy (L oLy (L
= [ao + &1(-?) -+ @(—?)2 + ag(—g)g] + [CLQ + al(g) + CLQ(?)Z + ag(
R NV
= f(—?)ﬂLf(?)

So, itis exact for all polynomials of degree3.

Example

Evaluate[', 3 + 4z + 822 4 223dx

Via Gaussian Quadrature:

1 2 3
/_13+4:)3+8:):2+2:)33dx - 3+4<\/§> +8<§> +2 (?)

afies(2)]
- 2fe
_ 4

3

109




Compare that with straight integration:

1 472 813 ot 1
/ 34 de 4822+ 2%y = (3w 2T
-1 2 3 4 )|,
8
— 23+ 3]
43
34
-3
Comparison
Gaussian quadrature Trapezoidal
Function Evaluations 2 2
Exact for polynomials of degre€ 3 1
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Gaussian Quadrature in General

IRCEE NS

x;, w; are chosen so that the method is exact for

wherem is as large as possible. What is the largest possiblier a fixedn?
The number of unknowns arén + 2 and alsan + 1 functions=- m -+ 1 equations.

Unknown =Eqns= m + 1 =2n+ 2
le, m=2n+1
Conclusion:Gaussian quadrature with+ 1 nodes (function evaluations) is exact

for a polynomial of degreec 2n + 1. In comparison, a Newton-Cotes rule of
degreen with n + 1 nodes is exact for polynomials of degreen.

When we have to determing, =;, we have to solve a non-linear system.

111



CISC 271 Class 23

Ordinary Differential Equations - Euler Method

ODEs - DEFINITION

First, what are ordinary differential equations (ODEs) 2y hre equations (obvi-
ously!) that

¢ involve one or more derivatives aft), where

e (t) is unknown and is the desired target

dx(t) "o dQI(t)

For shorthand, we will use = x(t), 2’ = =57, 2" = ~5~, ...

For example,

1

(@"()7 + 37t€” O sin {2/ (t) — log - =42

Which z(t)’s fulfill this behaviour?
Terminology

Ordinary (vs. partial) =oneindependent variable

Order = highest (composition of) derivatives(s) involved
Linear = derivatives, including zeroth, appear in lineanfo
Homogeneous = all terms involve some derivative (includiagpth)

Analytical Solutions
Some ODEs are analytically solvable.
7 —r=€ = 2(t)=td + €
2" +9x =0 = z(t) = c;sin3t + cysin 3t

1
x’+%:0 = z(t)=Ve—t

In the solutions to the above, ¢;, andc, are arbitrary constants.

Before we can pin down the exact values of these constantseaemore condi-
tions/information. There are two possible ways to do this:
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e Initial Value Problems (IVP)

e Boundary Value Problems (BVP)

FIRST ORDER IVP

The types of problems that we will try to solve are first-ortietial Value Prob-
lems (IVPs). Their general form is:

' = f(t,z), x(a)is given

Note that this equation is nhon-linear and non-homogenevogsrieral.

Examples
r=x+1, 2(0)=0 = z(t)=¢€ -1
P =6t—1, 2(1)=6 = z(t)=3t"—t+4
t
¥=—— 2(0)=0 = z2@t)=vVt?+1-1
z+1

RHS independent af

Suppose that the righthand side of a first-order Initial ¥aRroblem is only a
funciton oft, but notz. l.e.,

o' = f(t), butf # f(x)

For example,
=3t -4t (L) 2(5) =17

In this case we can perform an indefinite integration of batbssof the differen-

tial equation:
o(t) = / d(gzlit))dt: / F(t)dt

For the above equation, we then obtain

x(t) =t — 4Int + arctant + C
whereC' = 17 — 53 + 41In5 — arctan 5.
Need for Numerical Techiques

But usually, an analytical solution if not known. Or eveniifigis known, perhaps
it is very complicated and expensive to compute. Therefoeeneed numerical
techniques to solve these types of problems. The numegchhtques that we
will discuss will
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e Generate a table of values foft)

e Usually equispaced inhwith stepsize:

One note of caution: with small, and seeking a solution far from the initial value,
roundoff error can accumulate and kill the solution.

EULER METHOD

In this section, we will develop and demonstrate the Eulethidé for first-order
IVP’s. The problem we want to solve can be stated as follows:

givenz’ = f(t,z),x(a), we want to findz(b)

To find z(b), we will do the following:

o We will use the first two terms of the Taylor series (i-e+~ 1) to get from
z(a) tox(a+ h):
z(a+h) = x(a)+ ha'(a) + O(h?)
= x(a) +hf(t,2(a)) + O(h?)
whereO(h?) is the order of the truncation error. Note théata) was re-
placed withf (¢, z(a)).
e Repeatto get from(a + h) to z(a + 2h), etc.

In the above, we repeat the steps of sizentil we arrive atz(b). A total of
n = %4 steps are needed.

Example

Consider
o= =2t —x(t), z(0)=-1, x(0.5) ="

The analytical solution is

x(t) = -3 — 2t + 2.

114



By applying Euler’s method, with = 0.1, we find

t x(t) exact error
0.00000 —1.00000 —1.00000 0.00000
0.10000 —0.90000 —0.91451 0.01451
0.20000 —0.83000 —0.85619 0.02619
0.30000 —0.78700 —0.82245 0.03545
0.40000 —0.76830 —0.81096 0.04266
0.50000 —0.77147 —0.81959 0.04812

See figure 21.1 for a plot of these solutions. The resultstdm®&m to accurate.
Why?

Some of the advantages of the Euler Method are the following:

e Accurate early onO(h?) for first step.
e Only need to calculate the given functigfy, z(t)).

e Only one evaluation of (¢, z(t)) needed.
But, as can be seen in figure 21.1, the Euler Method is also

e Pretty inaccuate at= b.
e Cumulative truncation erron x O(h?) = O(h).

e This error does not include the accumulative round-offrerro

So, what can we do to minimize/remove these disadvantages?
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Exact solution

Figure 21.1: A picture of the Euler Method.
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CISC 271 Class 24

Higher Order Taylor Methods

In this section, we will try to remove some of the disadvastagf the Euler
Method by adding more terms to the Taylor series approxonaifz(a + h).

Again, the problem we want to solve can be stated as follows:

givenz’ = f(t,z),z(a), we want to findz(b)

Here we will use the first 5 terms of the Taylor series (ie= 4 - we could use
any number of terms, but 4 is the standard order used) to@etffa) to x(a+h):

v+ h) = a(a) + ho'(a) + o’ (a) + %x”’(a) + 222 (@) + O(1?)
In this expansion, we will use:
@'(a) = fla,2(a))
2’(a) = f(a,2(a))
2’(a) = f(a,2(a))
#"(a) = f"(a,2(a))
2 a) = f"(a,2(a))

Again, as with Euler's Method, we repeat the above to get frgm+ 1) to
x(a + 2h), etc., until we reach(b).

Example 1
Suppose we want to solve the following first-order IVP:

v’ =14 2%+ %, 2(1) = —4, and we want to find:(2)

The derivatives off (¢, x) are

2 = 2xx’ + 3t
" = 2za" +2(2') + 6t
x(“’) — 21’{[}/// + 61’/56// + 6

With » = 100, we obtain the following solution values faf2):
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e Actual: 4.3712 (5 significant digits)
e Using Euler: 4.2358541
e Using Tayloy: 4.3712096

Example 2
Consider again

¥ =-2t—x(t), z(0)=-1, x(0.5) =7

The derivatives off (¢, z) are

" /
r = —2—x
" "
x p— —_—
i "
x(w) - _—x

By applying Taylog method, withh = 0.1, we find

t x(t) exact error
0.00000 —1.00000 —1.00000 0.00000000
0.10000 —0.91451 —0.91451 0.00000025
0.20000 —0.85619 —0.85619 0.00000044
0.30000 —0.82246 —0.82245 0.00000060
0.40000 —0.81096 —0.81096 0.00000073
0.50000 —0.81959 —0.81959 0.00000082

These are plotted in figure 22.1, and compared to our ressitg)uhe Euler
method. Note that the single step trunction erroiCOgf®) leads to an excel-
lent match. Even if we use a single step sizékfas in figure 22.2, the Taylor
method is better than the Euler method:

t x(t) exact error
0.00000 —1.00000 —1.00000 0.00000
0.50000 —0.82031 —0.81959 0.00072

So, how does the Taylpmethod fair overall? As we have seen, the method is very
accurate, and the cumulative truncation erronof O(h®) = O(h?) is relately
low. But the method’s disadvantages are the following:
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e Need derivatives of (¢, z(¢)) which might be

— analytically difficult,
— numerically expensive, or
— just plain impossible

e Four evaluations for each step (as compared to just one fer)Eu

So, what can we do to avoid these extra derivatives, whilentagiing the accu-
racy of the Taylor method?
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Five Steps of Taylor 4 Method

> Taylor 4 solution

Ta¥]lor 4 solution
with h

- Taylor 4 solution
= wit% 5h

Figure 22.2: A picture of the Taylpmethod using a single step sizef.

120



CISC 271 Class 25

Runge-Kutta Methods

MOTIVATION

We would like to develop a method where we avoid calculatirggderivatives of
f(t,z(t)). To do this we adopt a technique similar to that used in thea/@goot-
finding method where the functional derivative in Newtonsthod was replaced
by an approximation for the derivative.

Derivation approximation
In the Secant method(x) was approximated by

f(xn) - f(xn—1>

Tp — Tp—1

f(w,) ~

which, if z,, = z,, — 1 + h, we can modify as

flz+h) - f(x)

f'(x+h) =~ ,

Looking at the Taylor expansion,

Fla 1) = £(@) + (@) + )

or

f/(.l’) . f(.T + h]i _ f(.l’) _ _gf//(g)7

we see that the truncation error of this approximatio®{&). This type of ap-
proximation will be used below.

RUNGE-KUTTA

The idea behind the Runge-Kutta (RK) of orderis that for each set of sizk,
we

e Evaluatef(t, z(t)) atm interim stages, to

e arrive at an accuracy on the order similar to that of the Taglethod of
orderm.
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We will give sample RK methods at = 2,4. They have the following charac-
teristics:

e Eachf(¢,z(t)) evaluation is built upon previous function evaluations.
e The weighted average of evaluations producg@st h).

e The error for a RK method of orden is O(h™*!) for each step of siza.

RK2

In this RK methodyn = 2. So, let us consider the second order Taylor approxi-

mation: ,

—2"(t) + O(h*)

z(t+h) = z(t) + ha'(t) + 5

or, for our IVP,2'(t) = f(t,x), is

2

z(t+h)=x(t)+ hf(t,x) + %f’(t, z) + O(h?)

To remove the derivative (¢, z) we need an approximation that does not reduce
the order of accuracy of thgt + 1) approximation. Therefore, use the following
as a derivation approximation:

h
as inspired by our previous discussion about derivativeamations, while not-

ing thatf (¢, ) has twocoupledarguments. Therefore, ouft-+h) approximation
becomes

St ~ x(t)thf(t’x)Jrh;(f(t+h,x(t4}—lh))—f(t,x)>+O(h3)

Fla+h) =

+ O(h)

_ () fito) + ft+hm(t+h))+0(h3)

Now, if we approximatez(t + h) by a first order approximationz(t + h) =
z(t) + ha'(t) + O(h?) = x(t) + hf(t,z) + O(h?), we have

o{t + ) e (r) + (g) F(t.2)+ 2+ () + f(2) + O(R)
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All the above manipulations did not change the order of théhook while remov-
ing the derivatives of the function.

More formally stated, the RK2 is as follows.
1
x@+mzx@+§uG+5)
where
F1 = hf(t, JI)
Fy = hf(t+hz+F)

RK4

Although, the derivation is much more involved, the RK4 ishagps the most
commonly used RK method, and is as follows.

1
x@+mzx®+6uﬂ+ﬂg+ﬂ%+ﬂ)

where
Fi = hf(t,z)
Fy :fﬁ@+%hx+%ﬂ)
F; = hf(t+%h,x+%F2)
Fy, = hf(t+h,x+ F3)
Example

Consider again

¢ ==2t—x(t), z(0)=-1, x(0.5) ="

By applying RK4 method, witlk = 0.1, we find

t x(t) exact error
0.00000 —1.00000 —1.00000 0.00000000
0.10000 —0.91451 —0.91451 0.00000025
0.20000 —0.85619 —0.85619 0.00000044
0.30000 —0.82246 —0.82245 0.00000060
0.40000 —0.81096 —0.81096 0.00000073
0.50000 —0.81959 —0.81959 0.00000082
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Note that these values are essentially identical to thahiiTaylor, method, but
without the need for higher derivatives.

OVERALL SUMMARY

If a IVP is complex and/or complicated enough, one of the alibvee methods
may be required to find approximate solutions. They do so bgymxing a table
of values, at a constant stepsfzeThe three methods have different properties:

Euler: simple, but not too accurate.
High-order Taylowvery accurate, but require derivatioég (¢, z(t)).
Runge-Kutta:  Same order of accuracy as Taylor, but withetivdtive evaluations.

The main error sources in these methods are:

e Local truncation (of Taylor series approximation)
e Local round-off (due to finite percision)

e Accumulations and combinations of the previous two.
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CISC 271 Class 26

Gaussian Elimination

LINEAR SYSTEMS

Conventions

Zo
X1

Unknowns — X0y L1y .oy Ty L

Ty
Qoo -+ Qon
Coefficient matrix — agg, a1, ..., Gmn A =

Amo  **° Gmn

Right-hand side — bo, b1,y byy b=

In the above, there ane + 1 rows, andn + 1 columns inA, which is an(m +
1) x (n+ 1) array, orAg,+1)x(n4+1)- HENCE, We have + 1 unknowns withm + 1
equations.

AZ = bis the same as

apoTo + ap1xy + - -+ apTy, = by

AmoTo + Am1T1 + -+ Gy = bm

A solution of the system is a vect@iwhich satisfiesA7 = b.
Multiplying two matrices:

C=AB= Cij = Z aikbkj
k=0

whereC' is of order(l + 1) x (m + 1), Ais of order(l + 1) x (n+ 1), B is of
order(n + 1) x (m + 1). Multiplication is “row of A by column ofB.”
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AB # BA, evenfor(n + 1) x (n 4+ 1) matrices:
1 2]t o] [3 2
0 1 11 N 11
to]fr2] [12
11 01 N 0 1

Properties of general matrices:

¢ Commutative
A+B=B+A
AB # BA

e Associate
(A+B)+C=A+ (B+C)
(AB)C = A(BC)

e Distributive
A(B+C)=AB+ AC

e ScalarcA scales every entry the same amount.

Note: from here on, we will consider only square matrices, A isan(n + 1) x
(n + 1) matrix.

Types of matrices:

e Lower triangular matrix/
e Upper triangular matrix/
e Diagonal matrix
e |dentity matrix,/
Inverse: The inverse of is defined to bed~! such that
AA ' =A71A=1

for a square matrix.
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SOLVING A LINEAR SYSTEM

The problem we are trying to solve: Givenb andz, such thatd € R(+Dx(n+1)
andb, ¥ € R"*', whereAZ = b, find 7.

One approach: Find~!. Then
AN A7) =A== A"D
Difficulties:

e What is the algorithm? (i.e, How to find—!? Direct solutions are increas-
ingly complicated as gets large.)

e How good/fast is the algorithm?

ANOTHER APPROACH

One of the properties of a linear system is that
Af =b < BAZ=Bb

if B is one of the following invertible matrices:

B :  permutation matrix
{exchange rows (equatior}s)
B : identity matrix with constants along the diagonal

{multiply a row (along with the corresponding valueﬁ)by a constarijt
B : arbitrary 0,1 matrix, invertible
{adding row to anothér

This is based on formulations based on isolated equations.
SOLVING A SYSTEM BY GAUSSIAN ELIMINATION
(1.) Can we solve

(&00)1’0 = bo 7

This is trivial.
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(2.) Can we solve
Qoo Go1 To | _ bo 9
a1p G11 T b .

The problem is that the equations interact.
Solution: convert row 1 to the form in (1.) by addifigow 0) (ﬂ) to

(row 1). e
Qoo  Ap1 Zo | bo
0 C11 T a bl

We can now findr;, and substitute it back into the first row (first equation).

Qoo Qo1 Qo2 Zo bo
aip aixz 12 | =1| b ?
Q20 A21 22 Hp; by

By adding(row 0) (ﬂ) to row 2, we can make it

aopo

Qoo Qo1 Qo2 Zo bo
aip aixz 12 x| =] b
/

0 Co1 Co2 T2 b2

But what next? How do we get rid of;?

The insight is that to zere,;, we mustfirst zeroa,,. Otherwise, it effects
Co0.

So by addingrow 0) (22} to row 1, we form

apo

Qgo Qo1 Qo2 T bo
0 C11 C12 T = bll
0 ¢ c22 T2 blg

and then by addingrow 1) (%) to row 2, we can finally get (i.e., solve
the2 x 2 array)

Qoo Qo1 Qo2 o bo
0 C11 C12 T = bll
0 0 d22 ) bg

(3.) Can we solve



This procedure leads us to the following algorithm.

GAUSSIAN ELIMINATION ALGORITHM

for i =0ton-1
for j =i +1ton
rowj =rowj - a[j][i]l*(rowil/ali][i]);
end for
end for

Note that row i containg;. This produces a strictly upper-triangular matrix equiv-

alenttoA.
2 -2 - To —4
-1 2 3 T = 3
3 -1 -5 To —6

Use Gaussian Elimination on roiv= 1 (at: = 0):

Live example:

. . 2
firstentryinrow: = —-1-— (5 (-1)=0
. —2
second entry inrow: = 2 — (
third entry inrow: = 3 — (

last entry in row: = 3—<

2 =2 -4 To —4
0 1 1 x| =] 1
3 -1 -5 T2 —6

Use Gaussian Elimination on rowv= 2 (at: = 0):

to give

, : 2
firstentry inrow: = 3 -— <—> (3)=0
. —2
second entry inrow: = —1 — ( (3)=2
third entry inrow: = —5—

lastentry inrow: = —6—
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to give

2 =2 —4 T —4

0 1 1 T = 1

0 2 1 To 0
Finally, use Gaussian Elimination on rgw= 2 (ati = 1):

firstentryinrow: = 0— <9> (2)=0

: 1
second entry inrow: = 2 — (—) (2)=0
third entry inrow: = 1 — G) (2) =—-1
last entry inrow: = 0 — G) (2)=-2

to give

| ——
S O N

-2 —4 To —4
1 1 o =1 1
0 -1 T —2

This solves to

BACK-SUBSTITUTION

Suppose that is square and upper-triangular, and we have= b. With exact
arithmetic, the system can be solved easily:

bn
Typ =— ——
a'nn
b — 220kt QT
T =
973
E.g.,
4$0—31’1+$2:8 $0:6i
T1+2r9=1 = x1=5
—21‘2 = 4 T = —2
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AUGMENTED ARRAYS

We can representz = b as a newn + 1) x (n+2) matrixVV = [A|b]. Under the
set of operations,

e interchange of rows
e multiplication of a row by a hon-zero constant

e adding a multiple of a row to another

-

leads to another matri¥” = [C|d] wherel” andV areequivalenti.e., the solu-
tion of one is the solution of the other.
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CISC 271 Class 27

Gaussian Elimination - Pivoting and Scaling

Previously we exploited the following three properties ygtems of equations to
solve A7 = b, noting that the solution does not change under the following

e interchange of rows
e multiplication of a row by a non-zero constant
e adding a multiple of a row to another
We generalized the process:
1. Write down the augmented matfix|b].

2. Using the elementary operations above, rqu¢§ to an upper triangular
matrix.

3. Use backsubstitution to solve f@r

DIFFICULTIES

Example
7 63 0 B 13.3
A=12 18 10|, b= 39
3 30 0 6.0
7 63 0 13.3 7 63 0 13.3
2 18 10 3.9 — 0 0 10 0.1
3 30 0 6.0 0 3 0 0.3

For the next step, we neé¢dowl)/a,; = (rowl)/0, the elimination fails!

To overcome this problem, we need to interchange the lastaws (which does
not change the solution), so that # 0.

7 63 0 133
— 0 3 0 03
0 0 10 0.1
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This process is callegivoting. The entry at(i, ) is called thepivot or pivot
element.

A second related type of problem can be seen in the followxaggple.
Example
Solve A7 = b such that

A:
o 6 12 4

20 8 —4 . 52
10 3.9999 15 |, b= | 8.9999

2
True solution ist = { 1 ]
—1

Let's compute the solution by Gaussian EliminationA10, 5, —50, 50), with
chopping.

20 8 —4 52 (20 8 4 52
10 3.9999 15 89999 | — | 0 —.0001 17 fI(—17.0001)
5 6 12 4 0 4 13 -9
20 8 —4 52
—~ | 0 —o0001 17 —17
0 0 680010 —680000

Note thatfi(—17.0001) = —17.
The computed solution is thus

—680000
I U v
b -0.0001
_ 1T (16999)
—0.0001
. 52 — (—4)1‘2 — 81‘1
o= 20
2— (3. —
_ 52-0 92%99) 0 15999

133



—1.5999
orx = 10.0
—.99998
In this example, Gaussian Elimination does not fail, buihputed solution has

a very large error.

Why? In the Gaussian Elimination process, all the pivotsarezero, so that the
method does not fail. However, one pivot used is too smatheig at the second
step,a;; = —.0001, so thata;,/a;; may be very large.

Since some entries in row 1 are divideddyy, a small round-off error in an entry
(i.e., when -17.0001 is replaced by -17) will become a largeren the result.

Again, using pivoting may avoid this error.

10 3.9999 15 8.9999
5 6 12 4

(20 8 -4 52]
20 8 -4 52

= 0 —.0001 17 —17.0001
0 4 13 -9

At this point pivoting is used to exchange the last two rows.

(20 8  —4 52

. 0 4 13 -9
0 —.0001 17 —17.0001 |
(20 8 —4 52

. 0 4 13 9]
0 0 17.0003 —17
(20 8 —4 52

. 0 4 13 9]
0 0 17 —17

2
— r=| 1
-1

We have an accurate solution this time (it is exact by ac¢)den

PIVOTING
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In Gaussian Elimination, as we saw in the previous two exag)pve may en-
counter two difficulties.

1. Apivotis zero, and we cannot continue the process.

2. A pivot is small, and we may have an instability and largeran the solu-
tion.

To avoid these difficulties, we use the pivoting technique.

Consider that we are at thgh step in Gaussian Elimination where we have a
pivot ata,,. Before dividing rowk by ayx, we look for an entry in the remaining
part of matrix,a;;, (¢ > k, j > k), such that

la;;| = max Vi, j > k.
Suppose that;; is such an entry, then we interchange
rowk < row/ columnk < columnJ

so thata;; is the new pivot, and proceed as before.
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Complete pivoting or total pivoting. It works well but

1. Expensive. Need to locate maximum in the whole matrix.
2. Need to interchange columns — also need to reorder theowmkwariables.

e.g., columrk < columnJ thenz, < z;

PARTIAL PIVOTING

At the kth step of Gaussian Elimination:

1. Locate the entry which is maximum in magnitude along colém

ALk

A1k
, larx| = max.

Qnk

2. Interchange row with row 1.

3. Continue the elimination as before.

Advantages.

1. If Ais nonsingular, then Gaussian Elimination with partialgping always
works. l.e., after pivoting, the new pivot must be non-zefbe only way
the new pivot could be zero is ifg.’,? = 0, for j = k,..,n, for which A
would have to be singular.

If a matrix issingularthen

e There is no unique solution to the system of linear equatiepse-
sented byA.

e After the partial pivoting, there is a zero on the diagonal.

e The rows ofA arenotlinearly independent. At least one row can be
expressed as a linear combination of one or more of the obknes. r

2. With partial pivoting, Gaussian Elimination is stable faost problems.
(With total pivoting, Gaussian Elimination &waysstable).
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Algorithm (Gaussian Elimination with Partial Pivoting)

| nput n, Aln][n], b[n];

for Kk =0,1,...,n-1 do
/* pivoting */
c = Ia[k][k]I
p:
/*Iocﬂermx*/
for i = k+1,k+2,...,n
i f (|(a[i][k]| > c) then
= |alil[k;
p =1,
end if
end for

/* exchange row k and row p */
for j =k, k+1,..., n
np = a[k][j];
a[k][] a[p][jl;
a[p][j] = tnp;
end for
= b[K];
b[ p] ;
tnp;

b[ K]
b[ p]

[* continue with Gaussian Elinination */
for i = k+1, k+2, ..., n
nfi][k] = a[i][k]/a[k][K];
for j = k+1, k+2, ..., n
al[i][j] =alilli]l - nli]l[k]*a[k][]];
end for;
b[i] =b[i] - nli][k]*b[k];
end for;
end for
back _substitution() /* as before */

In implementation, there are two ways to do the intercharigeves (and columns
in the case of full pivoting):
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1. Real: Do the actual interchange, like in our pseudocodeab

2. Virtual: Swap the pointers (indices) instead of values.
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CISC 271 Class 28

Error Analysis

Some results to be aware of:

o (T ¥)=xoYo+ 101+ + Tnyn

e Cauchy-Schwartz inequality:

e [, -norm:
n
122 = (|2 |wil? = /(7 - Z)
i=0

Therefore, Cauchy-SchwartZz - )| < ||Z]|2]|¥]|2-

e Unitary matrix:
vour=0U=1

if Ue Rn+1><n+1 U* = UT
UT represents the transpose of the matfix

e EigenvaluesX) and Eigenvectors] related by

AT =\
rearranged:
A7 — A0 =0
(A=A =0
Since in general’ # 0,
A=A =0

this equation is satisfied by the eigenvalues for the matrix

o fa(\) =detlA— )
DL ) = (- 12 We setfu(A) = 0 and
solve for A to find the eigenvalues of.

Extra Notes

For example A =
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e Aissimilarto B iff
A= P 'BP

Therefore, they have the same eigenvalues.
AT =)\T = P 'BP¥=)\f = B(PZ)=\P2)
and if we replacer by P17,
= BZ=)\7
The corresponding eigenvector Bfis P
e trace(A) =>7 , a;. (diagonal sum)
o If A= P7'BP then

= traceA = traceB
= detA = detB

= faN) = (V)
in fa(A).

Theorem: If A is of ordern (i.e., ann x n matrix), thend U, a unitary matrix,
such thatl’ = U* AU, whereT' is an upper triangular matrix.

Corollary: f4(\) = fr(A) = (fo — A)(tnn = A) -+« (fan — A)
Proof: U* =U~' = Ais similartoT.
End of Extra Notes

NORMS

Let ¥ € V, a vector space. Also, leV(¥) be the norm of¢. Then it has the
following properties:

(N1) N(Z) >0 (0iff Z =0)

(N2) N(aZ) = |a|N(Z), wherea is a scalar

(N3) N(Z+y) < N(Z) + N (%)

ExampleConsider’’ = R"*! The following are possible norms:
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o N(¥) =i |l = |7,

o N(@) =/ Xio lz:l* = [I1Z]]2

o N(&) = (Zr ) = 1|7,

o N(Z) = maxj—g.n{|7:|} = |7
Example
2
F=| 1| |7=6 [7]:=v1d~=3.74, |7]c=3
3

MATRIX NORMS

In addition to the above vector norm properties (N1)-(N3atmx norms satisfy:
(N4) [|[AB| < [|A]l]|B]

(N5) [[AzZ]| < || Allfl=]].

whereZ is a vector with the vector norm.
ExampleThe Frobenius norm ofd:

F(4) =, Z s

Usually when given a vector space with a vector ngirnf|,, e.g.,
the associated matrix norm can be defined by

oo OF [ - 2,

1Az

171}

[A]] = Maxzo
Several Notes:
1. We can think ofA as a mapping (transform)
T AT
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Thus||A|| indicates how much a vectarcan be amplified under the trans-

form
110 o) Zo
caa=[o 5] [0 ]- ]

Then the norm of a vector can be amplified by a factor of 2, theze
[A]Joe = 2.

2. If A = |a;], then||A|| depends on the norm defined for the vectors

[ AZ| o

(€]

|AZ][2
12l

| Allo = max = max; > |ay;| largest row sum

= max; |\ largest eigenvalue of.

[A]l2 = max

w

-3 1
ExampleA = l 9 3

] with eigenvalues oft = —/7, V7

_ | =3[ +1,
Al = max{ |~ 243
1Al = V7

dy 0
Exampled = such that| A||.. = ||Al|2 = max; |d;].
0 d,

3. If Ais nonsingular, thed~! is also a matrix, so we can fifdd—!||.
do 0 dy! 0
E.g.,.A= A A0 = Al = .
0 d, 0 d;!

n

1

such that A~ ., = |47l = max|d;"| =

CONDITION NUMBER
For any nonsingular matrix, define condition number as
condA) = K(A) = [|A[[[|A™.

If Ais diagonal K (A) = maxild|

min; |d;|
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If the || - || - norm is used then

max | ;|

K(A) = max |\;| max |\t = \— eigenvalue

m1n|)\2\’

There is a limit on the condition numbeK (A) > 1. The identity matrix has
K(I)=1.

ERRORANALYSIS AND MATRIX NORMS

ConsiderA# = b which hasz* as its true solution. Using Gaussian Elimination
in a floating-point system, we obtain a solutiénTherefore, the error is

We want to know how big'is.

Norm ofée ?
Hé“oo = mMaXp<i<n \6i|

lell = e+ et +e2

But ¢'is unknown, since™ is unknown. Instead, we may have another indication
of how good a solution is.

7* — solution = A =b=b— A" =0

~

— computed solution = b— AZifb— AT =0=2=1"

1

x
z

Intuitively, if b — A7 is small= 7 — good solution.

Define:
¥ =0b— AZ —residual vector

If #=0 = & = & — exact solution. But

S 2 o o S
7= small = errore =" — Zis small
RELATION BETWEEN 7" AND ¢

143



l.e.,

. - 7S
Question:” small< & small.
Answer: Depends oA.

Example
Suppose we have the linear system of equations:

Az [2.0001 —1] [xo

—2 1 T

7.0003
-7

Suppose two methods (method a and method b) give the answers

~ [ 201 o~ [ .170009 o~ [0.09
T, = [ 1ol 1 with 7, = [ 17 1 with €, = [0.01 1

2 ) . .0001 . L |1
_3] with 5 l 0 ] with 61)_[2]

but the true answer is
= S|
= 5!

asmall” =% asmalle
and asmale’ # asmall”

~
—

Ty =

So, in general,

Observations

It seems that ifA is a diagonal matrix

do 0
A = .,
0 d,

then” andé have similar sizenly whend,, ..., d,, all have similar size. In other

words, I .
_ largestd;
K(4) = smallestd;

144



On the other hand, ifK(A) = Slfn—rgﬁe% = large then one cannot draw any
conclusion about the size éffrom the size of” and vice versa.

BOUNDS ONRELATIVE ERROR

Let us consider an upper bound on

el _ [l&" =7

Izl

To make things easy, we could use the— norm:

n

n
170 =" 1wil, [ Awmsx@enlls = max > lay|
=0

7=0

The properties of this norm, as with all the norms, that aefulss that
[AZ([1 < [[All1[|Z]]y and |7 + 2] < [|7]] + [|]

This entails that . 1
A= < [[ATHI1I7]

= ||z* — || < [[A7H]]|7]
sinceA~l7 = A"1Ae=¢
Since||b|| = ||Az*|| and||AZ*|| < ||Al|||Z*||, we know that

11gll 1Al -1
< [|Z%]] sothat “== > [[Z"[|
[ 1]

Multiplying the inequalities (all positive values), we get

€ T d
z [ Hbll

The condition numberK'(A) represents the amount that the relative residual is
magnified.

Indeed, we can show that

N L O N |

K(A) |[ol| ~ e il
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The first and last terms are the relative residuals, and thieadéerm is the relative
error.

If K(A) =1, as would be expected for the identity matrix, then

I le]

[
such that the relative residual is equal to the relativererro

The relative residual and relative error have roughly thaesaize if K(A) ~
small.

If K(A) is large, the size of the relative residual and relativeremray be quite
different. One may be very large while the other is small.

ERROR IN GAUSSIAN ELIMINATION

It can be shown that in Gaussian Elimination,

relative error: HHEMH ~ K(A) - pu,
JJ*

Consider ar which is the computed solution ofr = Eusing Gaussian Elimi-
nation. The exact solution i&°. Then we can show that

wherey is the machine epsilon.
Therefore, if a system ii-conditioned,i.e.,
K(A)>1,

then the relative error in the computed solution may be vargd, and there is
almost certainly a lot of round-off error.

For example, consider the Hilbert matrii,, ., whose entries ar¢a;;} where
1
aij =

i+l
n | K(Hnq1)
2| 5x 10
51 1x 107
6| 4x108
9| 1x10"

Thus the matrix is ill-conditioned.
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CISC 271 Class 29

Linear-System Computations

COMPUTING INVERSES

A method for computing the inverse is to consider! in AA~! = I as an un-
known matrix,

A7 = {by}
such that
boo 1 bo1 0
A b%o = 0 , A b%l = 1 , etc.
oo 0 b 0

Solve all these systems to fiqd,; }. In place of the orginaH, theU generated
via the Gaussian Elimination can be used.

Form an augmented matrix, and use Gaussian Elimination

Example.
Find the inverse of

2 1
A=1]1 2
2 1

- O W

213|100

1 20[010

2 14|00 1
2 1 3 1 00
0 3/2 =3/2 | —-1/2 1 0
{00 1 —101]
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A —1/2—(—3/2)(—1):_4/3

3/2
by = LG - 1)(=4/3)
2
_ 3/3+9é3+4/3:8/3
by = 0
o 1-(=3/2)(0)
bu = 3/—2—2/3
P 0—<3)(0>2—(1><2/3):_1/3
etc.
Such that
8/3 —1/3 —2
A= —4/3 2/3 1
{ -1 0 1 ]

LU FACTORIZATION

Gaussian elimination is not the ordyrectmethod for solving a linear system. An-
other method is called LU decomposition. Consider the Yailhg matrix product:

A = LU whereL is a lower triangular matrix, and is an upper triangular matrix.
Actually, the LU pair can take an infinite number of forms and by convention we
use (to define a unique decomposition)

I 0 0 0 Ugp Upr Up2 U3 ago Qg1 Qo2 Qo3
lp 10 0 0 wn w2 wiz | _ | @ Gu G2 (13
lop ;1 0 0 0 ug wugs g0 Q21 A22 (23
lso 1 I3 1 0 0 0 us3 azp G31 G3z2 433

We have actually already calculatéd it is the resultant upper diagonal matrix
that we get using Gaussian Elimination. And if we define tiiefang multipliers

ik

M, = ,i=k+1,...n

ALk
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wherek is thekth row from Gaussian Elimination at thieth step. Thern. is

1 0
I — 771.10 1 :
mMpo Mp1 - 1

From our previous example, where we found the inverse of

213

A=1|12 0|,
2 1 4
1 00

L=|1/2 1 0],
1 01

To solveAr = Eby LU :
LUZ=b = 5?;?:_% } Forward and Backward Substitution

Forward SubstitutionLy = b

1 0 Yo bo
lip 1 | by
an lnl T 1 Yn bn

Thereforeyy = by, y;s = bi — St Ly, i =1, ..., n.
Backward Substitution/z = i/

Upgp Uor -+ Uon o Yo
U11 x . n
0 Unpn Tn Yn
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Therefore,, = 4, z; = <yi_z‘“:i“ui’“x’“), i=n-—1,..,0.

Actually, only one array is needed to store bdttand U, since them,; values
can be stored in the place of this in the lower half ofU. Further, if there are a
number ofi's to be solved for, they can be stored in consecutive columtisei
augmented matrix.

So, to find the solution ofiZ = b:

1. Do LU factorization using either Gaussian Elimination or thelieigfor-
mulation. This step is independent of the right hand sd®,(and no extra
storage is needed sinées stored in the lower half of, andU in the upper
half.

2. Forward/Backward Substitution.

3. If there are mulitple right hand sides, one need dfly factorize A once.
Then the backward/forward substitution is performed fahea

4. If pivoting is used during thé U factorization, an additional array must
be used to save the information on which rows have been egedar his
information is needed for the subsequent backward/fonsabdtitution.

There are also iterative methods for solviAg = b, but we won't cover those.
We have covered four direct methods here.

Extra Notes

Second Method for finding.U.
There is another manner in which to find th& decomposition, directly.
Oth row: U190 = QA10, U1 = Q114 ..y Ulp = A1p.
l = = g =2
Oth column; 10" ~ @10 10 ano

o .
liQUOQZCLiQ = li(): ﬁ VZZI,..,R

For: > 0

. . i—1 ..
OW 7 @ Ui = Qij — Yjmpo likUij J = 1,...,1

i1
(aﬁ_Zk:o ljku‘“')

2%

columni : [;; = j=1+1,...,n

This process of decomposition can be completég;it~ 0V . If Ais nonsingular,
thenU,; # 0 if pivoting is used.
End of Extra Notes
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CISC 271 Class 30

Functional Approximation, Minimax

APPROXIMATION

The problem we want to solve: Given a functif() on [a, b], approximate it by
a polynomialP, (z).

How does this differ from Polynomial Interpolation?

¢ Interpolation— find polynomial to interpolatg(x) at some points ofu, ).

— Main concern:P,(z) and f (z) have same value at some points.

— WehopeP,(x) is close tof (x) at the other points, but we don'’t really
care what the error is at the other points.

e Approximation

— Main concern:P,(z) must be close tg(z) for all values ofz in [a, b].

— We don'’t care whetheP, (x) has the same value g$z), or not. l.e.,
P,(x) need not reproduce the valuesfdf:) exactly.

When to use interpolation or approximation?

e Use interpolation if the exact values §fx) are important. l.e., when you
need to reproduce the valuesjfifr) exactly.

e Use approximation if the overall behaviour ffz) is important. l.e., you
want the error to be small everywhere.

Criteria
If we approximatef (x) by P, (z), then the error at is given by

e(x) = Py(x) = f(x).

To find a good approximation, we wad#(tr) to be small at every point ifu, b]. It
is not enough ik(z) is small only at a few points.

We need to have a way to sar) is small on|a, b]. |.e., we need to invent a “size”
or “length” for e(z).

A size of a function is usually calledreorm.
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1. Maximum norm

[flloe = max [f(z)]

z€[a,b]
Also calledL, - norm.
See Figure 28.1 for an example of this maximum norm.

TL infinity

f(x)
max norm for f(x) on [a, b]
= = X
a b

Figure 28.1: An example of this,, norm.

7=/ [ fapds

Using this method, for each functigiix) on [a, b], we can define a norm size.

2. Ly -norm

Example
f(z) ==z, la,b] =1[0,1]
[flle = maxgep|z| =1

Ifle = o ade = /%

Example
f(z) = sinz, [a,b] = [0, 2]

||fHoo = MaXge[o,2n] ‘ Sinl" =1

Ifl: = i sin’ede = 7

Remarks
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1. There are many ways to define a norm of a function.

2. If || f|l is small, thenf(z) is small at every point itla, b] since|f(x)| <

1/ loo-

3. If ||f||2 is small, thenf(z) is small on average, byt(z) may be large at
some points.

See Figure 28.2 for a picture of a function with smgll|».

f(x)
t f X
a = | | = b

€

Figure 28.2: Picture of a function with smalf ..

From above, e.gl|f||2 is small, butf(z) is 1 atz.

APPROXIMATION PROBLEM

Let’s state the problem that we wish to solve. Giyém) on [a, b], find a polyno-
mial of degreen, P, (x) which best approximateg(z) in a given norm. l.e., we
need to find a polynomiaP, (x) such that

| P, — f|l = min. amoung all polynomials of degree
or |[|P,— f|l <llg. — f] for all polynomialsg, (=) of degreen.
or [|F, — fl| = mingyer g, [l4. — | for all polynomialsg,(z) of degreen.

Note in the above, the norm is not specified.

If the L., norm is used, then the best approximatioyix) is said to be aninimax
approximation — the polynomial whose maximum error is miaad.

| P — flloo = min ||g, — f|lcc = minmax |P, — f|
dn dn
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Fact. If f(x) is continuous orja, b], then there exists a unique minimax approxi-
mation P, (x) of degreen.

E.g.n = 1. Equioscillation propertyf (x) cannot be on one side &f,(x).

See Figure 28.3 for a picture of a linear minimax approxioratio a general
function.

f(x)

equal

\ o magnitude
approximation

X

Figure 28.3: Picture of a linear minimax approximation tceagral function.

In general, it is difficult to find the minimax polynomial.
So, let’s try theL, - norm. In this case, we want to find,(x) such that

| P — fll2 = min,

ie., \//ab(Pn(x)—f(x))de: min.

Such aP,(x) is said to be a least squares polynomiallearst-squares approx-
imation. This is the continous version of the least-squares appratm, since
we know f(z), which we are trying to approximate, everywhere aanIn the
next class, we will look at the discrete least-squares aqpiation, where we are
approximating a given finite set of points.
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CISC 271 Class 31

Discrete Least-squares Approximation

Suppose that we were given a set of data points,Y; }, ¢ € [0, m], and we think
that they come from a functiofiz) where we have a model ¢gfz), i.e., we know
its general form but not know the values of the coefficiefs, a4, ..., a,} = d.

How do we find a good approximation faf? We can address this by trying to
minimize residuals,

r(z;) = f(z;) = Y:, i€[0,m)]
Considering the residuals forming anrdimensional vector, we can try to mini-
mize any of the following norms

E@ = Li(r) = X2 Inl (sum ofdifferencé
Ey(@) = [Lo(M)]* = X0, |ril? (squared sum afistance
E @) = L,(7) = (X%, |r?)Vr (generalization)
Eo(d) = Loo(f) = max]"|r] (largestdifferencé

Note that the nornii,() is given in its discrete form.

For reasons having to do with subsequent statistical aisglyeriance) (discussed
in text, G & W, pp. 261-262) we use thie, norm. Since minimizing/Fs(a)

is equivalent to minimizingzy(a), (any minimum is at the same valuesafwe
minimize £, = 3 r?, that is, try to find the least squares fit.

Example Hooke’s Law. The form of the relation is

and we would like to find: from experimental data which is our least-squares fit.

See Figure 29.1 for a graph of example data and approximseimp for Hooke’s
Law.

The residuals look like; = f; — Y; = —kx; — Y; SOEs(k) is
Ey(k) =Y "1} = (—kxo — Yo)* + (ka1 — Y1)* + -+ (—kxy, — Vyp)?
i=0

This is minimized when J
E2 N
dk (k) = 0.
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experimental data

“ v

N ri = (kx,-Y,) = residuedefinition

|east- -squares

/ approximation

Figure 29.1: Graph of example data and approximation setup.

So, since

dEy

dk (ki —Yi)

|
s
5|~

~
Il
o

I

~
Il
o

2(—kx; = Y;)(—xy)

I
NE

(2kx? + 2Y;z;)

<.
I
o

I
.MS

-
I
o

T+ 2V
=0

We can use the minimum to firndby

dj: = Qka +2ZY3:Z

- Z:lo Yix;

it 7
Remember that thg’'s have opposite sign to their correspondin in general,
SOk is a positive value.

= k=
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LINEAR REGRESSION
Linear regression is a special case of least-squares fittimgre we try to fita line
— not necessarily through the origin — to the data. Thus we hav

Pl(.l’) = ag + a1x

and we want to findj, anda; that minimizeEs(ao, a;).
The same principle holds from before, i.e.,

) 0E, , . .
— -2 — 0.
aao (CLO, CLl) aal (CLO, al)
0Fy, . . LN .
a—z(ﬁo,al) = QZ(CLQ —l—alx,- —Y;)
o i=0
0Fy, . . Z .
8—2(CL1, al) = 2 Z(CLO -+ a1xr; — Y;)JIZ
o =0

So at the zero, noting that’™ ,(z;)° = m + 1,

i=0 1=0
1=0 i=0 1=0

In matrix form, this becomes

(520 E2)(2)-(245)
YitoTi 2ito %2 a 2itoTiY;

which is a linear system, which we know how to solve.
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HIGHER DEGREE POLYNOMIALS

We can use this approach for higher-degree polynomials, $ogppose we want
to fit ann-th degree polynomial to the data. Let

Py(z) = a;a’
j=0

Still, our given points arg (z;, Y;)},i =0, ..., m.
Thus the norm to be minimized is

=0 0
So that
a . m n .
aT(Ez(a))ﬁZ (Z(%(@-)J) Yz) (xz)k]
k i=0 | \j=0
Therefore, 5
Ey o
8—ak<a) =0

yields a set of: + 1 linear equations in unknowr Each equationith shown)

has the form . . .
> ldj : (xi)ﬁk] = Vi(a;)*
0 =0

=0 i=
If we let . .
gik = _(z:)’™ and pp = > Vi(a;)"*
i=0 i=0

then our system is
goo do1 Go2 ' Gon ap Lo
gio 911 G12 ' Gin ap _ P1
gno Gni Gn2 " Gnn dn Pn

which by definition is symmetric (sincg; = g;;). Thek-th row of the matrix
corresponds to the partial derivative with respectitcset to zero. Recall that
goo = Xito(2:)"*0 = (m + 1).
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It can be shown that ifn > n, the solution is unique. Thus, we can find any
degree of polynomial least-squares approximation thativi tis appropriate to
the given problem.

Example
Consider the following data

z; 10.05 011 015 031 046 052 070 074 082 098 1.17
Y; 10.956 0.890 0.832 0.717 0.571 0.539 0.378 0.370 0.306 0.242 0.104

This data is a pertubation of the relationship- 1 — = + 0.222. Let’s fit the data
to P(x) = ag + ayx + axz®. Therefore

910 = go1 = 2o x; = 6.01 goo =m+1=11
g20 = 11 = Go1 = Zl’? = 4.6545 LPo = Z)/Z = 5.905
go1 = g1z = L x5 = 4.1150 pr =2 x;Y; = 2.1839
g2 = S at = 3.9161 p2 =X a}Y; = 1.3357
such that R
goo Yo1 Go2 ap Po
gio du 9gi12 ay =1 M
g20 G921 G922 a P2
which equals

11 6.01 4.6545 ap 5.905
6.01 4.6545 4.1150 a; | = | 2.1839
4.6545 4.1150 3.9161 s 1.3357

which has the solution

dg 0.998
a | =1 —1.018
s 0.225

such that the polynomial least-squares approximation is

Py(x) = 0.998 — 1.0182 + 0.22522.
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CISC 271 Class 32

The Eigenvalue Problem

Eigenvalues and eigenvectors are useful in describing aatyzang many sys-
tems, both physical and mathematical. For example, thelsisgring equa-
tion we looked at previously (to develop discrete leastasgs polynomials) was
Hooke’s Law for a mass hanging from a spring:

flz) = kx
or F = kx

If we have a mass on a (frictionless) flat surface, and theréna or more springs
attached to the mass, then the XY vector of forces is relat¢ke XY vector of

position by K5,
= F, - T
Fo|5] = e}

whereK,,, is symmetric.

Suppose that is an eigenvector oK .,. ThenK v = A7, which means that there
is a special relationship between the forces and the pasitin fact, what will
happen is that if we pull the mass in the direction of a posiém@envector and let
go, the mass will oscillate in straight line if we pull the mass in any direction
that isnot an eigenvector, it will oscillate in an orbital trajectory!

Eigenvectors are also useful in describing linear systegppose that/ =
{%,21,..., 2.} is a set of linearly independent vectors. This means thaeif w
add scalar multiples of them together to get a vegtor

T = 04050 + 04151 +-- 'Oéngn
thenz = 0 if and only if everya; = 0. GivenZ, we can compute; = 7 - Z;, and

«; is called the component afin the directionz. We call Z abasisfor the vector
spaceR" !,
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This is important because the eigenvectgref a nonsingular matrixd form a
special basis. Using the convention that eigenvectors fana@iblength, i.e., we
require that|7;|| = 1, we can representas

r = Oé(ﬂ_)b +Oéﬂ71 + - -anﬁn

n
= Z a;U;
i=0

When we perform the multiplicatiodx = b we get

A7 = aoA% + a1A171 + -4 CI,nAQ_fn

n
= Z a; AU
i=0
n

= Z )\z‘(aﬂ_fz‘)
i=0

so each of the original termsv; is multiplied by the eigenvalug;. If \; is large,
then the termu,;v; greatly increases. If the vectaris perturbed taf by an errore’
of the form

€0
€1

™y
I

€n

so that? = 7 + &, thenAZ = b will have a large error due t;(d;7;) and the size
of \; tells us about the stability oA.

There are many mathematically useful decompositions of taixnd, and many
of the decompositions are related to eigenvalues and eegtorg. One, called the
Schur decomposition, states that for any mattithere is some unitary matrix
such that

UTAU =T

whereT is an upper triangular matrix aridis a unitary matrix{*U = UU* = [
and||UZ||, = ||Z||2). This is important because the characteristic equatidnief

0= det(T — \I) = ﬁ(tii )

=0
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so the diagonal entries @f are its eigenvalues.

It is easy to prove that, I AU = T, and Av; = \;0;, thenTUv; = \,U7; so if
we could findU then we could recover the eigenvalues (and the eigenvéatbrs
A.

Example: For a symmetric4, how stable isA7 = b?
Since? = A~'b, andA~! is symmetric, we have

7= (UDUT) b

for orthogonall; and diagonaD. So,

Z = UD (UTQ
= UDC
pWer

pWeh

= U )\202
_)\nCn_

If |\,.| is huge, then small perturbations(@fy mean large perturbations in

LOCATING EIGENVALUES

For A, ,, define
i—1 n
ri = lagl+ > layl
j=0 j=i+1
Assuming thatd is complex, construct a circle in the complex plane centteg;a

and of radius; :
Zi = {Z S CHZ — aii\ < T’Z'}.

Then

a.) There is an eigenvaluec 7;;

b.) If m circles form a connected sétthat is disjoint from all othern — m
circles, thenS containsm eigenvalues (counted by algebraic multiplicity).
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To

A

00
:

Figure 30.1: Three complex eigenvalues

This situation is shown in Figure 30.1.

Example
For the matrix
41 0
A=|10 -1
11 -4

the eigenvalues are in
IN=4] < 1A <2, [A+4] <2
as shown in Figure 30.2.
It can be shown that for a real symmetrc\ € R or both A\, \* are present.

Therefore, one\ € [3,5]. SinceA = —2 is not possible from the characteristic
equation, then there is onec [—6, —2) and one\ € (—2,2]. (Actual answer:s
A~ —3.76, —.443, 4.20).

PERTURBATIONS

Theorem (Bauer-Fike):

Let A be such thaP~!AP = D = diag(\, ..., \,) and let\ be
an eigenvalue ofl + E. Then

min [A — A <[PPI £]l.

0<i<n
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ai Qoo X _A22

Figure 30.2: Three real eigenvalues

Corollary:
If Ais symmetric (Hermitian) then

min A=\l < Bl

So, pertubations have little effect.

Example
1 1/2 1/3 Ao = 1.408319
Hy=|1/2 1/3 1/4 A = 0.1223271
1/3 1/4 1/5 A2 = 0.002687340
) 1.000 .5000 .3333 Ao = 1.408294
Hz = | .5000 .3333 .2500 A1 = 0.1223415
3333 .2500 .2000 A2 = 0.002664489
Example
. 101 —90 Ao =1
- | 110 —98 A =2
~ | 100.999 —90.001 Ao = 1298
AtTE= l 10 —98 ] A = 1701
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CISC 271 Class 33

The Power Method
Suppose that the eigenvaluesAf, ;1) +1) are ordered

Aol > (M| = Ao = - = [An]
with one eigenvalue),, dominant.
If A hasn distinct eigenvalues, then any vectocan be written as

Z= Z Ozjl_)'j Where%- =z Q_J}
=0
Let us examine the iteratior(i) = Az(i — 1), whereay # 0 :

Z(1) = AZ(0) = ;AT =) )\
=0 =0

and so

. k .
Multiply the RHS by(32)" , to find that

Ao
ORI s C
=0 0

N\ k
Because\; /Ay < 1, limy_.o (i—;) = 0 and so for largé:,

5(/{3) ~ (Ao)k Oéo’(_fo
. >\j - .
sincey =1 for j = 0.

This suggests that it is possible to find the dominant eigee@igenvector pair
by repeated application of :

AFZ(0) 2~ (M) avoty
Notes:
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1. This is valid iff (i) - vy # 0 Usually, round-off errohelpsto produce a
non-zero component after a few iterations.

2. To avoid overflow/underflowz(:) should be normalized. The easiest norm
IS L.

3. A good termination condition is that(i) and z(i — 1) are almost scalar
multiples.

ALGORITHM FOR THE POWER METHOD

Select a non-zero z[0..n](0) with ||z[0..n](0)|]|4nf = 1;
Set mu[-1] = 0; mu[O0] = 1,

i =0
while |mu[i] - mu[i-1]| greater than or equal to epsilon
=1 + 1;
Y[0..n] = A*z[0..n](i-1);
mu[i] = ||Y[O..n]|]dnf;
z[0..n] (i) = Y[O..n]l/mu[i];
end whil e;

result: mu[k] = lanbda[0]; z[O0..n](k) ~ v[O0..n][O];

The largest eigenvalue is associated with the eigenvdttbdiominates the ma-
trix. How do we find thesmallestone?

Because the eigenvalues.4f! areAii, we can use the inverse power method:
(i) = A7 — 1)
Instead of invertingd, we can observe that
AZ(i) =2(i— 1)

is an equivalent computation. This can be done efficientlyfilsf computing
A = LU, and just back-substituting:

LUZ() = 2(i — 1)
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DEFLATION

Let the dominant eigenvalue/eigenvectorolfe \, andd,. PickY so thaty;- 7, =
1 (for exampley is all zero except for 1 element).

It can be show that the matrix
B = A — \0,i"
has eigenvalueg \q, Ao, ..., A, and eigenvectorg,, w, ws, ..., w, where
Ty = (A — Ao + Ao(Y - @)

fori=1,2,...,n.
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CISC 271 Class 34

QR and SVD

A powerful theoretical result, for which there is a practigigorithm, is called the
QR decomposition:

For any square matri¥, there is an orthogonal and an upper-
triangular (right)R such that

A=QR

Calculation is complicated, but there are many good codaiadle.

The most common method for finding all the eigenvalues isQiReiteration.
Observe that ifA(0) = A, then we can always decompose

Ai) = Q1) R(i)

Form
Ai+1) = R(1)Q(0)
Such that

Al +1) = Q'(1)QM)R(1)Q(0)
= Q"()AMQ()
S0A(i + 1) is similar to A(z) and has the same eigenvalues.
Eventually,A(7) converges to

a.) adiagonal matrgr

b.) a matrix that is “nearly” diagonal but which has easilicotated eigenval-
ues.

For case a.)A(i) — D and

Aj+1

ID = A@)] < ¢~ max
7=0

j
Note: Inverse iteration (1944) is still best for extractgigenvectors.
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SINGULAR VALUE DECOMPOSITION

One of the most useful theorems st - century linear algebra is the singular-
value decomposition.

For anyM,, ., there is a unitary/,.,, andV,, ..., and a “diagonal’,,.,, such
that

A=VxU"
and i i
(o) . 0
0
o
Y= 0
0
0 0 |
where
a)o, €R
b) o; >0

C.)oy>0y>--->0,>0and

d.) r is the rank ofA.
Corollary:

If Aisreal and squarei(x n), then{c?} are the eigenvalues of
AT A.
Proof: ATA = USTVTVYUT = UX2UT = UDU”T

There are many uses for the Singular Value Decompositiore d@pends on its
unusual numerical stability:

ATl = (VXU = (UT) TN O) T = UsTiVT

where L1 .
»ol= diag —, —, ..., —)

0o 01 On
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So to solveAT = b, we compute

LEAST SQUARES DATA-FITTING

In general, givemn values{(x;, Y;)} that presumably come from some function —
Y; = g(x;), we may want to find the weights; of n arbitrary¢,(z) so that

> widi(wi) =Y,

j=0
For example, linear least squareg(z) = 1, ¢1(x) = z, find wy + wyx; ~ ;.
This is usually done by minimizing the error due to the wesght

w m 1=0 j=

min E(7) — (1i (n—zﬂ%wmj(xi)) )

1 - R
= ﬁHY — Ad[o

Setting the partial derivatives to zero, we seek a soluton t
AT A = ATY

SVD approach
Using the singular value decomposition, and substituting VU™ into A Aw =
ATY,
vs'suTs = ustV'Y
sIyuteo = STvTyY
Ty = vy
g = o7y
W o= USTvTY
where the first line was premultiplied By~ and the second line was premulti-
plied byX~!. The solution has a stability of

2
T _ 9%
cond A" A), = 2
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QR Solution
The QR method for solution is as follows. Factdr= QR into the normal
equations:
VmE(@) = || Ad=Y|;
= |QTAw — Q"Y|], becaus&) is orthogonal
|Q"QRE — QTY |,
= ||R7 - Q'Y

Becaused ism x n, the specific for ofR is

Ry — n xn R;nonsingular
R =
0 — (m—n) xXn

Rewrite

where?z] is a vector of lengthy, andz; is a vector of lengthn — n.
Then

VImB(@) = AT =Y,
=[R2l

0 o= 2]
0 2y
— (IR - 512+ 1202)*
Z» IS constant, so this is minimized hythat satisfy
Ryw =7

This is the preferred way of solving least-square problems.
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