
CISC 271
ScientificComputing

Notes by Randy Ellis

Intr oduction

Topicsto becovered:

A. Representationsof FloatingPointNumbers,TaylorSeriesApproximations,
andRepresentationalErrorSources.(4 hours)

B. Root-findingin non-linearfunctions:BisectionMethod,Newton’s, Secant
andFalse-PositionMethods.Propertiesof thesemethods.(4 hours)

C. InterpolationI: Polynomials,Lagrange’s Method,Newton DividedDiffer-
encesandFiniteDifferences,andInterpolationErrors.(5 hours)

D. LinearSystems:GaussianElimination,andusingScalingandPivoting. Er-
ror analysisof Gaussianelimination. Generallinearsystemcomputations.
(4 hours)

E. InterpolationII: PiecewisePolynomials.CubicSplines.(2 hours)

F. Functionalapproximations,andleastsquaresappproximations.(2 hours)

G. Quadrature:Newton-Cotesintegration,andadaptive integration.Gaussian
quadrature.(4 hours)

H. OrdinaryDifferentialEquations:EulerMethod,HigherOrderTaylorMeth-
ods,andRunge-KuttaMethods.(3 hours)

.

1

CISC 271 Class 1

Taylor Series Approximation

Motivation

Suppose we have the following problem:

• We want to computecos(0.1).

• We don’t have access to a calculator or ancient look-up tables.

• We know the value of thecos(x) function for a nearby number, say,x = 0.

• We stayed awake during our calculus classes, and so know lotsof derivatives
of cos(x) atx = 0.

Question: Can we use what we know to approximatecos(0.1)? And, if so, what
will be the error of our approximation?

Taylor Series

To solve this problem, we introduce the Taylor Series, whichwill be used exten-
sively in this course.

Taylor Series:If f (k)(x) exist atx = c for k = 0, 1, 2, ... then

f(x) ≈ f(c) + f (1)(c)(x− c) +
f (2)(c)

2
(x− c)2 + · · ·

=
∞∑

k=0

f (k)(c)

k!
(x− c)k

In this definition,c is a constant and much is known aboutf (k)(c), whereasx is a
variable nearc and the value off(x) is sought. Ifc = 0, this series is known as
the Maclaurin series.

So, suppose that we terminate the series aftern terms, what would be the error in
our approximation. To find the answer, we again turn to Taylor.

Taylor’s Theorem:If f(x) and(n + 1) derivatives off(x) are contin-
uous on(a, b), andc ∈ (a, b), then for anyx ∈ (a, b)

f(x) = f(c) + f (1)(c)(x− c) +
f (2)(c)

2
(x− c)2 + · · ·+

2

f (n)(c)

n!
(x− c)n +

f (n+1)(ξ(x))

(n + 1)!
(x− c)n+1

=
n∑

k=0

f (k)(c)

k!
(x− c)k +

f (n+1)(ξ(x))

(n + 1)!
(x− c)n+1,

whereξ(x) is betweenc andx.

The last term is known as the trunction error, due to ending the infinite series at
then-th term. The trunction error gives us an idea how good an approximation of
the function will be atn terms.

Therefore, to use the Taylor Series Approximation, we do thefollowing:

• Write the formulae fork derivatives off(x), f (k)(x).

• Choosec, if not already specified.

• Write out the summation and the error term.

• If the error term goes to zero asn→ ∞, then the seriesconverges, and the
infiniteTaylor series representsf(x).

If we don’t know if the error term goes to zero asn → ∞, we can still estimate
the size of the error term.

EXAMPLES

Since the Taylor series will be so helpful, let’s consider some examples.

Example 1

What is the Taylor series forf(x) = ex, |x| <∞?

We know thatf (k)(x) = ex, for all k. Next, we choosec = 0. Therefore,f (k)(c) =
e0 = 1, for all k, such that

ex =
n∑

k=0

xk

k!
+

eξ(x)

(n + 1)!
xn+1

Also, the error term goes to zero asn → ∞ (since(n + 1)! always grows faster
thanxn+1 asn→∞ for any choice ofx <∞), so

ex =
∞∑

k=0

xk

k!
= 1 + x +

x2

2!
+

x3

3!
+ · · ·

3

Example 2

What is the Taylor series forf(x) = sin(x), |x| <∞?

We know thatf (k)(x) = sin
(

x + πk
2

)

, for all k. Next, we choosec = 0. There-
fore, we have

sin(x) =
n∑

k=0

sin
(

πk
2

)

k!
xk +

sin
(

ξ(x) + π(n+1)
2

)

(n + 1)!
xn+1

Since the error term goes to zero asn → ∞, so the upper limit fork is∞. Also,
note that the evenk terms are zero (sincesin(0) = sin(π) = sin(2π) = · · · = 0).
Suppose, then that was change the summation parameterk to another parameter
l where none of the terms of the summation is zero. I.e., letl = 0, 1, 2... where
k → 2l + 1. Therefore, the Taylor series forsin(x) becomes

sin(x) =
∞∑

l=0

sin
(

π(2l+1)
2

)

(2l + 1)!
x(2l+1)

=
∞∑

l=0

(−1)lx2l+1

(2l + 1)!

= x− x3

3!
+

x5

5!
− · · ·

Example 3

What is the Taylor series approximation forcos(0.1)?

Using the same derivation process as for Example 2, above, wefind that the Taylor
series forcos(x) with respect to expansion pointc = 0 is

cos(x) =
∞∑

k=0

(−1)kx2k

(2k)!

= 1− x2

2!
+

x4

4!
− · · ·

The actual value iscos(0.1) = 0.99500416527803... The Taylor approximations
for different orders ofn of cos(0.1) are (for the error, recall that the maximum
value for| cos(x)| is 1):

4

n approximation |error| ≤
0 1 0.01/2!
1 0.995 0.0001/3!
2 0.99500416 0.000001/4!
3 0.99500416527778 0.00000001/5!
...

...
...

So, after just a few terms, we have an accurate approximationto cos(0.1).

PROXIMITY OF x TO c

Suppose we have the problem where we want to approximateln(2). What we
would like to know, is how important is the proximity of the valuex to the expan-
sion pointc of the Taylor series approximation. So, let’s consider two different
solutions.

Solution 1:In this solution, we use the Taylor approximation forln(1 + x) about
the expansion pointc = 0 with x = 1. Note that|x−c| = 1. Therefore, the Taylor
approximation is

ln 2 = 1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+

1

7
− 1

8
+ · · ·

Solution 2: In this solution, we use the Taylor approximation forln
(

1+x
1−x

)

about

the expansion pointc = 0 with x = 1
3
. Note that|x − c| = 1

3
. Therefore, the

Taylor approximation is

ln 2 = 2
(

3−1 + 3−3 + 3−5 + 3−7 + · · ·
)

So, how good are these approximations?

• Solution 1, with 8 (n = 7) terms: 0.63452

• Solution 2, with 4 (n = 3) terms: 0.69313

The actual value, rounded, is 0.69315 . Therefore, we can seethat the choice of
c andx and their relative proximity is important to the accuracy ofa Taylor ap-
proximation. The smaller|x− c|, in general, the more accurate the approximation
given a fixed number of terms.

5

NOTE ON ξ(x)

Consider the following special case of the Taylor series expansion.

Mean value theorem (Taylor, n = 0):If f(x) is at least once differ-
entiable on [a, b], then then = 0 Taylor expansion off(x) about
expansion pointc = a and evaluated atx = b is

f(b) = f(a) + (b− a)f ′(ξ), ξ ∈ (a, b)

or

f ′(ξ) =
f(b)− f(a)

(b− a)

It is easy to see thatξ in this case always exists.

6

CISC 271 Class 2

Number Representation

BASE REPRESENTATION

Base 10

We, humans, often represent numbers in the decimal form. That is, we use base
10.

1 2 3 4

- # of 1000’s
- # of 100’s
- # of 10’s
- # of 1’s

= 1× 103 + 2× 102 + 3× 10 + 4× 1

We are used to numbers in this form, and know instantly that the number repre-
sented is one thousand,

In general, base 10 numbers represent

anan−1...a0 =
n∑

k=0

ak10k

Base 16

Equally, we could use other forms to represent number. For example, the hex-
adecimal form, i.e., base 16.

(1 2 3 4)16 = 1× 163 + 2× 162 + 3× 16 + 4× 1 = (4660)10

- # of 163’s
- # of 162’s
- # of 16’s
- # of 1’s

This number in hexadecimal form has a different meaning thana number in dec-
imal form. To distinguish it, we use the()16 subscript. Note that the digits of
a hexadecimal number can range from0 → F, where F represents number 15.
Hence, 16 possible digits.

7

In general, base 16 numbers represent

anan−1...a0 =
n∑

k=0

ak16k

Base 2

Computers often use base two to store numbers. Base 2 just hasan ’0’ and ’1’, or
for computers: an “off” and “on” for a “bit” which holds our binary digit. Base 2
numbers are called binary numbers.

(1 0 1 1)2 = 1× 23 + 0× 22 + 1× 2 + 1× 1 = (11)10

- # of 23’s
- # of 22’s
- # of 2’s
- # of 20’s

Of course, numbers could be represented in baseβ, whereβ is any natural number,
but these above, including base 8 or octal numbers, are the most commonly used
in numerical analysis.

BASE CONVERSIONS

To convert a binary number to a decimal form is easy. You simply follow the
above rules. For example,

(110)2 = 1× 4 + 1× 2 + 0 = (6)10.

Now let us try to do it the other way - convert a decimal number to a binary
number. First, consider an example from base 10 to base 10, say, 321 into ones
(1), tens (2), and hundreds (3):

321
10

32
10

3
10

0

?quotient

?quotient

?quotient

-remainder

-remainder

-remainder

1

2

3

?

321 = (321)10

8

Now consider the analogy of the above conversion to the following conversion of
a number from base 10 to base 2:

6 = (?)2

6
2

3
2

1
2

0

?quotient

?quotient

?quotient

-remainder

-remainder

-remainder

0

1

1

?

6 = (110)2

Or
9 = (?)2

9
2

4
2

2
2

1
2

0

?quotient

?quotient

?quotient

?quotient

-remainder

-remainder

-remainder

-remainder

1

0

0

1

?

9 = (1001)2

Now, let’s convert the latter binary number back to base 10 tocheck: (1001)2 =
1× 23 + 0× 22 + 0× 21 + 1× 20 = 1× 8 + 0× 4 + 0× 2 + 1 = (9)10.

Note that the binary numbers are generated from the smallestdigit (i.e., number
of 20’s) to the largest digit (e.g., the number of23’s in the latter example).

FRACTIONS

Up to now, all the numbers were integers. What if the numbers represented were
fractions?

First, a base 10 example:

9

(0.1 2 3 4

- # of 10−1’s
- # of 10−2’s
- # of 10−3’s
- # of 10−4’s

)10 = 1× 10−1 + 2× 10−2 + 3× 10−3 + 4× 10−4

Recall the general representation for real numbers in base 10:

an...a0.b1b2... =
n∑

k=0

ak10k +
∞∑

k=1

bk10−k

Real numbers in bases other than 10 are represented the same way. For example,
in base 2:

(1 1 0 . 0 1)2 = 1× 22 + 1× 21 + 0× 20 + 0× 2−1 + 1× 2−2

= (6.25)10

- # of 21’s
- # of 20’s
- binary point
- # of 2−1’s
- # of 2−2’s

The general representation for real numbers in base 2 is

(an...a0.b1b2...)2 =
n∑

k=0

ak2
k +

∞∑

k=1

bk2
−k

Or the general representation for real numbers in a baseβ:

(an...a0.b1b2...)β =
n∑

k=0

akβ
k +

∞∑

k=1

bkβ
−k

Fractional base conversions

So, how do we represent a decimal form fraction in binary form? Consider

6.25 = (?)2.

First, put break the number into its integer and its purely factional parts:6.25 =
6 + .25. Its integer part of(6)10 = (110)2, as before. Now for the fractional part:

10

.25× 2

.5× 2

0

?
fractional

?
fractional

-integer

-integer

0

1

?

.25 = (.01)2

Therefore(6.25)10 = (110.01)2.

Note that we could use a shortcut to generate base 2 numbers from base 10 num-
bers. We do this by first converting the base 10 number to base 8, then from base 8
to base 2. The former conversion produces about one octal digit for every step of
the hand conversion of the decimal digit of an integer. And the latter conversion
is trivial with each octal digit resulting in three binary digits (bits). For example:

(361.8125)10 = (551.64)8 = (101 101 001.110 100)2

Finally, let us consider
(0.1)10 = (?)2

.1× 2

.2× 2

.4× 2

.8× 2

.6× 2

.2

?
fractional

?
fractional

?
fractional

?
fractional

?
fractional

-integer

-

integer -

integer

-integer

-integer

0

0

0

1

1

?

.1 = (.0001100110011...)2

= (.00011)2

'

&

-

Notice that0.1 cannot be represented by a finite number of digits in base 2. Also,
recall that some numbers cannot be represented by a finite number of digits in
base 10, for example,

1

3
= (0.33333...)10 = (0.1)3.

Indeed, there are some numbers that are irrational in all rational base represen-
tations: e.g.,π, e,

√
2. But note that needing an infinite number of digits in a

11

base, as with our1
3

example above, does not mean that the number is necessarily
irrational.

FLOATING-POINT NUMBERS

If a number is not an integer, we often write it in “scientific notation.” E.g.,

18.25 = 0.1825× 102

−0.056 = −0.56× 10−1

}

base10

and
(110.01)2 = 0.11001× 23

(27.25)10 = (11011.01)2

= 0.1101101× 25







base2

General Form

±
↓ sign

0.
radix point↑

a1a2...as

B
BBM

mantissa or fraction

×β

↑base (radix)

e ←− exponent (or characteristic)

In the above,β is the base that the number is represented in. Therefore, ifβ = 10,
then the number is in decimal form; ifβ = 2, then the number is in binary form.
Also, 0.a1a2...as is the mantissa ands is the number of significant digits in the
mantissa. Ande is the exponent of the number.

s, a1, a2, ..., as, β, e are all integers.

eachai < β, therefore

{

β = 10 ⇒ ai = 0, 1, 2, 3, 4, 5, 6, 7, 8, 9
β = 2 ⇒ ai = 0, 1

Some examples of numbers in different bases in scientific notation are:

0.1295× 105, − 0.1276× 82, − 0.10101× 23

However, a number may have many such representations:

18.25 = 0.1825× 102

12

= 0.01825× 103

= 0.001825× 104

Normalised form

For a unique representation - the first digit after the radix point must be greater
than 0.

i.e.,1 ≤ a1 < β, 0 ≤ ai < β, i = 2, ..., s

This is called thenormalised formof the number – each number can be uniquely
represented in the normalised form. Zero? Zero is represented by possibly0.0000...0×
β0 or 0.0000...0× βL, whereL is the smallest possible exponent (this will be in-
troduced later).

What does this notation used for the general form represent?

0.a1a2...as × βe =

(

a1

β1
+

a2

β2
+ · · ·+ as

βs

)

× βe

= a1β
e−1 + a2β

e−2 + · · ·+ asβ
e−s

For example,0.101× 22 = 1× 22−1 + 0× 22−2 + 1× 22−3 = 2 + 1
2

= (2.5)10 .

FLOATING-POINT SYSTEM

If we collect all the numbers of the above general form, we geta set of numbers.
This set of numbers is denoted by:

F (β, t, L, U); β, t, L, U are given integers.

This is a collection of all floating-point numbers in baseβ, with a mantissa that
has exactlyt digits (i.e.,s = t). Also, the exponent is in between the integers
L andU, or L ≤ e ≤ U . Therefore,F (β, t, L, U) contains all floating-point
numbers of the form

±0.a1a2...at × βe, with L ≤ e ≤ U,

and one additional number - zero.

The exponent is called thecharacteristicwhen a constant, usuallyL, is added to
the exponent such that the actual stored integer is positive. Although extra work,
this increases the exponent range by one value (consider a simple example with

13

three bits, one bit representing the sign of the exponent andtwo bits representing
the range of the exponent, versus all three representing therange of the character-
istic).

Examples of systems:

F (10, 1, 0, 1) = {±0.a1 × 10e|e = 0, 1; a1 = 1, 2, ..., 9} ∪ {0}
= {±0.1× 100,±0.2× 100, ...,±0.9× 100,±0.1× 101, ...,±0.9× 101} ∪ {0}
= {±0.1,±0.2, ...,±0.9,±1,±2, ...,±9} ∪ {0}

Total : 37 numbers

F (2, 1,−1, 1) = {±0.a1 × 2e|e = −1, 0, 1; a1 = 1} ∪ {0}
= {±0.1× 2−1,±0.1× 20,±0.1× 21} ∪ {0}
= {±0.05,±0.1,±0.2} ∪ {0} (in base 10)

Total : 7 numbers

Properties ofF (β, t, L, U)

How many numbers inF (β, t, L, U)? Count all the possible choices forai ande.

representation: ±0.a1a2...at × βe

of choices: 2(β − 1)βt−1(U − L + 1)

Total = 2(β − 1)βt−1(U − L + 1) + 1

Largest number,Ω, in F (β, t, L, U)? Take the largest possible for each ofai and
e.

Ω = . (β − 1)(β − 1)...(β − 1)
︸ ︷︷ ︸

t

×βU

=

(

β − 1

β1
+

β − 1

β2
+ · · ·+ β − 1

βt

)

× βU

= βU − βU−t = βU(1− β−t)

Smallest positive number,ω, in F (β, t, L, U)? Take the smallest possible value
for the mantissa and the exponent,e.

ω = 0.100...0× βL =
1

β
× βL = βL−1.

14

EXAMPLE

IBM 360/370 Mainframes

Some IBM mainframes areF (16, 6,−64, 63) - single precision.

Register
32 bits

±
1

exp

7

a1

4

a2

4

a3

4

a4

4

a5

4

a6

4

sign 1 bit ±
exp 7 bits – 128 numbers (-64, 63)
ai 4 bits – 16 numbers (0,1,...,E,F)

Example, some properties ofF (16, 6,−64, 63):

Total # of fl-p numbers: 2× 15× 165 × 128 + 1 = 4, 026, 531, 841
Ω = 1663 − 1657 ≈ 7× 1075

ω = 16−65 ≈ 5× 10−79

For double precisionF (16, 14,−64, 63) – 64 bits – 32 more bits are added to the
mantissa. Total number of floating-point numbers = 34,359,738,369.Ω andω are
almost the same as with single precision.

Extra Notes

IEEE Standard

The IEEE is approximatelyF (2, 24,−126, 127), but is more complicated.

Single precision
32 bits

±
1

exp

8
mantissa

23

Only 23 bits are assigned to the mantissa. Why ist = 24?

In the representation ofF (2, 24, ...)→ ±.a1a2...a24, eachai = 0 or 1, buta1 > 0,
soa1 = 1. Sincea1 is always 1, there is no need to store it, so this is a hidden bit.
This unused bit in the mantissa is then given to the exponent,doubling its range
with 8 bits compared to 7 for the IBM 360/370 mainframe.

15

So ± exp a2 a3 ... a24
︸ ︷︷ ︸

23 bits

Note, the IEEE standard isnot implemented exactly asF (2, 24,−126, 127). For
example, zero is represented in a special form.

Double precision≈ F (2, 53,−1022, 1023).

Double precision
64 bits

±
1

exp

11
mantissa

52

Also, an added degree of precision has been added with extended precision num-
bers≈ F (2, 64,−16382, 16382). In this case,15 bits are used in the exponent,
and there is no hidden bit in the mantissa. There is a total of 80 bits in this repre-
sentation.

End of Extra Notes

16

CISC 271 Class 3

Error sources in Number Representations

REPRESENTATION OF A REAL NUMBER IN A FLOATING-POINT SYSTEM

Any F (β, t, L, U) contains only a finite number of numbers. So, since the set of
real numbers is infinite, many real numbers are not containedin F.

-

F
︷ ︸︸ ︷

0
××× × × ×

E.g.,F (10, 4,−3, 3)

12.34 = 0.1234× 102 ∈ F
12.345 = 0.12345× 102 6∈ F, 5 significant digits

1234 = 0.1234× 104 6∈ F, e = 4 > 3
1
3

= 0.333... 6∈ F, ∞ number of significant digits

Consider the floating-point systemF (β, t, L, U). A real numberx is in F only if

a) the sum terminates before/att termsand

b) L ≤ e ≤ U.

If x does not satisfy both of the above, it is not inF. If a computer usesF to
represent real numbers, thenx can not be stored exactly.

Rounding and Chopping

How can we do computation withx? We needto approximatex by a nearby
floating-point number inF (β, t, L, U).

17

-

0
•
x

? ?××× × × ×

Such a nearby floating-point number is called a floating-point representation ofx
denoted byfl(x).

i.e., approximatex by fl(x) ∈ F.

Supposex is a real number, we can always write it in the form

x =

[

a1

β1
+

a2

β2
+ · · ·

]

βe = (0.a1a2...)× βe,

but the sum may have more thant terms, or may not terminate. E.g.,0.35 =
0.010110× 20.

So, how to findfl(x)? Consider thet-th andt+1-th terms of the above summation.

x =

(

a1

β1
+

a2

β2
+ · · ·+ at

βt
+

at+1

βt+1
+ · · ·

)

× βe

= 0.a1a2...atat+1...× βe, assumeL ≤ e ≤ U

If x 6∈ F (β, t, L, U), we can findfl(x) in two ways:

1. Chopping, where we ignore the tail (at+1at+2...)

fl(x) = 0.a1a2...at × βe

2. Rounding up

fl(x) =

{

0.a1a2...(at + 1)× βe; if at+1 ≥ β

2

0.a1a2...at × βe; if at+1 < β

2

Chopping is easier to implement using computer hardware, whereas rounding is
more accurate, as we will see.

18

E.g.,F (10, 4,−3, 3)

x = 12.345 = 0.12345× 102 6∈ F.

chopping fl(x) = 0.1234× 102 = 12.34

rounding fl(x) = 0.1235× 102 = 12.35

x = 1
3

= 0.3333... ⇒ fl(x) = 0.3333
x = 0.1234× 102 ∈ F ⇒ fl(x) = x = 0.1234× 102

x = 0.33333, y = 0.33334 ⇒ fl(x) = fl(y) = 0.3333

On computers, everything is done within the floating-point system. Ifx is a real
number, if is first represented byfl(x) on the computer, and then all computations
are carried out by usingfl(x).

E.g., inF (10, 4,−3, 3), any computations involvingx = 0.33333 are the same as
those involvingy = 0.33334.

Aside: You can think of your two hands as two digits of base 6 (i.e., you can store
0,1,2,3,4,5 on either hand). How could you store0.153× 62?

Overflow, Underflow

Consider the following real number,x = (0.a1a2...atat+1...)× βe.

If L ≤ e ≤ U, then we can find afl(x) ∈ F representation of the number using
chopping or rounding. I.e,x has a representation(fl(x)) in F.

However, if
e < L or e > U → No Representation!

e < L→ underflow, e > U → overflow

E.g.,F (10, 4,−3, 3)

x = 12345 = 0.12345× 105 e = 5 > 3 overflow
x = 0.00001 = 0.1× 10−4 e = −4 < −3 underflow

MACHINE EPSILON

If x is a real number, and ifx > 0, then we always have

1 + x > 1

19

no matter how smallx is. However, in a floating-point system, this isnot true.

E.g.F (β, t, L, U) = F (10, 4,−3, 3). Takex ∈ F to be

x = 0.1× 10−3 = 0.0001 > 0.

Take sum

1 + x = 1 + 0.1× 10−3 = 1.0001 = 0.10001× 101.

Note that
1 + x = 0.10001× 101 6∈ F (10, 4,−3, 3).

We must represent it by

fl(1 + x) = fl(0.10001× 101) = 0.1000× 101 = 1.

So in a floating-point system, it is possible that when a positive number is added
to 1, the result is still 1.

Define themachine epsilon(also called machine unit),µ, to be the smallest posi-
tive floating-point number inF (β, t, L, U) such that

fl(1 + µ) > 1.

Note thatµ is different thatω, the smallest positive number inF, and is nearly
always larger.

E.g.,F (10, 4,−3, 3) :

1. Chopping

{

fl(1 + 0.0009) = fl(1.0009) = 1
fl(1 + 0.0010) = fl(1.001) = 1.001 > 1.

soµc = 0.001 = 10−3.

2. Rounding

{

fl(1 + 0.0004) = fl(1.0004) = 1
fl(1 + 0.0005) = fl(1.0005) = 1.001 > 1

µr = 0.0005 = 0.5× 10−3 =
1

2
10−3 =

1

2
µc.

20

β t-1

1 β -(t-1)

1 . 0 0 0 ... 0 0

1 . 0 0 0 ... 0 0

. 0 0 0 ... 0 0

1 . 0 0 0 ... 0 0 0

1

1

1

t-1 t t+11 2 3

=0

Position in Mantissa

+ =

(Converted into
floating-point form)

(Result of addition)

Figure 3.1: Value ofµ when chopping is used.

When rounding is used, the machine epsilon is smaller. Also,note that in com-
parison,ω = 10−4.

In general, for F (β, t, L, U), we can show:

µ =

{

β−t+1 chopping
1
2
β−t+1 rounding

For examples consider Figures 3.1 and 3.2, where the different values ofµ are
shown relative to 1. The largert is, the smallerµ is, and more precision the
system has. I.e., double precision is better than single precision.

An aside:µ can be calculated on a binary base machine using chopping by using
following Pascal code:

var
mu : real;

mu := 1.0;
while ((1.0 + mu) > 1.0) do begin

mu := mu/2;
end;
return (2*mu);

Consider why.

21

2
_β

2
_β

1 . 0 0 0 ... 0 0

1 . 0 0 0 ... 0

. 0 0 ... 0

1 . 0 0 0 ... 0 0 0

1

t-1 t t+11 2 3

=0

Position in Mantissa

+ =

(Converted into
floating-point form)

(Result of addition)

0
1β

2 2β
t

-(t-1)β

0

0

Figure 3.2: Value ofµ when rounding is used.

On a more generalβ base machine,F (β, t, L, U), we would replaceµ/2 by µ/β,
and the returned value isβµ.

ROUND-OFF ERROR

If x is real and ifx 6∈ F (β, t, L, U), we representx by fl(x). There is an error
in this presentation – round-off error: which is the error inrepresenting a real
number by a floating-point number (using rounding or chopping).

Let’s consider the round-off error associated with using a floating point system
using chopping

x =
(

a1

β1 + · · ·+ at

βt + at+1

βt+1 + · · ·
)

× βe

fl(x) =
(

a1

β1 + · · ·+ at

βt

)

× βe

The error is then:

x− fl(x) =

(

at+1

βt+1
+ · · ·

)

× βe

So the absolute error in the representation is:

Absolute Error= |x− fl(x)| ≤
∣
∣
∣
∣
∣

(β − 1)

βt+1
+ · · ·

∣
∣
∣
∣
∣
× βe = βe−t

Equivalently, when using rounding the absolute error in therepresentationf(x)
is:

|x− fl(x)| ≤ 1

2
βe−t.

22

RELATIVE ERROR

The errors above are absolute errors (|x − fl(x)|) — the differences between
the true value and its floating-point approximation. But absolute error does not
usually tell the true story. For example, the error might be one inch in sending a
rocket to the moon, or one inch in making a table. Obviously, the latter is of more
relevance.

We will definerelative error– error in reference to the true value:

R.E. =
| Absolute Error|
| True Value|

Therefore, for chopping,

R.E. =
|x− fl(x)|
|x| ≤ βe−t

(0.a1a2...at...)× βe
≤ βe−t

(0.1000...)× βe
=

βe−t

(
1
β

)

× βe
= β1−t

For rounding,

R.E. =
|x− fl(x)|
|x| ≤ 1

2
β1−t

Thus in general,
|x− fl(x)|
|x| ≤ µ – machine epsilon.

µ – small ⇒
⇑

t – large ⇒







round-off error is small.

Thus the range of values that are represented by a floating-point representation is

fl(x) = x(1 + ε), |ε| ≤ µ.

EXAMPLES USING A FLOATING POINT SYSTEM

Consider the following floating point system:F (10, 4,−20, 20) using rounding.
First, determineΩ, ω, andµ.

Ω = 1020(1− 10−4) = 9.999× 1019

ω = 10−20−1 = 1.0× 10−21

µ =
10−4+1

2
= 5.0× 10−4

23

Note that the machine epsilonµ is much larger than the smallest representable
number,ω, in F (10, 4,−20, 20).

Suppose we have the following real numbers,a = 0.68335 × 108, b = 0.986 ×
10−7, andc = 0.25× 102. What are the absolute errors and relative errors of the
following operations done inF (10, 4,−20, 20), using rounding? i)a + b + c?,
ii) a

0.3
− c

b
?, and iii)a ∗ b ∗ c? First note thatfl(a) = 0.6834 × 108, fl(b) =

0.9867××10−7, andfl(c) = 0.2500× 102.

i) The exact solution is0.6834002500000009867× 108. In F (10, 4,−20, 20)
we have

a + b + c = fl(fl(a + b) + c)

= fl(fl(fl(a) + fl(b)) + fl(c))

= fl(fl(0.6834000000000009867× 108) + fl(c))

= fl(0.6834× 108 + fl(c))

= fl(0.68340025× 108)

= 0.6834× 108

Absolute Error: = |Exact Soln− Floating Point Soln|
= |0.6834002500000009867× 108 − 0.6834× 108|
= |0.2500000009867× 102|
= 0.2500000009867× 102

≈ 0.2500× 102

Relative Error: =
|Exact Soln− Floating Point Soln|

|Exact Soln|

=
0.2500000009867× 102

|0.6834002500000009867× 108|
≈ 0.3658× 10−6

≈ 0.3658× 10−4% of Exact Soln

ii) The exact solution is−0.2556981859× 108. In F (10, 4,−20, 20) we have

a

3
− c

b
= fl

(

fl
(

a

0.3

)

− fl
(

c

b

))

= fl

(

fl

(

fl(a)

0.3

)

− fl

(

fl(c)

fl(b)

))

24

= fl
(

fl(0.2278× 109)− fl(0.2533698186× 109)
)

= fl
(

0.2278× 109 − 0.2534× 109
)

= fl(−0.2560× 108)

= −0.2560× 108

Absolute Error: = |Exact Soln− Floating Point Soln|
= | − 0.2556981859× 108 − (−0.2560× 108)|
= 0.3018141× 105

≈ 0.3018× 105

Relative Error: =
|Exact Soln− Floating Point Soln|

|Exact Soln|

=
0.3018141× 105

| − 0.2556981859× 108|
≈ 0.1180× 10−2

≈ 0.118% of Exact Soln

iii) The exact solution is0.168577695× 103. In F (10, 4,−20, 20) we have

a ∗ b ∗ c = fl(fl(a ∗ b) ∗ c)

= fl(fl(fl(a) ∗ fl(b)) ∗ fl(c))

= fl(fl(0.67431078× 101) ∗ fl(c))

= fl(0.6743× 101 ∗ fl(c))

= fl(0.168575× 103)

= 0.1686× 103

Absolute Error: = |0.168577695× 103 − 0.1686× 103|
= | − 0.22305× 10−1|
≈ 0.2231× 10−1

Relative Error: =
0.22305× 10−1

|0.168577695× 103|
≈ 0.1323× 10−3

≈ 0.1323× 10−1% of Exact Soln

25

CISC 271 Class 4

Error Propagation and Avoidance

SUBTRACTIVE CANCELLATION

Consider the following calculation.

F (10, 2,−10, 10) wherex = −.119 andy = .12, such that−fl(x) = fl(y) =
.12. The relative error is

R.E. =

∣
∣
∣
∣
∣

(x + y)− fl(fl(x) + fl(y))

(x + y)

∣
∣
∣
∣
∣
=
∣
∣
∣
∣

.001− 0

.001

∣
∣
∣
∣ = 1 Large!

Let us analyse why this relative error can be large. When substracting two num-
bers of the same sign, with similar magnitude, significant digits may be lost. This
results in a large relative error – called subtractive cancellation, or cancellation
error.

The reason for this is as follows. Considerx, y 6∈ F.

fl(x) = .a1 · · ·ap−1ap · · · ãt × βe

fl(y) = .a1 · · ·ap−1bp · · · b̃t × βe

fl(x)− fl(y) = . 0 · · ·0
︸ ︷︷ ︸

p−1

cp · · · c̃t × βe

= .cp · · · c̃t × βe−p

where ãt and c̃t denote inaccurate values. Originally, the inaccurate digit is in
thet-th place (with a maximum relative error of the floating pointrepresentation
on orderβ−t). After subtraction, the inaccurate digit is in the(t − p) − th place
(with a relative error on order ofβ−(t−p), larger by a factor ofβp). I.e., the most
significant digits have been cancelled out. In an extreme case, all the digits except
the last are the same, whereupon they are cancelled out aftersubtraction with only
the largest digit left, but it is in error in the first place.

AVOIDING CANCELLATION ERROR

Essentially,avoidsubtracting two nearly equal numbers.

E.g., if x ≈ 0, then cos(x) ≈ 1. Thus 1−cos x
sin2 x

may result in cancellation. So,
rewrite the equation to avoid the problem:

1− cos x

sin2 x
=

(1− cos x)(1 + cos x)

sin2 x(1 + cos x)
=

1− cos2 x

sin2 x(1 + cosx)
=

1

(1 + cosx)

26

There is no cancellation error in1 + cos x, whenx ≈ 0.

Example: above withF (10, 4,−10, 10) with chopping withx = 0.05 radians.
exact solution:1−cos x

sin2 x
' 0.5003126

with F (10, 4,−10, 10):

cos x = .9987× 100

1− cos x = .1300× 10−2

sin x = .4997× 10−1

(sin x)2 = .2497× 10−2

1− cos x

sin2 x
= .5206× 100

1

1 + cos x
= .5005× 100

Relative Error =

∣
∣
∣
∣

.5003126− .5206

.5003126

∣
∣
∣
∣

∼= 0.04

= 4%

Another solution would be to use a Taylor expansion ofcos x about0. So for
cos x,

cos x ' 1− x2

2!
+

x4

4!
ignoring the smaller terms, sincex ≈ 0.

Therefore,
1− cos x

sin2 x
=

x2

2!
− x4

4!

sin2 x
which does not suffer as much from cancellation error.

Another example. Suppose we want to compute ex − e−2x at x ≈ 0? Use the
Taylor series for ex twice and add common terms (details left as an exercise).

AVOIDING ROUND-OFF ERROR GROWTH

The procedure used for avoiding round-off error growing quickly very much de-
pends on the problem at hand. Some useful stategies are:

27

• Double or extended precision
Sometimes this is the only solution to deal with cancellation error.

• Taylor expansion

• Changing definition of variables

• Rewriting the equation to avoid cancellation error

• Grouping equivalent terms
Here, we try to avoid summation of numbers of different orders of mag-
nitude. One approach is to sum from the smallest number to thelargest.
For example, consider the following summation inF (10, 3,−10, 10) with
rounding:

1 + .002 + .002 + .002

Rather than summing as

fl(fl(fl(1 + .002) + .002) + .002) = 1

we sum as
fl(1 + fl(.002 + fl(.002 + .002))) = 1.01

SUMMARY OF WAYS ERRORS CAN BEINTRODUCED

In summary, ways that errors may be generated:

• Mathematical modelling

• Programming errors

• Uncertainty in Physical Data

• Machine errors (finite representation - ex., round-off error, cancellation er-
ror, propagated error, changing base representation)

• Truncation error (ex., Taylor series)

• Algorithmic design errors (ex., the function may be well-posed but the al-
gorithm used is not)

28

ARITHMETIC RULES

With real numbers, arithmetic rules hold. For example, the Associative rule:
x, y, z real⇒ (x+y)+z = x+(y+z). But, in floating-point operations, the usual
arithmetic rules do not hold in general. I.e.,fl(fl(x+y)+z) 6= fl(x+fl(y+z)).
E.g.,

fl(fl(1 +
µ

2
) +

µ

2
) = fl(1 +

µ

2
) = 1

fl(1 + fl(
µ

2
+

µ

2
)) = fl(1 + µ) > 1

29

CISC 271 Class 5

Rootfinding: Bisection

Consider the following example. We want to compute
√

3. I.e., find x where
x =
√

3.
x =
√

3 ⇒ x2 = 3 or x2 − 3 = 0.

So, the problem reduces to finding aroot of x2 − 3 = 0.

In many applications, we need to find a root of

f(x) = 0, f(x) is a continuous function,f : R→ R, on [a, b].

See Figure 5.1 for a generic function example.

f(x)

x*x* x*
a b

x

Figure 5.1: A generic function example.

In the above example,f(x) = x2 − 3.

Definition: root: A root of f(x) is ax∗ ∈ [a, b] such thatf(x∗) = 0.

A root of f(x) = 0 is also called azeroof functionf(x).

So, we may restate our problem as:

find anx∗ such thatf(x∗) = 0 for a givenf : R→ R.

But, since we are dealing with floating point representations, this problem usually
restated as:

find anx̃∗ such thatf̃(x̃∗) < ε for a givenf̃ andε,

wherex̃ = fl(x). Theε is the tolerance of error in our solution.

Generally stated, the approach to finding a root of a functionis to, given one or
more guesses, iteratively generate a better guess. In general, there are two kinds

30

f(x) = x 2- 3
f(x) = x 2- 3

1 2
x

x* = sqrt(3) = 1.732

x

Figure 5.2: Picture of root forx2 − 3 = 0.

of methods, global and local. A global method will always converge, whereas a
local method will converge if the guess is “close enough.” Wewill consider both
types of “root-finding” methods. An ideal code will start with a [slower] global
method, and then switch to a [faster] local method later to get a more precise
answer quickly.

Global Algorithms: Bisection, false position
Local Algorithms: Secant, Newton’s method

BISECTION

Let us first consider an intuitive approach to finding a root ofx2 − 3 = 0.

See Figure 5.2: Picture of the functionf(x) = x2 − 3 = 0.

Since12 < 3 and22 > 3, then we know thatx∗ ∈ [1, 2]. So, as a first approxima-
tion, we takex1 = 1.5

x2
1 = 2.25 < 3 ⇒ x∗ ∈ [1.5, 2]

A second approximation isx2 = 1.75

x2
2 = 3.06 > 3 ⇒ x∗ ∈ [1.5, 1.75]

After many iterations, we have[an, bn], andx∗ ∈ [an, bn]. If bn − an is small
enough (to meet a certain accuracy requirement, or tolerance), then we can use
any pointxn ∈ [an, bn] to approximatex∗ =

√
3.

31

More formally:

Supposef(x) is continuous on[a, b] andf(a) andf(b) have opposite signs, i.e.,

f(a)f(b) < 0,

then there exists a rootx∗ ∈ [a, b].

To find an approximation ofx∗, we proceed as follows. First, assume, for demon-
stration purposes, thatf(a) < 0, andf(b) > 0.

See Figure 5.3: Picture of the starting point for the Bisection method.

a b

f(a) < 0

f(x)

x

f(b) > 0

x*

Figure 5.3: Picture of starting point for Bisection method.

Let x1 = a+b
2

, (mid-point).

a x1 b

Sketch of the the Bisection Algorithm

if f(x1) = 0⇒ I’ve found the rootx1 = x∗, and stop

otherwise

{

f(x1) > 0, thenx∗ ∈ [a, x1]⇒ x2 = a+x1

2

f(x1) < 0, thenx∗ ∈ [x1, b]⇒ x2 = x1+b
2

if f(x2) = 0⇒ I’ve found the rootx2 = x∗, and stop,
otherwise find the sign off(x2) and determinex3, etc.

We continue this to getx1, x2, x3, ...

Are we guaranteed to find a root?

32

In general, none ofx1, x2, ..., xn, ... will be x∗, even if we continue forever. So
why do this? Even though we may never findx∗ this way, we hope thatxn will
get closer tox∗ asn gets large.

x1 : x∗ ∈ [a, x1] or [x1, b] so |x∗ − x1| ≤ b−a
2

x2 : |x∗ − x2| ≤ 1
2

b−a
2

...
xn : |x∗ − xn| ≤ b−a

2n

We may never findx∗, but we can findxn which can be as close tox∗ as we please
within the constraints of the floating point system. Note that f(x) need not be
continuous.

STOPPING CRITERIA

This brings us to the question of an appropriate stopping criterion. We may con-
sider using

|f̃(xn)| < ε.

There are two possible problems with this choice. First, is that there may not
exist any suchxn. Consider a function which is nearly vertical as it crosses thex-
axis. Then it may be that|xn − xn−1| < µ, whereµ is the machine epsilon, but
|f̃(xn)| > ε. Since we can’t subdivide the interval any further, the method fails.
Also, since the Bisection method does not require thatf ′(x) be continuous, then
it is possible that the function be vertical across the axis.Second, if the function is
very flat as it crosses the axis,|f̃(xn)| < ε, butxn still be very far from the actual
root.

Rather than the above criterion, we use a stopping criterionof the form

∣
∣
∣
∣
∣

(b̃− ã)

(ã + b̃)/2

∣
∣
∣
∣
∣
< ε,

which is a variation of|b̃− ã| < ε. This can be considered as the relative tolerance
for the accuracy of the root. This is tricky to use if the root is near zero.

In pseudocode, the Bisection algorithm looks like:

Input: a,b,f(),tol;
Algorithm: set epsilon = mu + tol;

33

m := (a + b)/2;
fa := f(a); fb := f(b); fm := f(m);
while (fm not= 0 and (|b-a|/max(1,|m|)) > epsilon) do begin

s := sign(fa);
if (s*fm < 0) then

b := m; fb := fm;
else

a := m; fa := fm;
end if;
m := (a+b)/2; fm := f(m);

end while;
return (m);

Analysis: Note the special setting forepsilon. This is because if the given
relative error tolerance is less than the machine unit, the algorithm may never
terminate. Also, the usual condition isf(x) ∗ f(m), but asm → x∗, this can
cause underflow asf(x) → 0. If x∗ is huge, may need to normalize|b − a|, or
change the variable used (x → 1

y
). If x∗ is tiny, need to avoid round-off and

underflow.

To use the algorithm, one needs to finda, b such thatf(a)f(b) < 0. Choosen as
such,[a, b] always contains a root.

Convergence: logarithmic (1 binary bit/iteration).

Example. We want to find
√

3 by the bisection method, starting with[1, 2]. If we
want the solution to be correct up to 5 digits, how many steps do we need?

|
√

3− xn| ≤
b− a

2n
=

1

2n
.

For accuracy of 5 digits, we let1
2n < 10−6, and solve forn to find out how many

steps.

2n > 106 n > 6
(ln 10

ln 2

)

≈ 20.

I.e., after 20 steps, we are guaranteed to have 5 correct digits. We know this in
advance.

Another example.Consider[a, b] = [0, 1] wherex∗ = 0.1 × 2−3 (in base 2).
Thereforex1 = 0.1×21

2
= 0.1 × 20. Thenx2 = 0.1×20

2
= 0.1 × 2−1, etc., gaining

one bit of accuracy with each iteration.

34

There is a possible problem with the Bisection method in thatthe method may
catch a singularity (wheref(x∗ − δ)→ +∞ andf(x∗ + δ)→ −∞ asδ → 0) as
if it were a root. So, the algorithm used should check if|f(xn)− f(xn−1)| → 0.

35

CISC 271 Class 6

Newton’s Method, Secant Method

Although the Bisection method is easy to compute, it is slow.Now, we will con-
sider more interesting methods of root-finding. The first twomethods are local
methods, and the last, which will be discussed in next class,is a global method.
All the methods are based on using lines to get better iterative approximations for
the root of a function.

NEWTON’ S METHOD

One of the most widely used methods is Newton’s method. Originally, Newton
used a similar method to solve a cubic equation. It has since been extended to
differential equations. Over a very small interval, most functions can be locally
approximated by a line. This idea is the basis of Newton’s method.

The idea is to start with an initial guess for the root,x1. Then draw a line tangent
to the function at the point(x1, f(x1)). The tangent line’s intersection with the
x-axis is defined to bex2. We repeat this process to getx1, x2, x3,

Figure 6.1 - Example of Newton’s Method.

1x x

x*f(x)

x x 23

f() x

f() x 1

2

Tangential
Lines

Figure 6.1: Example of Newton’s Method.

Why a tangent line? If the functionf(x) is a linear function, i.e.,

f(x) = ax + b,

36

theny = f(x) is a line. If we start off with any guessx1, the tangent line at
(x1, f(x1)) agrees withy = f(x). Therefore,x2 = x∗. I.e., for linear functions,
Newton’s method yields an exact solution after one iteration.

Now, if f(x) is any function, we may approximate if by a linear function. At the
point (x1, f(x1)),

Taylor expansion:f(x) ≈ f(x1) + f ′(x1)(x− x1) + · · ·

Figure 6.2 - Picture of the Talyor approx at a pointx1.

1x

x 1

x

f(x)

f()
F(x) = f() + f ’(x 1)(x -) x 1 x 1

Figure 6.2: Picture of the Talyor approx at a pointx1.

Let f(x) ≈ F (x) = f(x1) + f ′(x1)(x − x1) which is linear. Instead of looking
for the root off(x) = 0, look for a root ofF (x) = 0.

i.e., f(x1) + f ′(x1)(x− x1) = 0

⇒ x = x1 − f(x1)
f ′(x1)

←− root ofF (x) = 0.

Regard it as a good approximation tox∗. So, letx2 = x1 − f(x1)
f ′(x1)

. Repeating the
process, we have

xn+1 = xn −
f(xn)

f ′(xn)
.

We hopexn → x∗ asn→ +∞.

The algorithm would have the form:

guess x;
for n = 1,2,... do
x := x - f(x)/f’(x);

end;

37

Example. Want to evaluate
√

3. f(x) = x2 − 3 andf ′(x) = 2x.

xn+1 = xn −
x2

n − 3

2xn

=
1

2
xn +

3

2xn

x1 = 1, x2 = 1
2

+ 3
2

= 2, x3 = 2
2

+ 3
4

= 1.75, x4 = 1
2
× 1.75 + 3

2×1.75
= 1.7321 .

The exact solution is 1.73205....

Second Example. We want to now evaluate1
7
. So, we wantf(x) = 1

x
− 7 = 0,

with f ′(x) = − 1
x2 .

xn+1 = xn −
(

1

xn

− 7
)(

−x2
n

)

= 2xn − 7x2
n

So, by using only the+,−, and∗ functions, we can calculate an/ function.

38

f() x 1

1x x

f(x)

= ?

x 2

x 3

f() x 2

Figure 6.3: Picture of a potential problem function for Newton’s Method.

Notes regarding Newton’s Method:

• Need only one initial guess, whereas bisection needsa andb.

• Need to compute the derivativef ′(x).

• Requires thatf ′(x) 6= 0 in the neighbourhood ofx∗. Otherwise, denomina-
tor blows up.
See Figure 6.3 - picture of a potential problem function.

• At each iteration evaluatef(x) andf ′(x) (two function evaluations).

So why use this rather than bisection? — Fast.

SECANT METHOD

In Newton’s method,f ′(x) is needed. But

• f ′(x) may be difficult to compute.

• may not ever knowf ′(x); e.g., iff(x) is provided by a subroutine.

Idea: do not computef ′(xn) explicitly. Instead, approximatef ′(xn) as follows:

f ′(xn) ≈ f(xn)− f(xn−1)

xn − xn−1

.

Newton Secant
xn+1 = xn − f(xn)

f ′(xn)
⇒ xn+1 = xn − f(xn)

f(xn)−f(xn−1)

xn−xn−1

= xn−1f(xn)−xnf(xn−1)
f(xn)−f(xn−1)

39

x

f(x)

x xn n-1

f(x n-1)

Tangent Line

x

f(x)

x n-1

Secant Line

x

) f(x n

f(x n-1)

n+1 x n

Figure 6.4: Picture comparing Newton and Secant lines on a function.

40

See Figure 6.4 comparing Newton and Secant lines for a function.

Observation:limx→x0

f(x)−f(x0)
x−x0

= f ′(x). So, in the limit (which is also at a root
of the function), the Secant method becomes Newton’s method.

41

The Secant algorithm would have the form:

guess x_1, x_2;
for n = 1,2,... do
new := (x_1*f(x_2) - x_2*f(x_1))/(f(x_2) - f(x_1));
x_1 := x_2; x_2 := new;

end;

This is a fast, single-point local iterative method. Good termination criteria are

|f(xn)| ≤ ε1 or |xn−1 − xn| ≤ ε2|xn|

Some comments:

• Two initial guesses are needed, but does not requiref(x1)f(x2) < 0, unlike
bisection. But there might be problems if the root lies outside the conver-
gence range.

• Must havef(xn) 6= f(xn−1) ∀ n (similar to f ′(xn) 6= 0 in Newton’s
method). I.e., a very flat function.

• Another problem case might occur is a generated guess is the same as a
previous guess, resulting in the possibility of an infinite loop that never
reaches the root.

• Again, two function evaluations per iteration.

See Figure 6.5 - Picture of possible problem case for secant method.

The Secant Method is a local method and requires a pair of guesses that are rea-
sonably close to the desired root. If they aren’t, the new value can befurther from
the root (and there is no way of telling). However, once the root is bracketed, the
Secant method is no worse than the False Position method, which we will discuss
next.

Calculation note. For the Secant method, the basic update looks like

xn+1 =
xn−1f(xn)− xnf(xn−1)

f(xn)− f(xn−1)

42

f() x 2

1x

f() x 1 = ?x 3

x

f(x)

x 2

Figure 6.5: Picture of possible problem case for secant method.

Becausef(xn) andf(xn−1) may have the same sign,f(xn) − f(xn−1) may go
to zero, due to subtractive cancellation. However, although it does not cure the
problem, if it is rewritten as

xn+1 = xn −
{

xn − xn−1

f(xn)− f(xn−1)
f(xn)

}

← corrective term

it is far more stable.

43

CISC 271 Class 7

False Position Method

FALSE POSITION

This method is also calledRegula Falsi(method of false position). This method
is similar to the Bisection method, since the root is bracketed by an interval. It is
a globally convergent form of the Secant method.

The idea is to use information at two endpointsa andb to choose a better iterative
value. We start with[a, b] wheref(a)f(b) < 0. Join points(a, f(a)), (b, f(b)) by
a line, and letx1 be the intersection of the line with thex-axis. Then check the
sign off(x1). If

f(x1)f(a) < 0 ⇒ Take[a, x1] as the new interval
f(x1)f(a) > 0 ⇒ Take[x1, b] as the new interval

and repeat.

Figure 7.1 of the False Position Method at starting position.

x1

f(x)

x
b

a

Figure 7.1: False Position Method at starting position.

Again, we have a sequence of intervals[a1, b1], [a2, b2], ... Each contains a root,
however|bn+1 − an+1| is not necessarily equal to|bn−an|

2
.

44

Line joining (a, f(a)), (b, f(b)):

y = f(a) +
x− a

b− a
(f(b)− f(a))

y = 0 ⇒ x1 = a− b− a

f(b)− f(a)
f(a) =

af(b)− bf(a)

f(b)− f(a)

Bisection False Position

x1 = 1
2
b + 1

2
a

x1 = af(b)−bf(a)
f(b)−f(a)

= w1a + w2b

w1 = f(b)
f(b)−f(a)

, w2 = − f(a)
f(b)−f(a)

average ofa andb weighted average ofa, b

does not use uses information aboutf(x)
information aboutf(x) which may give some idea of

where root is located.

Algorithm (False Position)

find a, b, f(a)*f(b) < 0;
for n = 1,2... do
new := (a*f(b) - b*f(a))/(f(b) - f(a));
if sign(f(a))*f(new) > 0 then

a := new;
else

b := new;
end;
if (convergence condition satisfied) exit for loop;

end;
return (new);

What is the convergence criterion?|f(x)| ≤ ε1, but this may be impossible.
|(xn − xn−1)/xn| ≤ ε2, but this may take along time.

How fast does it converge? In general, False position may be better, but there
are exceptions. For locally convex functions, could be slower than the bisection
method.

See Figure 7.2 - picture of locally convex function.

45

f(x)

x
1

=1 =

a a a2 3

b b b2 3

Figure 7.2: picture of locally convex function.

Extra Notes

We can consider a speed-up for the False Position method. Theslow convergence
of the False Position method is because the update looks like

[a, b]→ [a, x1]→ [a, x2]→ [a, x3]→ · · · [stationary]

and a faster one is

[a, b]→ [x1, b]→ [x1, x2]→ [x3, x2]→ · · · [non-stationary]

ILLINOIS METHOD

The Illinois method (or modified position method) is to use1
2i−1 f(c) instead of

f(c) if c is a stagnant end point has been repeated twice or more, wherei is the
number of times the end point has been repeated.

See Figure 7.3 - A picture of the Illinois method.

This modification markedly improves the rate of convergenceof the method in
general.

End of Extra Notes

46

f(x)

x
1

=1 =

a a2

b b b2 34b

a3

Figure 7.3: A picture of the Illinois method.

47

CISC 271 Class 8

Root-Finding Methods - Properties

CONVERGENCE

In all the above methods, we’ve found a sequece of

x1, x2, x3, ...

We would like to answer the following questions:

1. Does the sequence converge tox∗, i.e., isxn close tox∗ if n is large?

|xn − x∗| ?−→ 0 as n→ +∞

2. If the sequence is convergent, how fast does it approach tox∗?

fast ⇒ few iterations needed for a given accuracy

CONDITIONS FORCONVERGENCE

Bisection Method – f(a)f(b) < 0

Newton’s Method – f ′(x1) 6= 0, x1 close tox∗

Secant Method –f(x2)− f(x1) 6= 0, x1, x2 close tox∗

Regula Falsi/Illinois Method –f(a)f(b) < 0

CONVERGENCERATE

Suppose|xn−x∗| → 0, i.e., we have a convergent method. A sequence converges,
within an error constantcp > 0, as

lim
n→+∞

|xn+1 − x∗|
|xn − x∗|p = cp,

which for largen approximates to

|xn+1 − x∗| ≈ cp|xn − x∗|p,

48

or, if en = xn − x∗,
|en+1| ≈ cp|en|p.

Then we say thatxn converges tox∗ with orderp.

p – order of convergence,cp – convergence rate

p = 1 – linear,1 < p ≤ 2 – superlinear.

To see better what’s happening, take logarithms – ifkn is the number of correct
decimal digits inxn (i.e., |xn − x∗| = 10−kn|x∗|), then

10−kn+1|x∗| ≈ cp10−pkn|x∗|p
⇒ −kn+1 + log10|x∗| ≈ −pkn + log10cp|x∗|p
⇒ kn+1 ≈ pkn − log10cp|x∗|p−1

So,p is related to the number of digits we will gain after each iteration.

Example

Let’s consider the order of convergence of Newton’s Method.

Newton’s Method is a special case of what are called Fixed-Point Methods. For
the Fixed-Point Method, the error at stepn + 1 is

|en+1| < Kn−1|e1|

whereK = max1≤i≤n{|g′(ξi)|} < 1. Therefore,p = 1, and the Fixed-Point
method is linear.

With Newton’s Method, we have

xn+1 = xn −
f(xn)

f ′(xn)
= g(xn)

Since this is a special form of the Fixed-Point method, this converges if|g′(x)| <
1, or

|g′(x)| =
∣
∣
∣
∣
∣
1− f ′(x)

f ′(x)
+

f(x)f ′′(x)

[f ′(x)]2

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

f(x)f ′′(x)

[f ′(x)]2

∣
∣
∣
∣
∣
< 1

If this holds on an intervalIδ, then the method will converge. Sincexn+1 = g(xn),
then

xn+1 − x∗ = g(xn)− g(x∗).

49

Use a special form of the Taylor expansion forg(xn), expanding aroundx∗,

g(xn) = g(x∗) + g′(x∗)(xn − x∗) +
g′′(ξn)

2
(xn − x∗)2,

where the last term is the remainder term withξn ∈ [x∗, xn].

Now, g′(x∗) = f(x∗)f ′′(x∗)
[f ′(x∗)]2

= 0, sincef(x∗) = 0. So,

g(xn)− g(x∗) =
g′′(ξn)

2
(xn − x∗)2,

or, recalling thatxn+1 − x∗ = g(xn)− g(x∗),

xn+1 − x∗ = en+1 =
g′′(ξn)

2
(en)2.

Therefore,

|en+1| =
∣
∣
∣
∣
∣

g′′(ξn)

2

∣
∣
∣
∣
∣
|en|2.

So, we can see thatp = 2 for Newton’s method. Also, note that asxn → x∗, so
doesξn → x∗.

Comparison of methods:

Bisection Method: p = 1
Fixed-Point Method: p = 1

Regula Falsi: p = 1
Illinois Method: p ≈ 1.442
Secant Method: p ≈ 1.618

Newton’s Method: p = 2 !!

Hence, we can say that Newton’s method has a quadratic order of convergence.

Note that the convergence rate is not enough, we need to account for the “cost” of
each iteration of a method, ex., by counting the number of function evaluations.
But, the quicker the convergence, the fewer the number of iterations needed to
converge close to the root, and the less round-off error thatis introduced into the
solution.

STOPPING CRITERIA

Ideally, we stop when|xn − x∗| ≤ ε. This is impossible, since we don’t knowx∗.

We several alternate approaches:

50

(1.) We can stop iff(x) = 0 or nearly so (problem is solved). I.e., given a
tolerance,εf = small,

stop if |f(xn)| ≤ εf

(2.) We can stop ifxn has “converged” or nearly so. In this case, no further
improvement can be made. I.e., given a toleranceεx,

stop if |xn − xn−1| ≤ εx

(3.) We can stop if the method is not working, i.e.,xn fails to converge (method
fails). If after a large number of iterations, none of 1. or 2.is satisfied, then
we should stop. I.e., given a large numberM .

stop ifn ≥M

If the values of either the root or the function are unknown, then use relative forms
of the above stopping criteria, i.e.,|xn−xn−1| ≤ εx|xn|. This is especially true for
methods where the root is not bracketed, i.e., Newton’s and the Secant methods.

Extra Notes

ABSOLUTE ERROR

As mentioned, the methods we have used generate a sequence ofapproximations
{xn} to a true rootx∗, i.e.,f(x∗) = 0. According to the Mean Value Theorem, if
f(x) is continuous and differentiable,

f(xn)− f(x∗) = f(xn)− 0 = f ′(ξ)(xn − x∗) for someξ ∈ [xn, x∗].

Thus, the absolute erroren = x∗ − xn is such that

|en| =
|f(xn)|
|f ′(ξ)| .

Assuming thatf ′(x∗) 6= 0, there is a small regionIδ aroundx∗ where

Iδ = [x∗ − δ, x∗ + δ] and f ′(x) 6= 0 ∀ x ∈ Iδ.

By the extreme (minimum) value theorem, there is a minimum valuemδ > 0 such
that

|f ′(x)| ≥ mδ ∀ x ∈ Iδ.

51

As n→∞, xn will eventually fall intoIδ, and so willξ. Thus

|en| ≤
|f(xn)|

mδ

.

Thismδ is a bound onf ′(x) nearx∗, and so we have amethod-independentmea-
sure of the absolute error.

If mδ is large, the problem iswell-conditioned, and we can get very near the root.
If mδ is small, the problem isill-conditionedand all methods will behave poorly
near the root.

ROUND-OFF ERROR

Newton’s iteration looks likexn+1 = g(xn), so

x̃n+1 = g(x̃n) + δn

whereδn is the round-off error from truexn+1 = g(xn). The difference from the
real root is

x∗ − x̃n+1 = g(x∗)− g(x̃n)− δn

sincex∗ = g(x∗).

The mean value theorem gives an absolute bound of

x∗ − x̃n+1 = g′(ξn)(x
∗ − x̃n)− δn

whereξn ∈ [x∗, xn]. Subtractg′(ξn)(x∗ − x̃n+1) from both sides,

[1− g′(ξn)](x∗ − x̃n+1) = g′(ξn)(x̃n+1 − x̃n)− δn

As n→ +∞, the method in question converges tox∗, so |g′(ξn)| < 1.

If we can find the maximumM so that|g′(ξn)| ≤ M < 1, we can get a bound on
the round-off error as

|x∗ − x̃n+1| ≤
M

1−M
|x̃n+1 − x̃n|+

|δn|
1−M

.

If we know the real root, we can access the method.

End of Extra Notes

52

CISC 271 Class 9

Polynomial Interpolation

POLYNOMIALS

Examples of polynomials

x2 − x + 1 – degree 2 (polynomial inx)
ax4 + bx2 − c – degree 4
at3 + bt2 + ct – degree 3 (polynomial int)

A polynomial of degreen:

Pn(x) = a0 + a1x + a2x
2 + · · ·+ anxn, an 6= 0.

a0, a1, a2, ..., an are constants, andx is a variable.

A n-degree polynomial is uniquely determined by itsn + 1 coefficientsa0...an.

Pn ⇔ a0...an

EVALUATION OF POLYNOMIALS

ComputeP3(x) atx = 2, where

P3(x) = 5x3 + 2x2 − 3x + 2.

P3(x) = 5(2)3 + 2(2)2 − 3(2) + 2 = 5× 8 + 2× 4− 3× 2 + 2
= 40 + 8− 6 + 2
= 44

Alternative.

P3(x) = ((5x + 2)x− 3)x + 2 = ((5× 2 + 2)× 2− 3)× 2 + 2
= (12× 2− 3)× 2 + 2
= 21× 2 + 2
= 44

Pn(x) = a0 + a1x + · · ·+ anxn

= a0 + x(a1 + x(a2 + x(a3 + x(· · · (an−2 + x(an−1 + anx)) · · ·))))

53

For example,
P3(x) =a0+ x(a1+x(a2+xa3))

?
y

?
a0 + xy

?
a1 + xy

?
a2 + xy

Horner’s Rule for computingPn(x) = a0 + a1x + ... + anxn.

We can write an algorithm to evaluate a polynomial via Horner’s Method, where
the coefficients defining the polynomial are kept in a arraya[0..n].

y := a[n];
for i = n-1 down to 0 do

y := a[i] + x*y;
end;
return (y);

At the end of the program,y has the valuePn(x) for the givenx.

Sometimes, a polynomial can be written as

Pn(x) = a0 + a1(x− x0) + a2(x− x0)
2 + · · ·+ an(x− x0)

n.

E.g.,P3(x) = 2 + 3(x− 1)− 5(x− 1)2 + 3(x− 1)3. In this case, Horner’s rule is
the same as above withx→ (x− x0).

Aside:Given a polynomial, the polynomial has a finite number of non-zero deriva-
tives. Therefore, the Taylor series of the polynomial leadsto the original polyno-
mial since the error is zero.

POLYNOMIAL INTERPOLATION

Givenn + 1 points
(x0, y0), (x1, y1), ..., (xn, yn),

find a polynomialPn(x) which passes through these points. Thus we could es-
timate the values in between the given values. This is calledthe interpolation of
these given points.

Figure 9.1: General example of an interpolation.

54

x
x 0

1x x 2 x 3

...

f(x)

Figure 9.1: General Example

Examples.

Suppose we were given two points{x0, x1} and the values at those points? We
would draw a line.

Figure 9.2: Linear example.

x

Line

,()0yx 0

,()yx 1 1

Figure 9.2: Linear example

Suppose we were given three points{x0, x1, x2}? We would draw a parabola.

Figure 9.3: Parabolic interpolation example.

So, forn = 1, we have a line and forn = 2, we have a parabola. How aboutn+1
points,{x0, x1, ..., xn}? We would then draw an polynomial,Pn(x).

Let Pn(x) = a0 + a1x + · · ·+ anxn. Theproblemis to finda0, a1, ..., an such that
Pn(x) passes through(x0, y0), (x1, y1), ..., (xn, yn).

55

x
x 1

x 0 x 2

Parabola

Figure 9.3: Parabolic interpolation example.

Conditions:

(x0, y0), Pn(x0) = y0

(x1, y1), Pn(x1) = y1
...
(xn, yn), Pn(xn) = yn







a0 + a1x0 + · · ·+ anxn
0 = y0

a0 + a1x1 + · · ·+ anxn
1 = y1

...
a0 + a1xn + · · ·+ anxn

n = yn

In the above,a0, a1, ..., an are unknowns, and{xi} and{yi} are known values.
We can find the polynomial, if we solve the above fora0, a1, ..., an.

Example. FindP1(x) passing through(x0, y0) and(x1, y1). P1(x) has the form
P1(x) = a0 + a1x.

P1(x0) = a0 + a1x0 = y0

P1(x1) = a0 + a1x1 = y1

}

a1(x0 − x1) = y0 − y1

⇒ a1 =
y0 − y1

x0 − x1
if x0 6= x1

a0 = y0 − a1x0 = y0 −
y0 − y1

x0 − x1
x0 =

x0y1 − x1y0

x0 − x1
.

P1(x) =
x0y1 − x1y0

x0 − x1

+
y0 − y1

x0 − x1

x

If x0 = y0 = 0, x1 = y1 = 1, P1(x) = x. I.e., the polynomialP1(x) = x passes
through(0, 0) and(1, 1). Is this the only possible solution? Yes. Why?

56

Fact. For any givenn + 1 points(x0, y0), (x1, y1), ...(xn, yn), if x0, x1, ..., xn are
distinct, i.e.,xi 6= xj if i 6= j, then there exists a unique interpolating poly-
nomial Pn(x) of degreen; i.e., there is a uniquePn(x) which passes through
(x0, y0), (x1, y1), ...(xn, yn). This can be proved by constructing a linear system
of n-th order equations.

Example. Ifx0, x1, ..., xn are distinct. Suppose we have a polynomialPn(x) of
degreen, so that

Pn(xi) = 0 for i = 0, 1, ...n.

What isPn(x)? Pn(x) = 0, i.e., a0 = a1 = · · · = an = 0. Why? Pn(x) = 0
interpolates(x0, 0), (x1, 0), ..., (xn, 0), and this is a unique interpolation of the
points.

57

CISC 271 Class 10

Lagrange’s Method

LAGRANGE POLYNOMIALS

Given distinctx0, x1, ..., xn, there is a unique polynomial of degreen passing
through

(x0, 1), (x1, 0), (x2, 0), ..., (xn, 0) ⇒ ln0 (x).

See Figure 10.1: Picture ofln0 (x).

x 2

x 1

x 0

xn-1
xx x3 n

1

Figure 10.1: Picture ofln0 (x).

In fact, we can construct a whole set of these polynomials, each passing through
1 for a differentxi value.

ln0 (x) (x0, 1), (x1, 0), (x2, 0), ..., (xn, 0) ln0 (x0) = 1, ln0 (x1) = 0, ln0 (x2) = 0, ..., ln0 (xn) = 0
ln1 (x) (x0, 0), (x1, 1), (x2, 0), ..., (xn, 0) ln1 (x0) = 0, ln1 (x1) = 1, ln1 (x2) = 0, ..., ln1 (xn) = 0
ln2 (x) (x0, 0), (x1, 0), (x2, 1), ..., (xn, 0) ln2 (x0) = 0, ln2 (x1) = 0, ln2 (x2) = 1, ..., ln2 (xn) = 0
...
lnn(x) (x0, 0), (x1, 0), (x2, 0), ..., (xn, 1) lnn(x0) = 0, lnn(x1) = 0, lnn(x2) = 0, ..., lnn(xn) = 1

A general short form for these polynomials is

lni (x)

wheren is the degree andi is the place in the set{xj} where it has value1.

58

lni (xj) =

{

0, i 6= j
1, i = j

Example.n = 1. we havex0, x1 such that

l10(x0) = 1, l10(x1) = 0

l11(x0) = 0, l11(x1) = 1

See Figure 10.2: A picture ofl10(x) andl11(x).

1

x 0 x 1
x

l (
1 x)1

1

x 0 x 1
x

l 0(
1 x)

Figure 10.2: A picture ofl10(x) andl11(x).

How to findlnj (x)?

ln0 (x) — degreen =

{

0 atx1, x2, ..., xn

1 atx0

Consider the following polynomial of degreen

qn(x) = (x− x1)(x− x2) · · · (x− xn)

= 0 atx1, x2, ..., xn

qn(x) is almostln0 (x), but qn(x0) = (x0 − x1)(x0 − x2) · · · (x0 − xn) 6= 1 in
general. But

qn(x)

qn(x0)
=

(x− x1)(x− x2) · · · (x− xn)

(x0 − x1)(x0 − x2) · · · (x0 − xn)
=

{

0 atx1, x2, ..., xn

1 atx0

and is a degreen polynomial.

59

ln0 (x) = qn(x)
qn(x0)

= (x−x1)(x−x2)···(x−xn)
(x0−x1)(x0−x2)···(x0−xn)

This polynomial interpolates(x0, 1), (x1, 0), ..., (xn, 0). Similarly

lni (x) =
(x− x0)(x− x1) · · · (x− xi−1)(x− xi+1) · · · (x− xn)

(xi − x0)(xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn)
=

∏n
j=0

j 6=i

(x− xj)

∏n
j=0

j 6=i

(xi − xj)

interpolates(x0, 0), (x1, 0), ..., (xi, 1), ..., (xn, 0).

Why Lagrange polynomials?

For a given(x0, y0), (x1, y1), ..., (xn, yn), consider

Pn(x) = y0l
n
0 (x) + y1l

n
1 (x) + · · ·+ ynl

n
n(x)

where

1. Pn(x) has degreen.

2. Pn(xi) = yi.

In other words,Pn(x) is the interpolating polynomial for(x0, y0), (x1, y1), ..., (xn, yn).

LAGRANGE FORMULA

The interpolating polynomial for(x0, y0), (x1, y1), ..., (xn, yn) is given by

Pn(x) = y0l
n
0 (x) + y1l

n
1 (x) + · · ·+ ynl

n
n(x) =

∑n
i=0 yil

n
i (x)

providedxi 6= xj , i 6= j.

What does this interpolating formula look like? Considern = 1.

P1(x) = y0
(x− x1)

(x0 − x1)
+ y1

(x− x0)

(x1 − x0)

INTERPOLATING FUNCTIONS BY POLYNOMIALS.

If we have a complicated functionf(x), we may want to approximate it by a
polynomial of degreen, Pn(x).

See Figure 10.3: A picture of general example.

60

P (x)
n

f(x)

x

Figure 10.3: A picture of general example.

How to approximate this function,f(x)?

We requirePn(x) andf(x) to have the same values at some given set of{xi},
x0, x1, ..., xn. I.e.,Pn(xi) = f(xi), i = 0, 1, 2, ..., n.

Therefore,Pn(x) must interpolate(x0, f(x0)), (x1, f(x1)), ..., (xn, f(xn)).

Use the Lagrange formula,

Pn(x) =
n∑

i=0

f(xi)l
n
i (x)

This is a polynomial of degreen which interpolatesf(x) atx0, x1, ..., xn.

Example. Suppose a functionf(x) is given by the following table
i 0 1 2 3
xi 0 1 3 4

f(xi) 3 2 1 0

Find the interpolating polynomial and use it to approximatethe value off(2.5).

1. Find the Lagrange polynomials.

l30(x) =
(x− 1)(x− 3)(x− 4)

(−1)(−3)(−4)
, l31(x) = (x−0)(x−3)(x−4)

(1−0)(1−3)(1−4)

l32(x) =
(x− 0)(x− 1)(x− 4)

(3− 0)(3− 1)(3− 4)
, l33(x) = (x−0)(x−1)(x−3)

(4−0)(4−1)(4−3)

61

2. Find interpolating polynomial.

P3(x) = 3l30(x) + 2l31(x) + 1l32(x) + 0l33(x),

= 3 (x3−8x2+19x−12)
−12

+ 2 (x3−7x2+12x)
6

+ (x3−5x2+4x)
−6

= (−x3+6x2−17x+36)
12

.

3. UseP3(2.5) to estimatef(2.5),

P3(2.5) =
(−(2.5)3 + 6(2.5)2 − 17(2.5) + 36)

12
= 1.28125

Therefore,f(2.5) ≈ 1.28125.

62

CISC 271 Class 11

Newton Divided Differences

There are two problems with Lagrange’s form for the unique interpolating for-
mula:

1. It is expensive computationally.

2. If we havePn(x), we can’t use it to findPn+1(x).

The Lagrange formulation

Pn(x) =
n∑

i=0

f(xi)l
n
i (x)

is simple in form, but it is difficult to compute the coefficients. So, we will look
for another form forPn(x). Note that we are not looking for another polynomial,
since there is only one unique interpolating polynomial. What we are looking for
is another form to express the same polynomial, that is easier to compute.

We write the interpolating polynomial in the following form:

Pn(x) = A0+A1(x−x0)+A2(x−x0)(x−x1)+· · ·+An(x−x0)(x−x1) · · · (x−xn−1).

And try to determine the coefficientsA0, A1, ..., An.

(x0, f(x0)) Pn(x0) = f(x0) ⇒ A0 = f(x0)

(x1, f(x1)) Pn(x1) = f(x1) ⇒
{

f(x1) = f(x0) + A1(x1 − x0)

⇒ A1 = f(x1)−f(x0)
x1−x0

(x2, f(x2)) Pn(x2) = f(x2) ⇒ A2 =
f(x2)−f(x1)

x2−x1
−

f(x1)−f(x0)
x1−x0

x2−x0

A3, A4 — too complicated

NEW NOTATION

We can note in the above expressions forA1 andA2 a relationship in the forms of
the expressions, which leads us to the following new notation.

63

f [x0] = f(x0) ⇒ A0 = f [x0]

f [x0, x1] = f [x1]−f [x0]
x1−x0

⇒ A1 = f [x0, x1]

f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

⇒ A2 = f [x0, x1, x2]

etc.

We callf [x1, x2] = f(x1)−f(x0)
x1−x0

thedivided differenceat [x1, x2], etc.

Thus, the polynomial which interpolates

(x0, f(x0)), (x1, f(x1)), ..., (xn, f(xn))

can be written as

Pn(x) = f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1)

+ · · ·+ f [x0, x1, ..., xn](x− x0)(x− x1) · · · (x− xn−1)

= Pn−1(x) + f [x0, x1, ..., xn]
n−1∏

i=0

(x− xi)

f [x0] = f(x0)

f [x0, x1] = f [x1]−f [x0]
x1−x0

f [x0, x1, x2] = f [x1,x2]−f [x0,x1]
x2−x0

f [x0, x1, ..., xi] = f [x1,x2,...,xi]−f [x0,x1,...,xi−1]
xi−x0

f [x0, x1, ..., xn] = f [x1,x2,...,xn]−f [x0,x1,...,xn−1]
xn−x0







Newton’s
Divided
Difference

We can build a divided difference table very easily:

xi f [xi] f [xi, xi+1] f [xi, xi+1, xi+1] f [xi, xi+1, xi+1]

x0

x1

x2

x3

x4

f [x0]
f [x1]
f [x2]
f [x3]
f [x4]

f [x0, x1]
f [x1, x2]
f [x2, x3]
f [x3, x4]

f [x0, x1, x2]
f [x1, x2, x3]
f [x2, x3, x4]

f [x0, x1, x2, x3]
f [x1, x2, x3, x4]

f [x0, x1, x2, x3, x4]

Example. Find the interpolating function for the followingtable

i 0 1 2 3
xi 0 1 3 4

f(xi) 3 2 1 0

64

1. Find Newton’s divided difference.

xi f [xi]

0
1
3
4

3
2
1
0

−1
−1

2

−1

1
6

−1
6

− 1
12

2. Find the interpolating function.

P3(x) = 3+(−1)(x−0)+
1

6
(x−0)(x−1)+ (− 1

12
)(x−0)(x−1)(x−3)

65

COMPUTING THE DIVIDED DIFFERENCE

Given(x0, f(x0)), (x1, f(x1)), ..., (xn, f(xn)), how can we computef [x0], f [x0, x1],
..., f [x0, x1, ..., xn]?

We use two vectors~x, ~y. Their initial values are

~x = (x0, x1, ..., xn)
~y = (f(x0), f(x1), ..., f(xn))

I.e.,y0 = f(x0), ..., yn = f(xn)

j−→

i

x









x0

x1

x2

x3

y0

y1

y2

y3

y1

y2

y3

y2

y3
y3

j = 1 j = 2 j = 3

xi − xi−1 xi − xi−2 xi − xi−3

After the first column is completed:y0 = f [x0], y1 = f [x0, x1]
After the second column is completed:y0 = f [x0], y1 = f [x0, x1], y2 = f [x0, x1, x2]

After the third column is completed:y0 = f [x0], y1 = f [x0, x1], ..., y3 = f [x0, x1, x2, x3]

and then we have all Newton’s Divided Differences.

Algorithm

let y[0] := f(x[0]), y[1] := f(x[1]), ..., y[n] := f(x[n]);
for j = 1, 2, ..., n do

for i = n, n-1, ..., j do
y[i] = (y[i] - y[i-1])/(x[i] - x[i-j]);

end;
end;

The result of this algorithm is that~y contains the divided difference

yi = f [x0, x1, ..., xi]

66

Recall Horner’s rule,

Pn(x) = y0 + y1(x− x0) + y2(x− x0)(x− x1) + · · ·+ yn(x− x0)(x− x1) · · · (x− xn)

= y0 + (x− x0)(y1 + (x− x1)(y2 + · · ·))

This requires only half as many multiplications as the original.

SUMMARY

The polynomial of degreen which interpolates

(x0, f(x0), (x1, f(x1)), ..., (xn, f(xn))

is given by

Pn(x) = f(x0)l
n
0 (x) + · · ·+ f(xn)lnn(x) =

∑n
i=0 f(xi)l

n
i (x) –Lagrange formula

‖
Pn(x) = f [x0] + f [x0, x1](x− x0) + · · ·+ f [x0, x1, ..., xn](x− x0)(x− x1) · · · (x− xn−1)

=
∑n

i=0 f [x0, x1, ..., xi](x− x0)(x− x1) · · · (x− xi−1) –Newton’s Divided Difference

67

CISC 271 Class 12

Finite Difference, Errors

Consider if the points{xi} are evenly spaced. Leth be the fixed distance between
the points. Then we can define

∆f(xi) = f(xi + h)− f(xi)

= f(xi+1)− f(xi)

or ∆fi = fi+1 − fi, fi = f(xi)

This quantity is called the forward difference off(x) at xi. Since the points are
evenly spaced,xi = x0 + ih, i = 0, 1, 2, ..., n.

For r ≥ 0, we can further define

∆r+1fi = ∆rfi+1 −∆rfi,

with ∆0fi = fi. For example,

∆2fi = ∆(∆fi) = ∆(fi+1−fi) = ∆fi+1−∆fi = (fi+2−fi+1)−(fi+1−fi) = fi+2−2fi+1+fi

Now, let us consider the form of the Newton Divided Difference with evenly
spaced points.

f [x0, x1] =
f1 − f0

x1 − x0

=
1

h
∆f0

f [x0, x1, x2] =
f [x1, x2]− f [x0, x1]

x2 − x0

=
1

2h

(
1

h
∆f1 −

1

h
∆f0

)

=
1

2h2
∆2f0

...

In general, and this can be easy proved via proof by induction,

f [x0, x1, ..., xk] =
1

k!hk
∆kf0

68

We can now modify the Newton interpolation formula to an interpolation formula
based on forward differences. Since the polynomial is defined continuously, rather
than with respect to the discretely spaced points, we will define for the valuex at
which the polynomial is defined,

µ =
x− x0

h
,

whereµ is a continuous parameter.

Therefore,
x− xi = x0 + µh− x0 − ih = (µ− i)h

which leads to the following form for the interpolating formula

Pn(x) =
n∑

i=0

(

µ
i

)

∆if0,

where we have used thebinomial coefficients
(

µ
i

)

=
µ(µ− 1) · · · (µ− i + 1)

i!
, i > 0

and

(

µ
0

)

= 1.

For example,n = 1.
P1(x) = f0 + µ∆f0

As with Newton divided differences, we can easily constructtables to evaluate the
forward differences.

xi fi ∆fi ∆2fi ∆3fi · · ·
x0

x1

x2

x3

x4
...

f0

f1

f2

f3

f4
...

∆f0

∆f1

∆f2

∆f3

∆2f0

∆2f1

∆2f2

∆3f0

∆3f1
...

Example. Find the interpolating function for the followingtable

69

i 0 1 2 3
xi 0 1 2 3

f(xi) 3 2 0 -1

1. Find the forward differences.

xi f [xi] ∆fi ∆2fi ∆3fi

0
1
2
3

3
2
0
−1

−1
−2
−1

−1
1

2

2. Find the interpolating function.

P3(x) = 3 + (−1)(µ) + (−1)
(µ)(µ− 1)

2
+ (2)

(µ)(µ− 1)(µ− 2)

6

Note: forward differences of order greater than three are almost entirely the result
of differencing the rounding errors in the table entries; therefore, interpolation in
this table should be limited to polynomials of degree less than four. (See example
in Atkinson text, p. 151; G & W, p. 232).

As you can see, there is nothing particularly special aboutforward differences.
We can equally definebackwarddifference interpolating functions based on

∇fi = fi − fi−1.

Extra Notes

ERRORS INDATA AND FORWARD DIFFERENCES

One use of the finite differences it the detection of noise in data, when the noise
is large with respect to the rounding errors or uncertainty errors of physical mea-
surement.

First, let us consider a property of the forward differences, which derives from the
fact that they are linear:

∆r(αf(x) + βg(x)) = α∆rf(x) + β∆rg(x)

This can easily be proved using proof by induction.

70

Let {f̃i} be our experimental results, and{ei = e(xi)} be an error larger than
rounding error, and{fi} be our desired function. Therefore,

f̃i = fi − ei

with f̃i being our table value that we used to construct our difference table. Then

∆rf̃i = ∆rfi −∆rei

= hrr!f [xi, ..., xi+r]−∆rei

= hrr!
f (r)(ξi)

r!
−∆rei

= hrf (r)(ξi)−∆rei

whereξi ∈ (xi, ..., xi+r).

So the first term becomes smaller asr increases, as we saw in an earlier forward
difference table. But what is the behaviour of the error? Consider an error of the
following form:

ei =

{

0 i 6= k
ε i = k

71

The forward difference table for this function is:

xi ei ∆ei ∆2ei ∆3ei · · ·
...

...
...

...
...

xk−4

xk−3

xk−2

xk−1

xk

xk+1

xk+2

xk+3

xk+4

0
0
0
0
ε
0
0
0
0

0
0
0
ε
−ε
0
0
0

0
0
ε
−2ε
ε
0
0

0
ε
−3ε
3ε
−ε
0

· · ·

...
...

...
...

... · · ·

Therefore, the effect of the single rounding error will propagate and increase in
value as the larger order differences are calculated. But rounding errors are a
general error function composed of a sum of the above error function at eachxi.
As their differences grow in size, the higher order∆rf̃i become dominated by the
rounding errors (especially when they start growing in size).

NOISE IN DATA

Suppose our data has an isolated error that dominates the rounding errors. We
would then look for a pattern like that above for a singleei. Consider the following
example:

f̃i ∆f̃i ∆2f̃i ∆3f̃i
Error
Guess

Guess
∆3fi

.10396

.12096

.13782

.15451

.17101

.18738

.20337

.21919

.23474

.01700

.01686

.01669

.01650

.01637

.01599

.01582

.01555

−.00014
−.00017
−.00019
−.00013
−.00038
−.00017
−.00027

−.00003
−.00002
.00006
−.00025
.00021
−.00010

0
0
ε
−3ε
3ε
−ε

−.00003
−.00002
−.00002
−.00002
−.00002
−.00002

72

Usingr = 3 and one of the errors is choosen randomly, say the first, we arrive at
a guess ofε = −.00008. We could have guessedε = −.00007. Therefore, we can
correct one of the entries:

fi = f̃i + ei = .18738 + (−.00008) = .18730

If there are more errors, their results might overlap.

End of Extra Notes

73

CISC 271 Class 14

Interpolation Errors

In all the above we have been using a polynomialPn(x) to interpolate and approx-
imate a functionf(x). Why should we use a polynomial? Because

Weierstrass Approximation Theorem.If f(x) is continuous on a finite
interval[a, b], ∃ a polynomialPn(x) of degreen such that

|f(x)− Pn(x)| < ε,

throughout the interval[a, b], for any givenε > 0. (The degree re-
quired ofPn(x) is a function ofε).

So, we can get uniform approximation using polynomials.

We have discussed the order of the polynomial beingn for n+1 given points. But
why is the polynomial unique? Consider the following argument by contradiction:

Suppose there are two different polynomials of degreen interpolating
the samen+1 points. Call these polynomialsPn(x) andQn(x). Their
difference is a polynomial of at most degreen:

D(x) = Pn(x)−Qn(x).

Of course,D(x) is zero at the givenn + 1 points, such thatD(x) is a
polynomial of at degree at mostn with n+1 distinct zeros. But this is
not possible unlessD(x) is identically zero. HencePn(x) andQn(x)
are the same polynomial.

One consequence of this result is that if we have a unique function f(x) and a
unique interpolating polynomialPn(x), then we also have a unique error function:

E(x) = f(x)− Pn(x).

PROBLEMS IN POLYNOMIAL INTERPOLATION

We know
of interpolating point∼ degree of polynomialn

74

So with
more points⇒ more places wherePn(x) = f(x)

But is it true that

asn→ +∞ ?⇒ Pn(x) agrees withf(x) everywhere on[a, b] ?

I.e., |Pn(x)− f(x)| ?−→ 0 asn→ +∞

75

This depends on

1. the functionf(x) and

2. the interpolating pointsx0, x1, ..., xn.

But, as a rule,

|Pn(x)− f(x)| 6→ 0

Reason:A polynomial of degreen hasn − 1 turning points (i.e., the number of connecting
segments define unique directions). If the degree is very high, the polynomial turns up
and down very quickly. High degree polynomials tend to have “wiggles” or oscillations.
We should try to avoid using high degree polynomials.

Therefore, we end up with two main problems:

1. The error is ill-behavedand

2. The polynomial is not what you might think.

Classical Example

A bell shaped function (Runge):

f(x) =
1

1 + 25x2
, x ∈ [−1, 1]

If x0, x1, ..., xn are evenly spaced (i.e., sampled uniformly), then

max
x∈[−1,1]

|Pn(x)− f(x)| → +∞, asn→ +∞

The behaviour between the sampled points grows without limit.

See Figure 14.1: A picture of this function, and an interpolating polynomial.

This leads us to two unusual results:

1. If f ′(x) is bounded on[−1, 1], then the sampling sequence

Sn = {xi|xi = − cos
(

i

n
π
)

, i = 0, ..., n}

givens an approximating polynomialPn(x), using the same interpolation
method, that uniformly converges on[−1, 1]. These are calledChebyshev
points.

76

y = P (x)

y =

10

1 + 25x

1

x

2

Figure 14.1: A picture of this function, and an interpolating polynomial.

2. For any sampling sequenceSn on [a, b] wherei 6= j ⇒ xi 6= xj, there
exists a continous functionf(x) on [a, b] that cannot be approximated, i.e.,
limn→∞(Pn(x)− f(x)) =∞.

ROUND-OFF ERRORS

The value atf(xi) can only be approximated, within a round-off error ofεi,

f̃i = f(xi) + εi.

This round-off then propagates through the differencing, because

f̃ [x0] = f̃0

f̃ [x0, x1] = f̃1−f̃0

x̃1−x̃0

and so on, so our ideal polynomial, in divided difference form,

Pn(x) =
n∑

k=0

(

f [x0, x1, ..., xk]
k−1∏

i=0

(x− xi)

)

77

is deviated.

If we supposed that the points are equally spaced byh, and letε be the largestεi,
we can derive

max
a≤x≤b

|Pn(x)− P̃n(x)| ≤ ε

2
(2n + 1)

and finally,

|f(x)− P̃n(x)| ≤ hn+1Mn+1

4(n + 1)!
+

ε(2n + 1)

2

whereMn+1 is the discretization error term.

Comment: errors can be decreased if thex value to be approximated is centered
on the points used for the interpolation.

78

CISC 271 Class 15

Piecewise Polynomials

In general, what we observed before was that the polynomial approximation error
decreases as we add points, and then begins to worsen. To apply this form of
an approximation to a large number of points, welocally interpolate. E.g., if
quadratic interpolation has the best error, then find an interval [xi, xi+2] containing
xi+1 and use those three points.

Fact: degree of interpolating polyn’l= # of interpolating points - 1

Want:
degree = small

(avoid oscillating)
of points = large

(good approximation)

So, this is the idea. We haven + 1 points,x0, ..., xn ∈ [a, b]. If we use one
polynomial to interpolate all the points, we have a polynomial of degreen. But
suppose that we break up[a, b] into m pieces:

[a1, b1], [a2, b2], ..., [am, bm],

with n1 +1 points in[a1, b1], n2 +1 points in[a2, b2], ...,nm +1 points in[am, bm].
Eachni is much smaller thatn. Also, bi = ai+1.

See Figure 15.1 for a picture of the subdivision of the original interval.

Use a polynomialPn1(x) to interpolate all points in[a1, b1] ⇒ Pn1(x), degree= n1

Use a polynomialPn2(x) to interpolate all points in[a2, b2] ⇒ Pn2(x), degree= n2
...

...
Use a polynomialPnm

(x) to interpolate all points in[am, bm] ⇒ Pnm
(x), degree= nm

Thus the polynomialsPn1(x), Pn2(x), ..., Pnm
(x) are low degree polynomials, but

none of{Pni
(x)} interpolates all of the pointsx0, x1, ..., xn.

a 1 b 1

b 2

a 3 b
a

a b

b 44

3n + 1 points

2n + 1 points
n + 1 points

n + 1 pointsa 2

1 3

4

n + 1 points

Figure 15.1: A picture of the subdivision of the original interval.

79

x
a 1 b 1

a 2 b 2

a 3 b 3

Pn
1

Pn

Pn

2

3

Figure 15.2: Picture of the possible subintervals and interpolating polynomials.

Define a new functionP (x)

P (x) =







Pn1(x) x ∈ [a1, b1]
Pn2(x) x ∈ [a2, b2]

...
...

Pnm
(x) x ∈ [am, bm]

1. P (x) is a polynomial on each subinterval[ai, bi], with possibly different
degrees in each subinterval, but not necessarily a polynomial on the total
interval[a, b].

See Figure 15.2 for a picture of the possible subintervals and corresponding
interpolating polynomials.

2. P (x) interpolates all pointsx0, x1, ..., xn.

Definition: A functionP (x) is said to be a piecewise polynomial on[a, b] if there
are pointsa = z0 < z1 < · · · < zm = b such thatP (x) is a polynomial on
[zi, zi+1] for eachi.

Suppose on the interval[zi, zi+1],

P (x) = Pni
(x), degree= ni,

how to computeP (x̃) for x̃ ∈ [a, b]?

(a) locate the interval[zi, zi+1] which contains̃x. I.e.,

find i such thatzi ≤ x̃ ≤ zi+1

80

x

Figure 15.3: Picture of linear interpolation.

(b) apply Horner’s method to compute the polynomial

Pni
(x̃)

Let us consider an example with linear interpolation, whereeach interval between
points{xi} is interpolated by a straight line.

See Figure 15.3 for a picture of a linear interpolation of a set of points.

For a given pair of points, we define the interpolation over[xi, xi+1]

g2(x) = f(xi) + f [xi, xi+1](x− xi),

whereg2(x) is a linear interpolation of two points.

From our previous theorems, we have

f(x)− g2(x) =
f ′′(ξi)

2
(x− xi)(x− xi+1)

for someξi ∈ (xi, xi+1). SupposeM2 boundsf ′′(x) on [xi, xi+1], and leth =
|xi+1 − xi|. Then the largest possible value for(x− xi)(x− xi+1) is h

2
· h

2
, so

|f(x)− g2(x)| ≤ M2

8
h2.

Thus, to increase accuracy, we just need to add more points.

Three observations:

81

1. For akth-order piecewise polynomial, the error bound is

max
a≤x≤b

|f(x)−gk(x)| ≤Mk

h2

4

((1 + 1/2)h)((2 + 1/2)h) · · · ((k − 1/2)h)

(k + 1)!
≤ hk+1

4(k + 1)
Mk

So, these become more accurate as the order increases, as long asMk is
well-behaved ask gets larger.

2. At theknots, thosexi where we switch polynomials, we may have a com-
pletely useless estimate off ′(x).

E.g., linear and quadratic interpolations havecuspsat [some] points. See
for example, figure 15.3.

3. These are essentially local, and information outside each subinterval has no
effect.

82

CISC 271 Class 16

Cubic Splines

Cubic spline interpolates address these latter two problems mentioned at the end
of Class 22. The major problem with the previous piecewise interpolates is that
they are not smooth everywhere on[a, b].

A cubic spline,S(x), is a piecewise polynomial such that

1. S(x) = polynomial of degree 3 on each subinterval[xi, xi+1].

2. S(x), S ′(x), S ′′(x) are continuous on(a, b).

Interpolation by Cubic Splines

Givenx0 < x1 < · · · < xn, find a cubic splineS(x) which interpolatesf(x) at
{xi}.
Here we takexi as the end points of the subintervals. I.e.,

[a, b] = [x0, x1] ∪ [x1, x2] ∪ · · · ∪ [xn−1, xn] n intervals in total.

So, givenx0 < x1 < · · · < xn, f(x0), f(x1), ..., f(xn), find S(x).

1. S(xi) = f(xi), i = 0, 1, ..., n.

2. S(x) = a polynomial of degree 3 on each interval[xi, xi+1], i = 0, 1, ..., n−
1.

3. S(x) is smooth, in thatS(x), S ′(x), S ′′(x) are continuous on(a, b).

So, on each[xi, xi+1],

S(x) = ai + bix + cix
2 + dix

3

So, S(x) is determined byai, bi, ci, di, i = 0, 1, ..., n − 1. Therefore, since we
have 4 unknown coefficients in each of then subintervals, we have4n unknowns
in total.

Equations

83

1. S(x) interpolates(x0, f(x0)), ..., (xn, f(xn)).

S(xi) = f(xi), i = 0, 1, ..., n

This givesn + 1 equations:

a0 + b0x0 + c0x0
2 + d0x0

3 = f(x0)

ai + bixi+1 + cixi+1
2 + dixi+1

3 = f(xi+1), i = 0, ..., n − 1

2. Continuity inS(x). I.e., for i = 0, ..., n − 2, S(xi) has the same value
whether[xi, xi+1] or [xi+1, xi+2] is used. This givesn − 1 more equations:

ai + bixi+1 + cix
2
i+1 + dix

3
i+1 = ai+1 + bi+1xi+1 + ci+1x

2
i+1 + di+1x

3
i+1

3. Continuity inS ′(x). I.e., for i = 0, ..., n − 2, S ′(xi) has the same value
whether[xi, xi+1] or [xi+1, xi+2] is used. This givesn − 1 more equations:

bi + 2cixi+1 + 3dix
2
i+1 = bi+1 + 2ci+1xi+1 + 3di+1x

2
i+1

4. Continuity inS ′′(x). I.e., for i = 0, ..., n − 2, S ′′(xi) has the same value
whether[xi, xi+1] or [xi+1, xi+2] is used. This givesn − 1 more equations:

2ci + 6dixi+1 = 2ci+1 + 6di+1xi+1

So the total number of equations is4n−2, whereas the total number of unknowns
is 4n. Note that we could not have added another derivative (S ′′′), or level of
smoothness, to the definition of the cubic spline since then the problem would be
over constrained.

Conclusion:Since4n−2 < 4n, there are more than one cubic spline interpolating
(x0, f(x0)), ..., (xn, f(xn)).

To find a unique cubic spline, we need to impose two more constraints. There are
three commonly used conditions. Each one gives a unique spline.

1. Complete Cubic Spline.
If f ′(x0) andf ′(x1) are known, we require that

S ′(x0) = f ′(x0), S ′(xn) = f ′(xn)

With these two additional constraints, there is a unique cubic spline inter-
polation for(x0, f(x0)), ..., (xn, f(xn))

Figure 16.1: Complete Cubic Spline.

84

f ’ (x 0)x 0) = S ’ (
f ’ (x)x) = S ’ (n n

x
x 0 x n

Figure 16.1: Complete Cubic Spline.

x
x 0 x n

xS ’’ () = 00
x nS ’’ () = 0

Figure 16.2: Natural Cubic Spline.

2. Natural Cubic Spline.
In this condition, we require that

S ′′(x0) = 0, S ′′(xn) = 0

Again, there is a unique natural cubic spline.

Figure 16.2: Natural Cubic Spline.

3. “Not-a-knot” Condition.
In this condition, we require that

S ′′′(x) is continuous atx1 andxn−1

I.e.,

S ′′′(x1) = same value when either[x0, x1] or [x1, x2] is used
and S ′′′(xn−1) = same value when either[xn−2, xn−1] or [xn−1, xn] is used

85

x 0 x nx 1 x n-1

x

x x
1 n-1S ’’’ (S ’’’ () = constant) = constant

x x2 n-2

...

Figure 16.3: “Not-a-knot” Condition.

With these two constraints, there is a unique cubic spline.

Why “not-a-knot”? SinceS(x), S ′(x), S ′′(x), andS ′′′(x) are all continous
atx1, S(x) is in fact a polynomial on[x0, x2]. Similarily, S(x) is a polyno-
mial on[xx−2, xn]. ThusS(x) is a piecewise polynomial on subintervals

[x0, x2], [x2, x3], ..., [xn−3, xn−2], [xn−2, xn]

So,x1, xn−1 are not end-points of a subinterval so they are not knots. Of
course,x1, xn−1 are still interpolating points sinceS(x1) = f(x1), and
S(xn−1) = f(xn−1).

Figure 16.3: “Not-a-knot” Condition.

HOW TO COMPUTES(x) AT x̃.

1. Decide which condition, out of the three outlined above, to use to define
which cubic spline to be used.

2. Computeai, bi, ci, di(i = 0, ..., n − 1) by solving4n equations, which we
can do by using Gaussian Elimination, or more advanced techniques (e.g.,
Matlab’sspline() function).

3. Locate the interval[xi, xi+1] such that̃x ∈ [xi, xi+1].

4. Using Horner’s method to compute

S(x̃) = ai+1 + bi+1x̃ + ci+1x̃
2 + di+1x̃

3.

86

Note: Usually we writeS(x) on [xi, xi+1] as

S(x) = ai+1 + bi+1(x − xi) + ci+1(x − xi)
2 + di+1(x − xi)

3.

In this way,ai+1 can be easy found sinceS(xi) = f(xi). Thus we haveS(xi) =
ai+1 = f(xi). Thus on the interval[xi, xi+1]

S(x) = f(xi) + bi+1(x − xi) + ci+1(x − xi)
2 + di+1(x − xi)

3.

Of course,bi, ci, di still need to be found by solving3n equations. This can usually
be done using library subroutines.

Example

Consider a Natural Cubic Spline fitted to the functionf(x) = ex sin x at the fol-
lowing points

xi f(xi)
0 0
1 2.29
2 6.72
3 2.83

Therefore,S ′′(x0) = S ′′(x3) = 0.

Sincen = 3, we have 12 equations:

a0 + b00 + c00
2 + d00

3 = 0

a0 + b01 + c01
2 + d01

3 = 2.29

a1 + b12 + c12
2 + d12

3 = 6.72

a2 + b23 + c23
2 + d23

3 = 2.83

a0 + b01 + c01
2 + d01

3 − a1 − b11 − c11
2 − d11

3 = 0

a1 + b12 + c12
2 + d12

3 − a2 − b22 − c22
2 − d22

3 = 0

b0 + 2c01 + 3d01
2 − b1 − 2c11 − 3d11

2 = 0

b1 + 2c12 + 3d12
2 − b2 − 2c22 − 3d22

2 = 0

2c0 + 6d01 − 2c1 − 6d11 = 0

87

2c1 + 6d12 − 2c2 − 6d22 = 0

2c0 + 6d00 = 0

2c2 + 6d23 = 0

which in matrix form is



















































1 0 0 0 0 0 0 0 0 0 0 0
1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 2 4 8 0 0 0 0
0 0 0 0 0 0 0 0 1 3 9 27
1 1 1 1 −1 −1 −1 −1 0 0 0 0
0 0 0 0 1 2 4 8 −1 −2 −4 −8
0 1 2 3 0 −1 −2 −3 0 0 0 0
0 0 0 0 0 1 4 12 0 −1 −4 −12
0 0 2 6 0 0 −2 −6 0 0 0 0
0 0 0 0 0 0 2 12 0 0 −2 −12
0 0 2 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 2 18





































































































a0

b0

c0

d0

a1

b1

c1

d1

a2

b2

c2

d2



















































=



















































0
2.29
6.72
2.83
0
0
0
0
0
0
0
0



















































which has the solution

[a0, b0, c0, d0,
a1, b1, c1, d1,

a2, b2, c2, d2] ≈
[0, 1.16, 0, 1.13,

4.61,−12.67, 13.84,−3.49,
−42.17, 57.50,−21.25, 2.36].

See figure 16.4 for a plot of the Natural Spline.

If the two additional conditions for the Natural Cubic Spline are changed to that
of the Complete Cubic spline,S ′(x0) = f ′(x0), S ′(xn) = f ′(xn), we get the
Complete Spline in figure 16.5.

88

exact

Lagrange Polynomial

Natural Spline

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−3

−2

−1

0

1

2

3

4

5

6

7

f(x) = e^x*sin(x) interpolated by P_3(x) and a Natural Spline

Figure 16.4: A comparison of a Natural Spline and a Lagrange Polynomial inter-
polating the same function, ex sin x.

89

exact
Complete Spline

−0.5 0 0.5 1 1.5 2 2.5 3 3.5

−3

−2

−1

0

1

2

3

4

5

6

7

f(x) = e^x*sin(x) interpolated by a Complete Spline

Figure 16.5: A Complete Spline interpolating ex sin x.

90

CISC 271 Class 19

Numerical Integration

Quadrature – comes from the process of “squaring”, of findinga square equal
in area to a given area, e.g., finding the area of a circle. Now means numerical
integration.

The problem is either

• Givenf(x) defined on[a, b], find I =
∫ b
a f(x)dx or

• Givenf(xi) defined on{xi}, find I =
∫ xn

x0
f(x)dx

a
x

f(x)

b

Figure 17.1: Picture of an example of an integration. The area of the shaded region
is the result of the integration.

See Figure 17.1 for a generic example.

Easy example:I =
∫ b
a xdx = 1

2
(b2 − a2) or more generally:

∫ b
a Pn(x)dx

Hard example:I =
∫ b
a ecos(x)dx =?

In many applications,

f(x) – complicated
∫ b
a f(x)dx – cannot be calculated analytically

– must be approximated by a numerical value

The approach:

1. Locally interpolatef(x) by a simple functiong(x), e.g., a polynomial in-
terpolationPn(x), whose analytical integral is known.

2. Use the integral of the simpler function to approximate
∫ b
a f(x)dx locally,

summing the local results as we move along.

91

Our goal is to get as accurate an answer as possible, with as few function evalua-
tions as possible.

Quadrature can be done withfixedor variable (adaptive) spacing. We will look at
two fixed rules: Trapezoid and Simpson’s; and one adaptive rule: Trapezoid.

TRAPEZOID RULE

The simplest polynomial approximation to a function is a piecewise linear inter-
polation. See Figure 17.2.

x
b

f(x)

a

Figure 17.2: Picture of a piecewise linear approximation tothe function, and the
corresponding resulting integration.

Consider a linear interpolation off(x) between pointsxi andxi+1.

Therefore,
∫ xi+1

xi
f(x)dx ' (xi+1 − xi)

f(xi)+f(xi+1)
2

So, if the stepsize ish, then the area of any trapezoid is

h

2
· (fi + fi+1)

The integral is thus approximately, forn + 1 points,

I(f) ≈ Tn(f) =
∑n−1

i=0
h
2
· (fi + fi+1)

= h
2

(

∑n−1
i=0 fi +

∑n−1
i=0 fi+1

)

= h
2
[(f0 + f1 + f2 + · · ·+ fn−2 + fn−1) + (f1 + f2 + · · · + fn−1 + fn)]

= h
2
(f0 + 2f1 + 2f2 + 2f3 + · · ·+ 2fn−1 + fn)

= h
2

(

f0 + 2
∑n−1

i=1 fi + fn

)

wheref0 = f(a) andfn = f(b).

DISCRETIZATION ERROR

92

To perform the integration using the Trapezoid Rule, we are approximatingf(x)
on [x0, x1] by a first-order polynomialP1(x). Thinking of this as a Taylor expan-
sion aboutx0, we know that

f(x) = P1(x) + R2(x0)

= P1(x) +
(x − x0)

2

2
f ′′(x0) +

(x − x0)
3

6
f ′′′(x0) + O(h4)

≈ P1(x) +
(x − x0)

2

2
f ′′(x0) +

(x − x0)
3

6
f ′′′(x0)

and in particular

f(x1) ≈ P1(x1) +
h2

2
f ′′(x0) +

h3

6
f ′′′(x0)

The errorE(R) in the integralI(f) − I(P1) is

E(R) ≈
∫ x1

x0

(x − x0)
2

2
f ′′(x0)dx

≈ f ′′(x0)

2

∫ x1

x0

(x − x0)
2dx

≈ f ′′(x0)

2

[

(x − x0)
3

3

]x1

x0

≈ f ′′(x0)

6
(x1 − x0)

3

Thus, the total error is the Trapezoid Rule minus the integral of P1(x) minus
E(R):

E ≈ h

2
(f(x0) + f(x1)) − hf(x0) −

h2

2
f ′(x0) −

h3

6
f ′′(x0) − E(R)

≈ h3

12
f ′′(x0)

≈ h3

12
M2

for a boundM2 onf ′′(x) over[x0, x1].

93

The total possible quadrature error is the sum of all the errors for each of the
panels,[xi, xi+1],

Tn(f) − I(f) ≤
n
∑

i=1

(

M2h
3

12

)

=
M2h

3n

12

=
M2(b − a)h2

12
= O(h2)

Therefore,

|Tn(f) − I(f)| ≤ h2 M2(b − a)

12

so this is a second-order method.

Example

EvaluateI =
∫ π
0 ex cos (x)dx by composite trapezoidal rule using 4 subintervals

(panels).

Solution:[a, b] = [0, π], f(x) = ex cos (x)

n = 4, h =
b − a

n
=

π

4
such thatx0 = 0, x1 =

π

4
, x2 =

π

2
, x3 =

3π

4
x4 = π.

T4(f) = h[
f(x0)

2
+ f(x1) + f(x2) + f(x3) +

f(x4)

2
]

=
π

4
[
1

2
+ 1.5509 + 0 + (−7.4605) +

(−23.141)

2
]

= −13.336

n = 8 T8(f) = −12.382
n = 64 T64(f) = −12.075
n = 512 T512(f) = −12.070
True Sol’n ' −12.0703

94

CISC 271 Class 20

Simpson’s Rule and Newton-Cotes Integration

SIMPSON’ S RULE

Now, let’s locally approximatef(x) by a quadratic polynomialP2(x). Hereafter,
we will alwaysassume thatn is even (for deep reasons).

See Figure 18.1. The knots forP2 occur at the even points. The regions between
knots are calledpanels. With n + 1 points, the number of panels isn/2.

x
b

f(x)

a

knots

Figure 18.1: Picture of a function approximated by piecewise quadratic polyno-
mial.

We can develop Simpson’s Rule by using Lagrangian interpolation to findP2(x)
over[xi, xi+2] and then integrate it to findI(P2). See Figure 18.2.

P2(x)

I(P2)

x[i+2]x[i+1]

f(x)

x
x[i]

Figure 18.2: Picture of a function locally approximated by aquadratic polynomial,
between the pointsxi andxi+2.

The interpolation function is

P2(x) = f(xi)l
2
0(x) + f(xi+1)l

2
1(x) + f(xi+2)l

2
2(x)

where

l20(x) =
(x − xi+1)(x − xi+2)

(xi − xi+1)(xi − xi+2)
, l21(x) =

(x − xi)(x − xi+2)

(xi+1 − xi)(xi+1 − xi+2)
,

95

l22(x) =
(x − xi)(x − xi+1)

(xi+2 − xi)(xi+2 − xi+1)

Then

I(P2) =
∫ xi+2

xi

P2(x)dx

= f(xi)
xi+2 − xi

6
+ f(xi+1)

4(xi+2 − xi)

6
+ f(xi+2)

xi+2 − xi

6

Therefore,
∫ xi+2

xi

f(x)dx ' I(P2) =
h

3
(fi + 4fi+1 + fi+2) ,

whereh = xi+1 − xi.

To get the sum over the entire interval[a, b], we sum over all the panels, noting that
the end points of the panels are have even numbered indicies,with h = (b−a)/n,

Sn(f) =
h

3
(f0 + 4f1 + f2) +

h

3
(f2 + 4f3 + f4) + · · ·+ h

3
(fn−2 + 4fn−1 + fn)

=
n−2
∑

i=0

i=even

h

3
(fi + 4fi+1 + fi+2)

=
n/2−1
∑

i=0

h

3
(f2i + 4f2i+1 + f2i+2)

=
h

3
(f0 + 4f1 + 2f2 + 4f3 + 2f4 + 4f5 + · · ·+ 4fn−3 + 2fn−2 + 4fn−1 + fn)

=
h

3



f0 + 4
n/2−1
∑

i=0

f2i+1 + 2
n/2−2
∑

i=0

f2i+2 + fn





By using more advanced techniques, we can show that for evenn, andf(x) four
times differentiable, the local error per panel (containing three points) is

|I(P2) − I(f)| ≤ h5M4

90
,

with M4 being the bound onf (4)(x). For the composite Simpson’s Rule over the
entire domain the upper bound on the error is

|Sn(f) − I(f)| ≤ h4M4(b − a)

180
=

1

n4

M4(b − a)5

180
,

96

Therefore, Simpson’s Rule isfourth-order.

Example

EvaluateI =
∫ π
0 ex cos (x)dx by composite Simpson’s rule using 2 subintervals

(panels).

Solution:Again, [a, b] = [0, π], f(x) = ex cos (x)

n = 4, h =
b − a

n
=

π

4
such thatx0 = 0, x1 =

π

4
, x2 =

π

2
, x3 =

3π

4
x4 = π.

C.S.R. =
h

3
[f(x0) + 4f(x1) + 2f(x2) + 4f(x3) + f(x4)]

=
π

12
[1 + 4(1.5509) + 2(0) + 4(−7.4605) + (−23.141)]

= −11.985

The exact solution is−12.0703. Thus withn = 4, the Composite Simpson’s Rule
has an error of0.08528, as compared to the Composite Trapezoid Rule for the
samen, which has an error of−1.2657. With n = 8, the result of the CSR has
the same magnigude of error as the result usingn = 512 with the CTR. Since our
goal is to have an accurate a result with a few a number of function evaluations as
possible, the CSR is a marked improvement for this function.

Assessment

• If the function is smooth, Simpson’s Rule is better.

• If the function has abrupt changes, then Trapezoid is better.

• Higher-order methods exist, but are tedious.

• A simple, interesting extension isspline quadrature.

97

NEWTON-COTES INTEGRATION

Consider the following:

1. a ≤ x0 < x1 < · · · < xm ≤ b wherex0, andxm may not be the endpoints.

2. interpolatef(x) atx0, ..., xm by a Lagrange formula.

Pm(x) = f(x0)l
m
0 (x) + · · ·+ f(xm)lmm(x)

so that
∫ b

a
Pm(x)dx = f(x0)

∫ b

a
lm0 (x)dx + · · · + f(xm)

∫ b

a
lmm(x)dx

= w0f(x0) + · · ·+ wmf(xm)

wherewi =
∫ b
a lmi (x)dx.

3.
∫ b
a f(x)dx ' w0f(x0)+ · · · + wmf(xm). This is theweighted averageof

f(x0), f(x1), ..., f(xm).

Some commonly used Newton-Cotes formulae (h = b−a
m

). Note that the error is
I(f) − NCm(f).

m rule ' ∫ b
a Pm(x)dx error Rule

1 hf(a+b
2

) h3

24
f (2)(ξ) midpoint

1 h
2
[f(a) + f(b)] −h3

12
f (2)(ξ) trapezoid

2 h
3
[f(a) + 4f(a+b

2
) + f(b)] −h5

90
f (4)(ξ) Simpson’s

3 3h
8

[f(a) + 3f(a + h) + 3f(b − h) + f(b)] −3h5

80
f (4)(ξ) three-eights rule

4 2h
45

[7f(a) + 32f(a + h) + 12f(a+b
2

) + 32f(b − h) + 7f(b)] − h7

945
f (6)(ξ) Boole’s rule

If h is small, then the error is also small. In practice,b − a is fixed, e.g.,
∫ 1

0
or

∫ 2π

0

So, we divide[a, b] into small intervals (panels).

COMPOSITE RULES

Composite rules are constructed in the following manner:

1. Divide [a, b] into p subintervals (panels)[a, t1], [t1, t2], ..., [tp−1, b].

98

2. Apply the basic rule (i.e., one of the Newton-Cotes formulae above) to each
of [ti, ti+1].

3. For convenience, we assume each[ti, ti+1] has equal length and one basic
rule is applied to each interval.

Note that if there arep panels, each using a rule usingm+1 points on each panel,
thenn = mp. Let h = b−a

n
, andxi = a + ih. For example, look at figure 18.3.

Note thatti = xim.

x[0] x[5]x[4]x[3]x[2]x[1] x[6]

t[0] t[1] t[2]

ba

Figure 18.3: Picture showingp = 2, m = 3, andn = mp = 6.

Then

I =
∫ b

a
f(x)dx

=
∫ t1

t0
f(x)dx +

∫ t2

t1
f(x)dx + · · ·+

∫ tp

tp−1

f(x)dx

Composite Trapezoidal Rule

∫ ti+1

ti
f(x)dx =

∫ xi+1

xi

f(x)dx ' h

2
[f(xi) + f(xi+1)]

I =
∫ b

a
f(x)dx

=
p−1
∑

i=0

∫ ti+1

ti
f(x)dx

' h

2

n−1
∑

i=0

[f(xi) + f(xi+1)]

= h[
f(x0)

2
+ f(x1) + · · · + f(xn−1) +

f(xn)

2
]

99

Composite Simpson’s Rule

∫ ti+1

ti
f(x)dx =

∫ x2i+2

x2i

f(x)dx ' h

3
[f(x2i) + 4f(x2i+1) + f(x2i+2)]

I =
∫ b

a
f(x)dx

=
p−1
∑

i=0

∫ ti+1

ti
f(x)dx

=

n
2
−1
∑

i=0

∫ x2i+2

x2i

f(x)dx

'
n
2
−1
∑

i=0

h

3
[f(x2i) + 4f(x2i+1) + f(x2i+2)]

=
h

3



f0 + 4
n/2−1
∑

i=0

f2i+1 + 2
n/2−2
∑

i=0

f2i+2 + fn





Example (again)

EvaluateI =
∫ π
0 ex cos (x)dx by composite trapezoidal rule using 4 subintervals

(panels).

Solution:[a, b] = [0, π], f(x) = ex cos (x)

n = 4, h =
b − a

n
=

π

4
such thatx0 = 0, x1 =

π

4
, x2 =

π

2
, x3 =

3π

4
x4 = π.

C.T.R. = h[
f(x0)

2
+ f(x1) + f(x2) + f(x3) +

f(x4)

2
]

=
π

4
[
1

2
+ 1.5509 + 0 + (−7.4605) +

(−23.141)

2
]

= −13.336

n = 8 CTR = −12.382
n = 64 CTR = −12.075
n = 512 CTR = −12.070
True Sol’n ' −12.0703

So in a composite method, asn gets larger⇒ the error gets smaller. But how do
we know whichn to take for a given accuracy?

100

CISC 271 Class 21

Adaptive Integration

LOCAL ERROR ESTIMATES

When we do the quadrature on[ti, ti+1] we have to pick a stepsize; let’s break the
interval into 4.

x0 x1 x2 x3 x4

· · · · ·
ti ti+1

If we do the quadrature with the Composite Simpson’s Rule usingx0, x2, andx4,
we get

S̃i(f) =
2 · hi

3
[f0 + 4f2 + f4] .

How accurate is this?

Try the quadrature on the left interval[x0, x2] and then on[x2, x4].

Si
L(f) =

hi

3
[f0 + 4f1 + f2] Si

R(f) =
hi

3
[f2 + 4f3 + f4]

to get a better estimate:Si(f) = Si
L(f) + Si

R(f).

The local errors are (assumingSi(f) > I i(f) andS̃i(f) > I i(f))

I i(f) − S̃i(f) = − (2hi)
5

90
f (4)(αi)

and I i(f) − Si(f) = −h5
i

90

[

f (4)(βi) + f (4)(γi)
]

Assume thatf (4)(x) is nearly constant on[x0, x4]. We can then set

f (4)(αi) = f (4)(βi) = f (4)(γi) = Mi.

Then,

I i(f) − Si(f) ≈ − 2

90
h5

i Mi andI i(f) − S̃i(f) ≈ −25

90
h5

i Mi

and since

Si(f) − S̃i(f) ≈ − 2

90
h5

i (2
4 − 1)Mi

101

⇒ − 2

90
h5

i Mi ≈
Si(f) − S̃i(f)

15

and so

ERRi ≈ I i(f) − Si(f) ≈ Si(f) − S̃i(f)

15

This leads us to an algorithm, given an error tolerance of epsilon:

sum all the ERR[i] over all the panels for a given interval
if (total of ERR[i] < epsilon) then

use result = sum from i=0 to p-1 of S[i](f);
else

break each [t[i], t[i+1]] into 2 subintervals (panels) and repeat;
end if

This may not terminate due to round-off error or some other difficulty (e.g.,f (4)(x)
is not really constant). So, it is necessary to subdivide a limited number of times
(e.g., 10).

Also, this approach may be inefficient, in that we may be doingsome work that is
unnecessary.

Example

See Figure 19.1.

Using C.T.R. First calculateI1, I2.

I2 − I1 is large, so subdivide panels
I4 − I2 is large, so subdivide panels
I8 − I4 is large, so subdivide panels, etc.

x

f(x)

a b(a+b)/2

I2

I8 I4

I1 (area below line)

Figure 19.1: Picture of a global adaptive approach to increasing accuracy.

102

This is not a good way to do this calculation, for the following reasons:

• In computing eachIn, we always work with the whole interval[a, b].

• We did not realize after the first step that the integral in[a+b
2

, b] had been
obtained exactly.

• The error inI2 is from [a, a+b
2

], not from [a+b
2

, b].

• Therefore, in the subsequent steps, we should only divide[a, a+b
2

] into small
intervals. No need to further divide[a+b

2
, b].

This leads us to a better method.

ADAPTIVE METHOD

In this method we

• Use more subintervals in places wheref(x) is “badly” behaved. Hence,
a large number of subintervals are used in the places wheref(x) changes
rapidly.

• Use fewer subintervals in places wheref(x) is “well” behaved. Hence a
small number of subintervals are used in the places wheref(x) is smooth.

The method is outlined as follows, given a toleranceε :

1. ComputeI1 andI2

If |I2 − I1| < ε
I2 = result andstop

Else
Note thatI2 = I1

2 + I2
2

where I1
2 = TR in [a, a+b

2
]

I2
2 = TR in [a+b

2
, b]

See Figures 19.2 and 19.3.

2. Now, we computeI4 = I1
4 + I2

4 + I3
4 + I4

4

Let I1,2
4 = I1

4 + I2
4 andI3,4

4 = I3
4 + I4

4

We won’t compare|I4 − I2|
?
< ε but rather

103

x

f(x)

a b(a+b)/2

I1

Figure 19.2: Calculation ofI1.

x

f(x)

a b(a+b)/2

I2[1]
I2[2]

Figure 19.3: Calculation ofI2.

|I1,2
4 − I1

2 |
?
< ε

2
and|I3,4

4 − I2
2 |

?
< ε

2
If none satisfied

Go to next step.
However, if|I3,4

4 − I2
2 | ≤ ε

2
then

TakeI3,4
4 as the approximate for

∫

f(x)dx in the corresponding
interval[a+b

2
, b], and never come back again.

See Figure 19.4

3. Assume that|I3,4
4 − I2

2 | ≤ ε
2

so that we don’t have to considerI2
2 . Compute

x

f(x)

a b(a+b)/2

I4[2]
I4[1]

I4[3]
I4[4]

Figure 19.4: Calculation ofI4.

104

(a+b)/2 ba

f(x)

x

I4[3]+I4[4] (done)I8[3]
I8[4]

I8[1]
I8[2]

Figure 19.5: Calculation ofI8 on [a, a+b
2

].

ba (a+b)/2

x

f(x)

I4[3]+I4[4] (done)

I16[3]
I16[2] I16[4]

I16[5]

I16[6]

I16[8]

I16[1] I16[7]

Figure 19.6: Calculation ofI16 on [a, a+b
2

].

I8, but only on[a, a+b
2

].

I8 = I1
8 + I2

8 + I3
8 + I4

8

Again, letI1,2
8 = I1

8 + I2
8 , andI3,4

8 = I3
8 + I4

8

See Figure 19.5.

Compare

|I1,2
8 − I1

4 |
?
< ε

4
and|I3,4

8 − I2
4 |

?
< ε

4

Suppose none are satisfied, so we go to the next step.

4. Compute, again on[a, a+b
2

],

I16 = I1
16 + I2

16 + · · ·+ I7
16 + I8

16

See Figure 19.6.

105

Compare

|I1,2
16 − I1

8 |
?
< ε

8
, |I3,4

16 − I2
8 |

?
< ε

8
, |I5,6

16 − I3
8 |

?
< ε

8
, |I7,8

16 − I4
8 |

?
< ε

8
.

Suppose none are satisfied but|I5,6
16 − I3

8 | < ε
8
. Then

I5,6
16 = result in[a + 2 b−a

8
, a + 3 b−a

8
].

And we repeat for the other intervals.

106

CISC 271 Class 22

Gaussian Quadrature

The Newton-Cotes rules and Composite rules:

∫ b

a
f(x)dx '

n
∑

i=0

wif(xi)

• n is fixed

• xi are fixed
E.g. In trapezoid:n = 1, x0 = a andx1 = b.

• wi can be computed when the{xi} are given; i.e., they are determined byxi

E.g. In trapezoid:w0 = h
2

= w1.

Disadvantages:xi are chosen artificially – how do we know they give us the best
result?

Note that we are considering just one panel here.

Another approach

I '
n
∑

i=0

wif(xi)

• n is fixed

• wi, xi are to be determined, so that

n
∑

i=0

wif(xi) gives the “best” result.

“best:” it givesexactresult for polynomials of highest degree possible.

I.e., we wantI =
∑n

i=0 wif(xi) if f(x) is a polynomial of some degree, and we
want the degree to be as high as possible.

Example

n = 1, [a, b] = [−1, 1]

107

∫ 1

−1
f(x)dx ' w0f(x0) + w1f(x1)

x0, x1, w0, w1 are to be determined such that
∫ 1

−1
Pm(x)dx = w0Pm(x0) + w1Pm(x1) (Equation A)

for m as large as possible.

1. Exact for polynomial of degree 0, i.e., Equation A holds for

P0(x) = 1

∫ 1
−1 1dx = w0 + w1 ⇒ w0 + w1 = 2

2. Exact for polynomial of degree 1, i.e., Equation A holds for

P0(x) = x

∫ 1
−1 xdx = w0x0 + w1x1 ⇒ w0x0 + w1x1 = 0

3. Exact for polynomial of degree 2, i.e., Equation A holds for

P0(x) = x2

∫ 1
−1 xdx = w0x

2
0 + w1x

2
1 ⇒ w0x

2
0 + w1x

2
1 = 2

3

4. Exact for polynomial of degree 3, i.e., Equation A holds for

P0(x) = x3

∫ 1
−1 xdx = w0x

3
0 + w1x

3
1 ⇒ w0x

3
0 + w1x

3
1 = 0

Can we expect the method to be exact for still higher degree polynomials? No.

We have 4 unknowns,x0, x1, w0, w1, and if the method is exact for polynomials
of degree 3, we already have 4 equations. This is enough to determine the 4
unknowns.

By solving the four equations in boxes above, we find

x0 = −
√

3

3
, x1 =

√
3

3
, w0 = 1, w1 = 1

108

Thus
∫ 1

−1
f(x)dx ' f(−

√
3

3
) + f(

√
3

3
)

This is Gaussian Quadrature on[−1, 1] with two nodes.

From above, we know thatf(−
√

3
3

) + f(
√

3
3

) is exact if

f = 1, x, x2, x3.

Is it exact for all polynomials of degree≤ 3?

Yes:
f(x) = a0 + a1x + a2x

2 + a3x
3

∫ 1

−1
f(x)dx = a0

∫ 1

−1
dx + a1

∫ 1

−1
xdx + a2

∫ 1

−1
x2dx + a3

∫ 1

−1
x3dx

= a0[1 + 1] + a1[−
√

3

3
+

√
3

3
] + a2[(−

√
3

3
)2 + (

√
3

3
)2] + a3[(−

√
3

3
)3 + (

√
3

3
)3]

= [a0 + a1(−
√

3

3
) + a2(−

√
3

3
)2 + a3(−

√
3

3
)3] + [a0 + a1(

√
3

3
) + a2(

√
3

3
)2 + a3(

√
3

3
)3]

= f(−
√

3

3
) + f(

√
3

3
)

So, it is exact for all polynomials of degree≤ 3.

Example

Evaluate
∫ 1
−1 3 + 4x + 8x2 + 2x3dx

Via Gaussian Quadrature:

∫ 1

−1
3 + 4x + 8x2 + 2x3dx =



3 + 4

(√
3

3

)

+ 8

(√
3

3

)2

+ 2

(√
3

3

)3




+



3 + 4

(

−
√

3

3

)

+ 8

(

−
√

3

3

)2

+ 2

(

−
√

3

3

)3




= 2



3 + 8

(√
3

3

)2




= 2
[

3 +
8

3

]

=
34

3

109

Compare that with straight integration:

∫ 1

−1
3 + 4x + 8x2 + 2x3dx =

(

3x +
4x2

2
+

8x3

3
+

2x4

4

)∣

∣

∣

∣

∣

1

−1

= 2
[

3 +
8

3

]

=
34

3

Comparison

Gaussian quadrature Trapezoidal
Function Evaluations 2 2
Exact for polynomials of degree≤ 3 1

110

Gaussian Quadrature in General

∫ b

a
f(x)dx '

n
∑

i=0

wif(xi)

xi, wi are chosen so that the method is exact for

1, x, x2, ..., xm

wherem is as large as possible. What is the largest possiblem, for a fixedn?

The number of unknowns are:2n+2 and alsom+1 functions⇒ m+1 equations.

Unknown = Eqns⇒ m + 1 = 2n + 2

I.e., m = 2n + 1

Conclusion:Gaussian quadrature withn+1 nodes (function evaluations) is exact
for a polynomial of degree≤ 2n + 1. In comparison, a Newton-Cotes rule of
degreen with n + 1 nodes is exact for polynomials of degree≤ n.

When we have to determinewi, xi, we have to solve a non-linear system.

111

CISC 271 Class 23

Ordinary Differential Equations - Euler Method

ODES - DEFINITION

First, what are ordinary differential equations (ODEs)? They are equations (obvi-
ously!) that

• involve one or more derivatives ofx(t), where

• x(t) is unknown and is the desired target

For shorthand, we will usex = x(t), x′ = dx(t)
dt

, x′′ = d2x(t)
dt2

, ...

For example,

(x′′′(t))
3

7 + 37tex2(t) sin 4

√

x′(t) − log
1

t
= 42

Whichx(t)’s fulfill this behaviour?

Terminology

Ordinary (vs. partial) =oneindependent variablet
Order = highest (composition of) derivatives(s) involved
Linear = derivatives, including zeroth, appear in linear form
Homogeneous = all terms involve some derivative (includingzeroth)

Analytical Solutions

Some ODEs are analytically solvable.

x′ − x = et ⇒ x(t) = tet + cet

x′′ + 9x = 0 ⇒ x(t) = c1 sin 3t + c2 sin 3t

x′ +
1

2x
= 0 ⇒ x(t) =

√
c − t

In the solutions to the above,c, c1, andc2 are arbitrary constants.

Before we can pin down the exact values of these constants, weneed more condi-
tions/information. There are two possible ways to do this:

112

• Initial Value Problems (IVP)

• Boundary Value Problems (BVP)

FIRST ORDER IVP

The types of problems that we will try to solve are first-orderInitial Value Prob-
lems (IVPs). Their general form is:

x′ = f(t, x), x(a)is given

Note that this equation is non-linear and non-homogeneous in general.

Examples

x′ = x + 1, x(0) = 0 ⇒ x(t) = et − 1

x′ = 6t − 1, x(1) = 6 ⇒ x(t) = 3t2 − t + 4

x′ =
t

x + 1
, x(0) = 0 ⇒ x(t) =

√
t2 + 1 − 1

RHS independent ofx

Suppose that the righthand side of a first-order Initial Value Problem is only a
funciton oft, but notx. I.e.,

x′ = f(t), butf 6= f(x)

For example,
x′ = 3t2 − 4t−1 + (1 + t2)−1, x(5) = 17

In this case we can perform an indefinite integration of both sides of the differen-
tial equation:

x(t) =
∫

d(x(t))

dt
dt =

∫

f(t)dt

For the above equation, we then obtain

x(t) = t3 − 4 ln t + arctan t + C

whereC = 17 − 53 + 4 ln 5 − arctan 5.

Need for Numerical Techiques

But usually, an analytical solution if not known. Or even if one is known, perhaps
it is very complicated and expensive to compute. Therefore,we need numerical
techniques to solve these types of problems. The numerical techniques that we
will discuss will

113

• Generate a table of values forx(t)

• Usually equispaced int with stepsizeh

One note of caution: with smallh, and seeking a solution far from the initial value,
roundoff error can accumulate and kill the solution.

EULER METHOD

In this section, we will develop and demonstrate the Euler Method for first-order
IVP’s. The problem we want to solve can be stated as follows:

givenx′ = f(t, x), x(a), we want to findx(b)

To findx(b), we will do the following:

• We will use the first two terms of the Taylor series (i.e.,n = 1) to get from
x(a) to x(a + h):

x(a + h) = x(a) + hx′(a) + O(h2)

= x(a) + hf(t, x(a)) + O(h2)

whereO(h2) is the order of the truncation error. Note thatx′(a) was re-
placed withf(t, x(a)).

• Repeat to get fromx(a + h) to x(a + 2h), etc.

In the above, we repeat the steps of sizeh until we arrive atx(b). A total of
n = b−a

h
steps are needed.

Example

Consider
x′ = −2t − x(t), x(0) = −1, x(0.5) =?

The analytical solution is

x(t) = −3e−t − 2t + 2.

114

By applying Euler’s method, withh = 0.1, we find

t x(t) exact error
0.00000 −1.00000 −1.00000 0.00000
0.10000 −0.90000 −0.91451 0.01451
0.20000 −0.83000 −0.85619 0.02619
0.30000 −0.78700 −0.82245 0.03545
0.40000 −0.76830 −0.81096 0.04266
0.50000 −0.77147 −0.81959 0.04812

See figure 21.1 for a plot of these solutions. The results don’t seem to accurate.
Why?

Some of the advantages of the Euler Method are the following:

• Accurate early on:O(h2) for first step.

• Only need to calculate the given functionf(t, x(t)).

• Only one evaluation off(t, x(t)) needed.

But, as can be seen in figure 21.1, the Euler Method is also

• Pretty inaccuate att = b.

• Cumulative truncation error:n × O(h2) = O(h).

• This error does not include the accumulative round-off error.

So, what can we do to minimize/remove these disadvantages?

115

Exact solution

t

Figure 21.1: A picture of the Euler Method.

116

CISC 271 Class 24

Higher Order Taylor Methods

In this section, we will try to remove some of the disadvantages of the Euler
Method by adding more terms to the Taylor series approximation ofx(a + h).

Again, the problem we want to solve can be stated as follows:

givenx′ = f(t, x), x(a), we want to findx(b)

Here we will use the first 5 terms of the Taylor series (i.e.,n = 4 - we could use
any number of terms, but 4 is the standard order used) to get fromx(a) tox(a+h):

x(a + h) = x(a) + hx′(a) +
h2

2!
x′′(a) +

h3

3!
x′′′(a) +

h4

4!
x(iv)(a) + O(h5)

In this expansion, we will use:

x′(a) ⇒ f(a, x(a))

x′′(a) ⇒ f ′(a, x(a))

x′′(a) ⇒ f ′(a, x(a))

x′′′(a) ⇒ f ′′(a, x(a))

x(iv)(a) ⇒ f ′′′(a, x(a))

Again, as with Euler’s Method, we repeat the above to get fromx(a + h) to
x(a + 2h), etc., until we reachx(b).

Example 1

Suppose we want to solve the following first-order IVP:

x′ = 1 + x2 + t3, x(1) = −4, and we want to findx(2)

The derivatives off(t, x) are

x′′ = 2xx′ + 3t2

x′′′ = 2xx′′ + 2 (x′)
2
+ 6t

x(iv) = 2xx′′′ + 6x′x′′ + 6

With n = 100, we obtain the following solution values forx(2):

117

• Actual: 4.3712 (5 significant digits)

• Using Euler: 4.2358541

• Using Taylor4: 4.3712096

Example 2

Consider again

x′ = −2t − x(t), x(0) = −1, x(0.5) =?

The derivatives off(t, x) are

x′′ = −2 − x′

x′′′ = −x′′

x(iv) = −x′′′

By applying Taylor4 method, withh = 0.1, we find

t x(t) exact error
0.00000 −1.00000 −1.00000 0.00000000
0.10000 −0.91451 −0.91451 0.00000025
0.20000 −0.85619 −0.85619 0.00000044
0.30000 −0.82246 −0.82245 0.00000060
0.40000 −0.81096 −0.81096 0.00000073
0.50000 −0.81959 −0.81959 0.00000082

These are plotted in figure 22.1, and compared to our results using the Euler
method. Note that the single step trunction error ofO(h5) leads to an excel-
lent match. Even if we use a single step size of5h, as in figure 22.2, the Taylor4

method is better than the Euler method:

t x(t) exact error
0.00000 −1.00000 −1.00000 0.00000
0.50000 −0.82031 −0.81959 0.00072

So, how does the Taylor4 method fair overall? As we have seen, the method is very
accurate, and the cumulative truncation error ofn × O(h5) = O(h4) is relately
low. But the method’s disadvantages are the following:

118

• Need derivatives off(t, x(t)) which might be

– analytically difficult,

– numerically expensive, or

– just plain impossible

• Four evaluations for each step (as compared to just one for Euler)

So, what can we do to avoid these extra derivatives, while maintaining the accu-
racy of the Taylor4 method?

119

Euler solution

Taylor 4 solution

Exact solution

t

Figure 22.1: A picture of the Taylor4 Method.

Euler solution

Exact solution

t

Taylor 4 solution
with 5h

Taylor 4 solution
with h

Figure 22.2: A picture of the Taylor4 method using a single step size of5h.

120

CISC 271 Class 25

Runge-Kutta Methods

MOTIVATION

We would like to develop a method where we avoid calculating the derivatives of
f(t, x(t)). To do this we adopt a technique similar to that used in the Secant root-
finding method where the functional derivative in Newton’s method was replaced
by an approximation for the derivative.

Derivation approximation

In the Secant method,f ′(x) was approximated by

f ′(xn) ≈ f(xn) − f(xn−1)

xn − xn−1

which, if xn = xn − 1 + h, we can modify as

f ′(x + h) ≈ f(x + h) − f(x)

h

Looking at the Taylor expansion,

f(x + h) = f(x) + hf ′(x) +
h2

2
f ′′(ξ)

or

f ′(x) − f(x + h) − f(x)

h
= −h

2
f ′′(ξ),

we see that the truncation error of this approximation isO(h). This type of ap-
proximation will be used below.

RUNGE-KUTTA

The idea behind the Runge-Kutta (RK) of orderm is that for each set of sizeh,
we

• Evaluatef(t, x(t)) atm interim stages, to

• arrive at an accuracy on the order similar to that of the Taylor method of
orderm.

121

We will give sample RK methods atm = 2, 4. They have the following charac-
teristics:

• Eachf(t, x(t)) evaluation is built upon previous function evaluations.

• The weighted average of evaluations producesx(t + h).

• The error for a RK method of orderm is O(hm+1) for each step of sizeh.

RK2

In this RK method,m = 2. So, let us consider the second order Taylor approxi-
mation:

x(t + h) = x(t) + hx′(t) +
h2

2
x′′(t) + O(h3)

or, for our IVP,x′(t) = f(t, x), is

x(t + h) = x(t) + hf(t, x) +
h2

2
f ′(t, x) + O(h3)

To remove the derivative,f ′(t, x) we need an approximation that does not reduce
the order of accuracy of thex(t + h) approximation. Therefore, use the following
as a derivation approximation:

f ′(x + h) =
f(t + h, x(t + h)) − f(t, x)

h
+ O(h)

as inspired by our previous discussion about derivative approximations, while not-
ing thatf(t, x) has twocoupledarguments. Therefore, ourx(t+h) approximation
becomes

x(t + h) ≈ x(t) + hf(t, x) +
h2

2

(

f(t + h, x(t + h)) − f(t, x)

h

)

+ O(h3)

= x(t) +

(

h

2

)

f(t, x) +
h

2
f(t + h, x(t + h)) + O(h3)

Now, if we approximatex(t + h) by a first order approximation:x(t + h) =
x(t) + hx′(t) + O(h2) = x(t) + hf(t, x) + O(h2), we have

x(t + h) ≈ x(t) +

(

h

2

)

f(t, x) +
h

2
f(t + h, x(t) + hf(t, x)) + O(h3)

122

All the above manipulations did not change the order of the method, while remov-
ing the derivatives of the function.

More formally stated, the RK2 is as follows.

x(t + h) = x(t) +
1

2
(F1 + F2)

where

F1 = hf(t, x)

F2 = hf(t + h, x + F1)

RK4

Although, the derivation is much more involved, the RK4 is perhaps the most
commonly used RK method, and is as follows.

x(t + h) = x(t) +
1

6
(F1 + 2F2 + 2F3 + F4)

where

F1 = hf(t, x)

F2 = hf(t +
1

2
h, x +

1

2
F1)

F3 = hf(t +
1

2
h, x +

1

2
F2)

F4 = hf(t + h, x + F3)

Example

Consider again

x′ = −2t − x(t), x(0) = −1, x(0.5) =?

By applying RK4 method, withh = 0.1, we find

t x(t) exact error
0.00000 −1.00000 −1.00000 0.00000000
0.10000 −0.91451 −0.91451 0.00000025
0.20000 −0.85619 −0.85619 0.00000044
0.30000 −0.82246 −0.82245 0.00000060
0.40000 −0.81096 −0.81096 0.00000073
0.50000 −0.81959 −0.81959 0.00000082

123

Note that these values are essentially identical to that forthe Taylor4 method, but
without the need for higher derivatives.

OVERALL SUMMARY

If a IVP is complex and/or complicated enough, one of the above three methods
may be required to find approximate solutions. They do so by producing a table
of values, at a constant stepsizeh. The three methods have different properties:

Euler: simple, but not too accurate.
High-order Taylor:very accurate, but require derivativesof f(t, x(t)).
Runge-Kutta: Same order of accuracy as Taylor, but without derivative evaluations.

The main error sources in these methods are:

• Local truncation (of Taylor series approximation)

• Local round-off (due to finite percision)

• Accumulations and combinations of the previous two.

124

CISC 271 Class 26

Gaussian Elimination

L INEAR SYSTEMS

Conventions

Unknowns – x0, x1, ..., xn ~x =













x0

x1
...

xn













Coefficient matrix – a00, a01, ..., amn A =









a00 · · · a0n
...

. . .
...

am0 · · · amn









Right-hand side – b0, b1, ..., bm
~b =













b0

b1
...

bm













In the above, there arem + 1 rows, andn + 1 columns inA, which is an(m +
1)× (n + 1) array, orA(m+1)×(n+1). Hence, we haven + 1 unknowns withm + 1
equations.

A~x = ~b is the same as

a00x0 + a01x1 + · · · + a0nxn = b0

...

am0x0 + am1x1 + · · ·+ amnxn = bm

A solution of the system is a vector~̂x which satisfiesA~x = ~b.

Multiplying two matrices:

C = AB ⇒ cij =
n
∑

k=0

aikbkj

whereC is of order(l + 1) × (m + 1), A is of order(l + 1) × (n + 1), B is of
order(n + 1) × (m + 1). Multiplication is “row ofA by column ofB.”

125

AB 6= BA, even for(n + 1) × (n + 1) matrices:
[

1 2
0 1

] [

1 0
1 1

]

=

[

3 2
1 1

]

[

1 0
1 1

] [

1 2
0 1

]

=

[

1 2
0 1

]

Properties of general matrices:

• Commutative
A + B = B + A
AB 6= BA

• Associate
(A + B) + C = A + (B + C)
(AB)C = A(BC)

• Distributive
A(B + C) = AB + AC

• ScalarcA scales every entry the same amount.

Note: from here on, we will consider only square matrices. I.e.,A is an(n + 1)×
(n + 1) matrix.

Types of matrices:

• Lower triangular matrix,L

• Upper triangular matrix,U

• Diagonal matrix

• Identity matrix,I

Inverse: The inverse ofA is defined to beA−1 such that

AA−1 = A−1A = I

for a square matrix.

126

SOLVING A LINEAR SYSTEM

The problem we are trying to solve: GivenA,~b and~x, such thatA ∈ R(n+1)×(n+1)

and~b, ~x ∈ Rn+1, whereA~x = ~b, find ~x.

One approach: FindA−1. Then

A−1(A~x) = A−1~b ⇒ ~x = A−1~b.

Difficulties:

• What is the algorithm? (i.e, How to findA−1? Direct solutions are increas-
ingly complicated asn gets large.)

• How good/fast is the algorithm?

ANOTHER APPROACH

One of the properties of a linear system is that

A~x = ~b ⇐⇒ BA~x = B~b

if B is one of the following invertible matrices:

B : permutation matrix
{exchange rows (equations)}

B : identity matrix with constants along the diagonal
{multiply a row (along with the corresponding value of~b) by a constant}

B : arbitrary 0,1 matrix, invertible
{adding row to another}

This is based on formulations based on isolated equations.

SOLVING A SYSTEM BY GAUSSIAN ELIMINATION

(1.) Can we solve
(a00)x0 = b0 ?

This is trivial.

127

(2.) Can we solve
[

a00 a01

a10 a11

] [

x0

x1

]

=

[

b0

b1

]

?

The problem is that the equations interact.
Solution: convert row 1 to the form in (1.) by adding(row 0) ∗

(

−a10

a00

)

to
(row 1).

[

a00 a01

0 c11

] [

x0

x1

]

=

[

b0

b1

]

We can now findx1, and substitute it back into the first row (first equation).

(3.) Can we solve






a00 a01 a02

a10 a11 a12

a20 a21 a22













x0

x1

x2





 =







b0

b1

b2





 ?

By adding(row 0)
(

−a20

a00

)

to row 2, we can make it







a00 a01 a02

a10 a11 a12

0 c21 c22













x0

x1

x2





 =







b0

b1

b′2







But what next? How do we get rid ofc21?

The insight is that to zeroc21, we mustfirst zeroa10. Otherwise, it effects
c20.
So by adding(row 0)

(

−a10

a00

)

to row 1, we form







a00 a01 a02

0 c11 c12

0 c21 c22













x0

x1

x2





 =







b0

b′1
b′2







and then by adding(row 1)
(

−a21

a11

)

to row 2, we can finally get (i.e., solve
the2 × 2 array)







a00 a01 a02

0 c11 c12

0 0 d22













x0

x1

x2





 =







b0

b′1
b′′2







128

This procedure leads us to the following algorithm.

GAUSSIAN ELIMINATION ALGORITHM

for i = 0 to n-1
for j = i + 1 to n

row j = row j - a[j][i]*(row i/a[i][i]);
end for

end for

Note that row i containsbi. This produces a strictly upper-triangular matrix equiv-
alent toA.

Live example:






2 −2 −4
−1 2 3
3 −1 −5













x0

x1

x2





 =







−4
3
−6







Use Gaussian Elimination on rowj = 1 (at i = 0):

first entry in row: ⇒ −1 −
(

2

2

)

(−1) = 0

second entry in row: ⇒ 2 −
(−2

2

)

(−1) = 1

third entry in row: ⇒ 3 −
(−4

2

)

(−1) = 1

last entry in row: ⇒ 3 −
(−4

2

)

(−1) = 1

to give






2 −2 −4
0 1 1
3 −1 −5













x0

x1

x2





 =







−4
1
−6







Use Gaussian Elimination on rowj = 2 (at i = 0):

first entry in row: ⇒ 3 −
(

2

2

)

(3) = 0

second entry in row: ⇒ −1 −
(−2

2

)

(3) = 2

third entry in row: ⇒ −5 −
(−4

2

)

(3) = 1

last entry in row: ⇒ −6 −
(−4

2

)

(3) = 0

129

to give






2 −2 −4
0 1 1
0 2 1













x0

x1

x2





 =







−4
1
0







Finally, use Gaussian Elimination on rowj = 2 (at i = 1):

first entry in row: ⇒ 0 −
(

0

1

)

(2) = 0

second entry in row: ⇒ 2 −
(

1

1

)

(2) = 0

third entry in row: ⇒ 1 −
(

1

1

)

(2) = −1

last entry in row: ⇒ 0 −
(

1

1

)

(2) = −2

to give






2 −2 −4
0 1 1
0 0 −1













x0

x1

x2





 =







−4
1
−2







This solves to






x0

x1

x2





 =







1
−1
2







BACK-SUBSTITUTION

Suppose thatA is square and upper-triangular, and we haveA~x = ~b. With exact
arithmetic, the system can be solved easily:

xn =
bn

ann

xk =
bk −

∑n
j=k+1 akjxj

akk

E.g.,
4x0 − 3x1 + x2 = 8 x0 = 61

4

x1 + 2x2 = 1 ⇒ x1 = 5
−2x2 = 4 x2 = −2

130

AUGMENTED ARRAYS

We can representA~x = ~b as a new(n+1)× (n+2) matrixV = [A|~b]. Under the
set of operations,

• interchange of rows

• multiplication of a row by a non-zero constant

• adding a multiple of a row to another

leads to another matrixW = [C|~d] whereV andW areequivalent, i.e., the solu-
tion of one is the solution of the other.

131

CISC 271 Class 27

Gaussian Elimination - Pivoting and Scaling

Previously we exploited the following three properties of systems of equations to
solveA~x = ~b, noting that the solution does not change under the following:

• interchange of rows

• multiplication of a row by a non-zero constant

• adding a multiple of a row to another

We generalized the process:

1. Write down the augmented matrix[A|~b].

2. Using the elementary operations above, reduce[A|~b] to an upper triangular
matrix.

3. Use backsubstitution to solve for~x.

DIFFICULTIES

Example

A =







7 63 0
2 18 10
3 30 0





 , ~b =







13.3
3.9
6.0













7 63 0 13.3
2 18 10 3.9
3 30 0 6.0





 →







7 63 0 13.3
0 0 10 0.1
0 3 0 0.3







For the next step, we need(row1)/a11 = (row1)/0, the elimination fails!

To overcome this problem, we need to interchange the last tworows (which does
not change the solution), so thata11 6= 0.

→







7 63 0 13.3
0 3 0 0.3
0 0 10 0.1







132

This process is calledpivoting. The entry at(i, i) is called thepivot or pivot
element.

A second related type of problem can be seen in the following example.

Example

SolveA~x = ~b such that

A =







20 8 −4
10 3.9999 15
5 6 12





 , ~b =







52
8.9999

4







True solution is~x =







2
1
−1







Let’s compute the solution by Gaussian Elimination inF (10, 5,−50, 50), with
chopping.







20 8 −4 52
10 3.9999 15 8.9999
5 6 12 4





 →







20 8 −4 52
0 −.0001 17 fl(−17.0001)
0 4 13 −9







→







20 8 −4 52
0 −.0001 17 −17
0 0 680010 −680000







Note thatfl(−17.0001) = −17.

The computed solution is thus

x2 =
−680000

680010
= −0.99998

x1 =
−17 − 17x2

−0.0001

=
−17 − (−16.999)

−0.0001
= 10

x0 =
52 − (−4)x2 − 8x1

20

=
52 − (3.9999) − 80

20
= −1.5999

133

or ~x =







−1.5999
10.0

−.99998







In this example, Gaussian Elimination does not fail, but thecomputed solution has
a very large error.

Why? In the Gaussian Elimination process, all the pivots arenon-zero, so that the
method does not fail. However, one pivot used is too small, namely at the second
step,a11 = −.0001, so thata12/a11 may be very large.

Since some entries in row 1 are divided bya11, a small round-off error in an entry
(i.e., when -17.0001 is replaced by -17) will become a large error in the result.

Again, using pivoting may avoid this error.







20 8 −4 52
10 3.9999 15 8.9999
5 6 12 4







→







20 8 −4 52
0 −.0001 17 −17.0001
0 4 13 −9







At this point pivoting is used to exchange the last two rows.

→







20 8 −4 52
0 4 13 −9
0 −.0001 17 −17.0001







→







20 8 −4 52
0 4 13 −9
0 0 17.0003 −17







→







20 8 −4 52
0 4 13 −9
0 0 17 −17







→ ~x =







2
1
−1







We have an accurate solution this time (it is exact by accident).

PIVOTING

134

In Gaussian Elimination, as we saw in the previous two examples, we may en-
counter two difficulties.

1. A pivot is zero, and we cannot continue the process.

2. A pivot is small, and we may have an instability and large error in the solu-
tion.

To avoid these difficulties, we use the pivoting technique.

Consider that we are at thekth step in Gaussian Elimination where we have a
pivot atakk. Before dividing rowk by akk, we look for an entry in the remaining
part of matrix,aij , (i ≥ k, j ≥ k), such that

|aij| = max ∀ i, j ≥ k.

Suppose thataIJ is such an entry, then we interchange

row k ↔ row I columnk ↔ columnJ

so thataIJ is the new pivot, and proceed as before.

135

Complete pivoting or total pivoting. It works well but

1. Expensive. Need to locate maximum in the whole matrix.

2. Need to interchange columns – also need to reorder the unknown variables.

e.g., columnk ↔ columnJ then xk ↔ xJ

PARTIAL PIVOTING

At thekth step of Gaussian Elimination:

1. Locate the entry which is maximum in magnitude along column k.

akk

ak+1k
...

ank























|aIk| = max.

2. Interchange rowk with row I.

3. Continue the elimination as before.

Advantages.

1. If A is nonsingular, then Gaussian Elimination with partial pivoting always
works. I.e., after pivoting, the new pivot must be non-zero.The only way
the new pivot could be zero is ifa(k)

jk = 0, for j = k, .., n, for which A
would have to be singular.
If a matrix issingularthen

• There is no unique solution to the system of linear equationsrepre-
sented byA.

• After the partial pivoting, there is a zero on the diagonal.

• The rows ofA arenot linearly independent. At least one row can be
expressed as a linear combination of one or more of the other rows.

2. With partial pivoting, Gaussian Elimination is stable for most problems.
(With total pivoting, Gaussian Elimination isalwaysstable).

136

Algorithm (Gaussian Elimination with Partial Pivoting)

Input n, A[n][n], b[n];
for k = 0,1,...,n-1 do
/* pivoting */
c = |a[k][k]|;
p = k;
/* locate max */
for i = k+1,k+2,...,n

if (|(a[i][k]| > c) then
c = |a[i][k]|;
p = i;

end if
end for

/* exchange row k and row p */
for j = k,k+1,...,n

tmp = a[k][j];
a[k][j] = a[p][j];
a[p][j] = tmp;

end for
tmp = b[k];
b[k] = b[p];
b[p] = tmp;

/* continue with Gaussian Elimination */
for i = k+1, k+2, ..., n

m[i][k] = a[i][k]/a[k][k];
for j = k+1, k+2, ..., n
a[i][j] = a[i][j] - m[i][k]*a[k][j];

end for;
b[i] = b[i] - m[i][k]*b[k];

end for;
end for
back_substitution() /* as before */

In implementation, there are two ways to do the interchange of rows (and columns
in the case of full pivoting):

137

1. Real: Do the actual interchange, like in our pseudocode above.

2. Virtual: Swap the pointers (indices) instead of values.

138

CISC 271 Class 28

Error Analysis

Some results to be aware of:

• (~x · ~y) = x0y0 + x1y1 + · · · + xnyn

• Cauchy-Schwartz inequality:

|(~x · ~y)|2 ≤ (~x · ~x)(~y · ~y)

• L2 - norm:

‖~x‖2 =

√

√

√

√

n
∑

i=0

|xi|2 =
√

(~x · ~x)

Therefore, Cauchy-Schwartz:|(~x · ~y)| ≤ ‖~x‖2‖~y‖2.

• Unitary matrix:
UU∗ = U∗U = I

if U ∈ Rn+1×n+1 U∗ = UT

UT represents the transpose of the matrixU .

• Eigenvalues(λ) and Eigenvectors(~v) related by

A~v = λ~v

rearranged:
A~v − λ~v = 0

(A − λI)~v = 0

Since in general~v 6= 0,
A − λI = 0

this equation is satisfied by the eigenvalues for the matrixA.

• fA(λ) = det(A − λI)

For example,A =

[

1 2
0 1

]

, fA(λ) = (λ − 1)2. We setfA(λ) = 0 and

solve forλ to find the eigenvalues ofA.

Extra Notes

139

• A is similar to B iff
A = P−1BP

Therefore, they have the same eigenvalues.

A~x = λ~x ⇒ P−1BP~x = λ~x ⇒ B(P~x) = λ(P~x)

and if we replace~x by P−1~z,

⇒ B~z = λ~z

The corresponding eigenvector ofB is P~x.

• trace(A) =
∑n

i=0 aii. (diagonal sum)

• If A = P−1BP then

⇒ traceA = traceB
⇒ detA = detB
⇒ fA(λ) = fB(λ)

in fA(λ).

Theorem: If A is of ordern (i.e., ann × n matrix), then∃ U, a unitary matrix,
such thatT = U∗AU, whereT is an upper triangular matrix.

Corollary: fA(λ) = fT (λ) = (t00 − λ)(t11 − λ) · · · (tnn − λ)

Proof: U∗ = U−1 ⇒ A is similar toT .

End of Extra Notes

NORMS

Let ~x ∈ V, a vector space. Also, letN(~x) be the norm of~x. Then it has the
following properties:

(N1) N(~x) ≥ 0 (0 iff ~x = 0)

(N2) N(α~x) = |α|N(~x), whereα is a scalar

(N3) N(~x + ~y) ≤ N(~x) + N(~y)

ExampleConsiderV = Rn+1 The following are possible norms:

140

• N(~x) =
∑n

i=0 |xi| ≡ ‖~x‖1

• N(~x) =
√

∑n
i=0 |xi|2 ≡ ‖~x‖2

• N(~x) = (
∑n

i=0 |xi|p)
1

p ≡ ‖~x‖p

• N(~x) = maxi=0..n{|xi|} ≡ ‖~x‖∞

Example

~x =







2
−1
3





 ‖~x‖1 = 6, ‖~x‖2 =
√

14 ≈ 3.74, ‖~x‖∞ = 3

MATRIX NORMS

In addition to the above vector norm properties (N1)-(N3), matrix norms satisfy:

(N4) ‖AB‖ ≤ ‖A‖‖B‖

(N5) ‖A~x‖ ≤ ‖A‖‖~x‖v

where~x is a vector with the vector norm.

ExampleTheFrobenius norm ofA:

F (A) =

√

√

√

√

n
∑

ij=0

|aij |2

Usually when given a vector space with a vector norm‖ · ‖v, e.g.,‖ · ‖∞ or ‖ · ‖2,
the associated matrix norm can be defined by

‖A‖ = Max~x 6=0
‖A~x‖v

‖~x‖v

Several Notes:

1. We can think ofA as a mapping (transform)

~x 7→ A~x

141

Thus‖A‖ indicates how much a vector~x can be amplified under the trans-
form.

E.g. A =

[

1 0
0 2

]

:

[

x0

x1

]

7→
[

x0

2x1

]

Then the norm of a vector can be amplified by a factor of 2, therefore
‖A‖∞ = 2.

2. If A = [aij], then‖A‖ depends on the norm defined for the vectors

‖A‖∞ = max ‖A~x‖∞
‖~x‖∞ = maxi

∑n
j=0 |aij| largest row sum

‖A‖2 = max ‖A~x‖2

‖~x‖2
= maxi |λi| largest eigenvalue ofA.

ExampleA =

[

−3 1
−2 3

]

with eigenvalues ofA = −
√

7,
√

7

‖A‖∞ = max

{

| − 3| + 1,
| − 2| + 3

= 5

‖A‖2 =
√

7

ExampleA =









d0 0
. . .

0 dn









such that‖A‖∞ = ‖A‖2 = maxi |di|.

3. If A is nonsingular, thenA−1 is also a matrix, so we can find‖A−1‖.

E.g.,A =









d0 0
. . .

0 dn









, di 6= 0 ⇒ A−1 =









d−1
0 0

. . .
0 d−1

n









,

such that‖A−1‖∞ = ‖A−1‖2 = max
i

|d−1
i | =

1

mini |di|

CONDITION NUMBER

For any nonsingular matrix, define condition number as

cond(A) = K(A) = ‖A‖‖A−1‖.

If A is diagonal,K(A) = maxi |di|
mini |di| .

142

If the ‖ · ‖2 - norm is used then

K(A) = max |λi|max |λ−1
i | =

max |λi|
min |λi|

, λi– eigenvalue

There is a limit on the condition number:K(A) ≥ 1. The identity matrix has
K(I) = 1.

ERROR ANALYSIS AND MATRIX NORMS

ConsiderA~x = ~b which has~x∗ as its true solution. Using Gaussian Elimination
in a floating-point system, we obtain a solution~̂x. Therefore, the error is

~e = ~x∗ − ~̂x =













e0

e1
...
en













.

We want to know how big~e is.

Norm of~e ?
‖~e‖∞ = max0≤i≤n |ei|
‖~e‖2 =

√

e2
0 + e2

1 + · · · + e2
n

But ~e is unknown, since~x∗ is unknown. Instead, we may have another indication
of how good a solution is.

~x∗ – solution ⇒ A~x∗ = ~b ⇒ ~b − A~x∗ = 0

~̂x – computed solution ⇒ ~b − A~̂x if ~b − A~̂x = 0 ⇒ ~̂x = ~x∗

Intuitively, if ~b − A~̂x is small⇒ ~̂x – good solution.

Define:
~r = ~b − A~̂x – residual vector

If ~r = 0 ⇒ ~̂x = ~x∗ – exact solution. But

~r = small ?⇒ error~e = ~x∗ − ~̂x is small

RELATION BETWEEN ~r AND ~e

143

~e = ~x∗ − ~̂x

A~e = A~x∗ − A~̂x = ~b − A~̂x = ~r

I.e.,
~r = A~e

Question:~r small ?⇔ ~e small.
Answer: Depends onA.

Example

Suppose we have the linear system of equations:

A~x =

[

2.0001 −1
−2 1

] [

x0

x1

]

=

[

7.0003
−7

]

Suppose two methods (method a and method b) give the answers

~̂xa =

[

2.91
−1.01

]

with ~ra =

[

.170009
−.17

]

with ~ea =

[

0.09
0.01

]

~̂xb =

[

2
−3

]

with ~rb =

[

.0001
0

]

with ~eb =

[

1
2

]

but the true answer is

x∗ =

[

3
−1

]

!

So, in general,
a small~r 6⇒ a small~e

and a small~e 6⇒ a small~r

Observations

It seems that ifA is a diagonal matrix

A =









d0 0
. . .

0 dn









then~r and~e have similar sizeonly whend0, ..., dn all have similar size. In other
words,

K(A) =
largestdi

smallestdi
≈ 1

144

On the other hand, ifK(A) =
largestdi

smallestdi

= large, then one cannot draw any
conclusion about the size of~e from the size of~r and vice versa.

BOUNDS ON RELATIVE ERROR

Let us consider an upper bound on

‖~e‖
‖~x∗‖ =

‖~x∗ − ~̂x‖
‖~x∗‖ .

To make things easy, we could use theL1 – norm:

‖~x‖1 =
n
∑

i=0

|xi|, ‖A(m+1)×(n+1)‖1 =
m

max
i=0

n
∑

j=0

|aij|

The properties of this norm, as with all the norms, that are useful is that

‖A~x‖1 ≤ ‖A‖1‖~x‖1 and‖~y + ~z‖ ≤ ‖~y‖ + ‖~z‖

This entails that
‖A−1~r‖ ≤ ‖A−1‖‖~r‖

⇒ ‖~x∗ − ~̂x‖ ≤ ‖A−1‖‖~r‖
sinceA−1~r = A−1A~e = ~e.

Since‖~b‖ = ‖A~x∗‖ and‖A~x∗‖ ≤ ‖A‖‖~x∗‖, we know that

‖~b‖
‖A‖ ≤ ‖~x∗‖ so that

‖A‖
‖~b‖

≥ ‖~x∗‖−1

Multiplying the inequalities (all positive values), we get

‖~e‖
‖~x∗‖ ≤ ‖A‖‖A−1‖‖~r‖

‖~b‖
= K(A)

‖~r‖
‖~b‖

The condition number,K(A) represents the amount that the relative residual is
magnified.

Indeed, we can show that

1

K(A)

‖~r‖
‖~b‖

≤ ‖~e‖
‖~x∗‖ ≤ K(A)

‖~r‖
‖~b‖

145

The first and last terms are the relative residuals, and the central term is the relative
error.

If K(A) = 1, as would be expected for the identity matrix, then

‖~r‖
‖~b‖

=
‖~e‖
‖~x∗‖

such that the relative residual is equal to the relative error.

The relative residual and relative error have roughly the same size ifK(A) ∼
small.

If K(A) is large, the size of the relative residual and relative error may be quite
different. One may be very large while the other is small.

ERROR IN GAUSSIAN ELIMINATION

It can be shown that in Gaussian Elimination,

relative error:
‖~e‖
‖~x∗‖ ≈ K(A) · µ,

Consider an̂~x which is the computed solution ofA~x = ~b using Gaussian Elimi-
nation. The exact solution is~x∗. Then we can show that

‖~x∗ − ~̂x‖
‖~x∗‖ ≈ K(A) · µ,

whereµ is the machine epsilon.

Therefore, if a system isill-conditioned,i.e.,

K(A) � 1,

then the relative error in the computed solution may be very large, and there is
almost certainly a lot of round-off error.

For example, consider the Hilbert matrix,Hn+1, whose entries are{aij} where
aij = 1

i+j+1
.

n K(Hn+1)
2 5 × 102

5 1 × 107

6 4 × 108

9 1 × 1013

Thus the matrix is ill-conditioned.

146

CISC 271 Class 29

Linear-System Computations

COMPUTING INVERSES

A method for computing the inverse is to considerA−1 in AA−1 = I as an un-
known matrix,

A−1 = {bij}
such that

A













b00

b10
...

bn0













=













1
0
...
0













, A













b01

b11
...

bn1













=













0
1
...
0













, etc.

Solve all these systems to find{bij}. In place of the orginalA, theU generated
via the Gaussian Elimination can be used.

Example.

Find the inverse of

A =







2 1 3
1 2 0
2 1 4







Form an augmented matrix, and use Gaussian Elimination







2 1 3
1 2 0
2 1 4

∣

∣

∣

∣

∣

∣

∣

1 0 0
0 1 0
0 0 1













2 1 3
0 3/2 −3/2
0 0 1

∣

∣

∣

∣

∣

∣

∣

1 0 0
−1/2 1 0
−1 0 1







Then solve for thebij ’s.

b20 = −1

147

b10 =
−1/2 − (−3/2)(−1)

3/2
= −4/3

b00 =
1 − (3)(−1) − (1)(−4/3)

2

=
3/3 + 9/3 + 4/3

2
= 8/3

b21 = 0

b11 =
1 − (−3/2)(0)

3/2
= 2/3

b01 =
0 − (3)(0) − (1)(2/3)

2
= −1/3

etc.

Such that

A−1 =







8/3 −1/3 −2
−4/3 2/3 1
−1 0 1







LU FACTORIZATION

Gaussian elimination is not the onlydirectmethod for solving a linear system. An-
other method is called LU decomposition. Consider the following matrix product:
A = LU whereL is a lower triangular matrix, andU is an upper triangular matrix.
Actually, theLU pair can take an infinite number of forms and by convention we
use (to define a unique decomposition)











1 0 0 0
l10 1 0 0
l20 l21 1 0
l30 l31 l32 1





















u00 u01 u02 u03

0 u11 u12 u13

0 0 u22 u23

0 0 0 u33











=











a00 a01 a02 a03

a10 a11 a12 a13

a20 a21 a22 a23

a30 a31 a32 a33











We have actually already calculatedU : it is the resultant upper diagonal matrix
that we get using Gaussian Elimination. And if we define the following multipliers

mik =
aik

akk
, i = k + 1, ..., n

148

wherek is thekth row from Gaussian Elimination at thek-th step. ThenL is

L =















1 0

m10 1
...

...
.

mn0 mn1 · · · 1















From our previous example, where we found the inverse of

A =







2 1 3
1 2 0
2 1 4





 ,

L =







1 0 0
1/2 1 0
1 0 1





 ,

To solveA~x = ~b by LU :

LU~x = ~b ≡ L~y = ~b
U~x = ~y

}

Forward and Backward Substitution

Forward Substitution:L~y = ~b













1 0
l10 1
...

.
ln0 ln1 · · · 1

























y0

y1
...

yn













=













b0

b1
...
bn













Therefore,y0 = b0, yi = bi −
∑i−1

k=0 likyk, i = 1, ..., n.

Backward Substitution:U~x = ~y















u00 u01 · · · u0n

u11
...

. . .
0 unn



























x0

x1
...

xn













=













y0

y1
...

yn













149

Therefore,xn = yn

unn
, xi =

(yi−
∑n

k=i+1
uikxk)

uii
, i = n − 1, ..., 0.

Actually, only one array is needed to store bothL andU , since themij values
can be stored in the place of the0’s in the lower half ofU. Further, if there are a
number of~b′s to be solved for, they can be stored in consecutive columns in the
augmented matrix.

So, to find the solution ofA~x = ~b:

1. DoLU factorization using either Gaussian Elimination or the explicit for-
mulation. This step is independent of the right hand side (~b′s), and no extra
storage is needed sinceL is stored in the lower half ofA, andU in the upper
half.

2. Forward/Backward Substitution.

3. If there are mulitple right hand sides, one need onlyLU factorizeA once.
Then the backward/forward substitution is performed for each~b.

4. If pivoting is used during theLU factorization, an additional array must
be used to save the information on which rows have been exchanged. This
information is needed for the subsequent backward/forwardsubstitution.

There are also iterative methods for solvingA~x = ~b, but we won’t cover those.
We have covered four direct methods here.

Extra Notes

Second Method for findingLU .

There is another manner in which to find theLU decomposition, directly.

0th row:u10 = a10, u11 = a11, ..., u1n = a1n.

0th column:
l10u00 = a10 ⇒ l10 = a10

a00

li0u00 = ai0 ⇒ li0 = ai0

a00
∀ i = 1, .., n

For i ≥ 0 :

row i : uij = aij −
∑i−1

k=0 likukj j = i, ..., n

columni : lji =
(aji−

∑i−1

k=0
ljkuki)

uii
j = i + 1, ..., n

This process of decomposition can be completed ifUii 6= 0 ∀ i. If A is nonsingular,
thenUii 6= 0 if pivoting is used.

End of Extra Notes

150

CISC 271 Class 30

Functional Approximation, Minimax

APPROXIMATION

The problem we want to solve: Given a functionf(x) on [a, b], approximate it by
a polynomialPn(x).

How does this differ from Polynomial Interpolation?

• Interpolation– find polynomial to interpolatef(x) at some points on[a, b].

– Main concern:Pn(x) andf(x) have same value at some points.

– WehopePn(x) is close tof(x) at the other points, but we don’t really
care what the error is at the other points.

• Approximation

– Main concern:Pn(x) must be close tof(x) for all values ofx in [a, b].

– We don’t care whetherPn(x) has the same value asf(x), or not. I.e.,
Pn(x) need not reproduce the values off(x) exactly.

When to use interpolation or approximation?

• Use interpolation if the exact values off(x) are important. I.e., when you
need to reproduce the values off(x) exactly.

• Use approximation if the overall behaviour off(x) is important. I.e., you
want the error to be small everywhere.

Criteria

If we approximatef(x) by Pn(x), then the error atx is given by

e(x) = Pn(x) − f(x).

To find a good approximation, we wante(x) to be small at every point in[a, b]. It
is not enough ife(x) is small only at a few points.

We need to have a way to saye(x) is small on[a, b]. I.e., we need to invent a “size”
or “length” for e(x).

A size of a function is usually called anorm.

151

1. Maximum norm
‖f‖∞ = max

x∈[a,b]
|f(x)|

Also calledL∞ - norm.

See Figure 28.1 for an example of this maximum norm.

x

infinityL

a b

max norm for f(x) on [a, b]
f(x)

Figure 28.1: An example of thisL∞ norm.

2. L2 - norm

‖f‖2 =

√

∫ b

a
f(x)2dx

Using this method, for each functionf(x) on [a, b], we can define a norm size.

Example

f(x) = x, [a, b] = [0, 1]

‖f‖∞ = maxx∈[0,1] |x| = 1

‖f‖2 =
√

∫ 1
0 x2dx =

√

1
3

Example

f(x) = sin x, [a, b] = [0, 2π]

‖f‖∞ = maxx∈[0,2π] | sin x| = 1

‖f‖2 =
√

∫ 2π
0 sin2 xdx =

√
π

Remarks

152

1. There are many ways to define a norm of a function.

2. If ‖f‖∞ is small, thenf(x) is small at every point in[a, b] since|f(x)| ≤
‖f‖∞.

3. If ‖f‖2 is small, thenf(x) is small on average, butf(x) may be large at
some points.

See Figure 28.2 for a picture of a function with small‖f‖2.

x
a b

1

ε

f(x)

Figure 28.2: Picture of a function with small‖f‖2.

From above, e.g.,‖f‖2 is small, butf(x) is 1 atx0.

APPROXIMATION PROBLEM

Let’s state the problem that we wish to solve. Givenf(x) on [a, b], find a polyno-
mial of degreen, Pn(x) which best approximatesf(x) in a given norm. I.e., we
need to find a polynomialPn(x) such that

‖Pn − f‖ = min. amoung all polynomials of degreen.
or ‖Pn − f‖ ≤ ‖qn − f‖ for all polynomialsqn(x) of degreen.
or ‖Pn − f‖ = minover allqn

‖qn − f‖ for all polynomialsqn(x) of degreen.

Note in the above, the norm is not specified.

If the L∞ norm is used, then the best approximationPn(x) is said to be aminimax
approximation – the polynomial whose maximum error is minimized.

‖Pn − f‖∞ = min
qn

‖qn − f‖∞ = min
qn

max |Pn − f |

153

Fact. If f(x) is continuous on[a, b], then there exists a unique minimax approxi-
mationPn(x) of degreen.

E.g.n = 1. Equioscillation property.f(x) cannot be on one side ofPn(x).

See Figure 28.3 for a picture of a linear minimax approximation to a general
function.

x

f(x)

equal

magnitude
approximation

Figure 28.3: Picture of a linear minimax approximation to a general function.

In general, it is difficult to find the minimax polynomial.

So, let’s try theL2 - norm. In this case, we want to findPn(x) such that

‖Pn − f‖2 = min.

i.e.,

√

∫ b

a
(Pn(x) − f(x))2dx = min.

Such aPn(x) is said to be a least squares polynomial, orleast-squares approx-
imation. This is the continous version of the least-squares approximation, since
we know f(x), which we are trying to approximate, everywhere onx. In the
next class, we will look at the discrete least-squares approximation, where we are
approximating a given finite set of points.

154

CISC 271 Class 31

Discrete Least-squares Approximation

Suppose that we were given a set of data points,{xi, Yi}, i ∈ [0, m], and we think
that they come from a functionf(x) where we have a model off(x), i.e., we know
its general form but not know the values of the coefficients,{a0, a1, ..., an} = ~a.

How do we find a good approximation forai? We can address this by trying to
minimize residuals,

r(xi) = f(xi) − Yi, i ∈ [0, m]

Considering the residuals forming anm-dimensional vector, we can try to mini-
mize any of the following norms

E1(~a) = L1(~r) =
∑m

i=0 |ri| (sum ofdifference)
E2(~a) = [L2(~r)]

2 =
∑m

i=0 |ri|2 (squared sum ofdistance)
Ep(~a) = Lp(~r) = (

∑m
i=0 |ri|p)1/p (generalization)

E∞(~a) = L∞(~r) = maxm
i=0 |ri| (largestdifference)

Note that the normL2() is given in its discrete form.

For reasons having to do with subsequent statistical analysis (variance) (discussed
in text, G & W, pp. 261-262) we use theL2 norm. Since minimizing

√

E2(~a)

is equivalent to minimizingE2(~a), (any minimum is at the same values of~a, we
minimizeE2 =

∑

r2
i , that is, try to find the least squares fit.

Example.Hooke’s Law. The form of the relation is

f(x) = −kx,

and we would like to find̂k from experimental data which is our least-squares fit.

See Figure 29.1 for a graph of example data and approximationsetup for Hooke’s
Law.

The residuals look likeri = fi − Yi = −kxi − Yi soE2(k) is

E2(k) =
m
∑

i=0

r2
i = (−kx0 − Y0)

2 + (−kx1 − Y1)
2 + · · ·+ (−kxm − Ym)2

This is minimized when
dE2

dk
(k̂) = 0.

155

x

Yi

r

experimental data

ix

ii
= (-kx - Y

i)

least-squares
approximation

residue definition

Figure 29.1: Graph of example data and approximation setup.

So, since

dE2

dk
=

m
∑

i=0

d

dk
(−kxi − Yi)

2

=
m
∑

i=0

2(−kxi − Yi)(−xi)

=
m
∑

i=0

(2kx2
i + 2Yixi)

=
m
∑

i=0

2kx2
i +

m
∑

i=0

2Yixi

We can use the minimum to findk by

dE2

dk
= 0 = 2k

m
∑

i=0

x2
i + 2

m
∑

i=0

Yixi

⇒ k̂ =
−∑m

i=0 Yixi
∑m

i=0 x2
i

Remember that theYi’s have opposite sign to their correspondingxi’s in general,
sok̂ is a positive value.

156

L INEAR REGRESSION

Linear regression is a special case of least-squares fitting, where we try to fit a line
– not necessarily through the origin – to the data. Thus we have

P1(x) = a0 + a1x

and we want to find̂a0 andâ1 that minimizeE2(a0, a1).

The same principle holds from before, i.e.,

∂E2

∂a0

(â0, â1) =
∂E2

∂a1

(â0, â1) = 0.

∂E2

∂a0
(â0, â1) = 2

m
∑

i=0

(â0 + â1xi − Yi)

∂E2

∂a0
(â1, â1) = 2

m
∑

i=0

(â0 + â1xi − Yi)xi

So at the zero, noting that
∑m

i=0(xi)
0 = m + 1,

(m + 1)â0 +

(

m
∑

i=0

xi

)

â1 =
m
∑

i=0

Yi

(

m
∑

i=0

xi

)

â0 +

(

m
∑

i=0

x2
i

)

â1 =
m
∑

i=0

xiYi

In matrix form, this becomes

(

(m + 1)
∑m

i=0 xi
∑m

i=0 xi
∑m

i=0 x2
i

)(

â0

â1

)

=

(

∑m
i=0 Yi

∑m
i=0 xiYi

)

which is a linear system, which we know how to solve.

157

HIGHER DEGREEPOLYNOMIALS

We can use this approach for higher-degree polynomials, too. Suppose we want
to fit ann-th degree polynomial to the data. Let

Pn(x) =
n
∑

j=0

ajx
j

Still, our given points are{(xi, Yi)}, i = 0, ..., m.

Thus the norm to be minimized is

E2(~a) =
m
∑

i=0











n
∑

j=0

(aj(xi)
j) − Yi





2




 .

So that
∂

∂ak
(E2(~a)) = 2

m
∑

i=0









n
∑

j=0

(aj(xi)
j) − Yi



 · (xi)
k



 .

Therefore,
∂E2

∂ak
(~̂a) = 0

yields a set ofn + 1 linear equations in unknownŝ~a. Each equation (kth shown)
has the form

n
∑

j=0

[

âj ·
m
∑

i=0

(xi)
j+k

]

=
m
∑

i=0

Yi(xi)
k

If we let

gjk =
m
∑

i=0

(xi)
j+k and ρk =

m
∑

i=0

Yi(xi)
k

then our system is












g00 g01 g02 · · · g0n

g10 g11 g12 · · · g1n
...

. . .
...

gn0 gn1 gn2 · · · gnn

























â0

â1
...

ân













=













ρ0

ρ1
...

ρn













which by definition is symmetric (sincegij = gji). Thek-th row of the matrix
corresponds to the partial derivative with respect toak set to zero. Recall that
g00 =

∑m
i=0(xi)

0+0 = (m + 1).

158

It can be shown that ifm ≥ n, the solution is unique. Thus, we can find any
degree of polynomial least-squares approximation that we think is appropriate to
the given problem.

Example

Consider the following data

xi 0.05 0.11 0.15 0.31 0.46 0.52 0.70 0.74 0.82 0.98 1.17
Yi 0.956 0.890 0.832 0.717 0.571 0.539 0.378 0.370 0.306 0.242 0.104

This data is a pertubation of the relationshipy = 1 − x + 0.2x2. Let’s fit the data
to P2(x) = a0 + a1x + a2x

2. Therefore

g10 = g01 =
∑

xi = 6.01 g00 = m + 1 = 11
g20 = g11 = g01 =

∑

x2
i = 4.6545 ρ0 =

∑

Yi = 5.905
g21 = g12 =

∑

x3
i = 4.1150 ρ1 =

∑

xiYi = 2.1839
g22 =

∑

x4
i = 3.9161 ρ2 =

∑

x2
i Yi = 1.3357

such that






g00 g01 g02

g10 g11 g12

g20 g21 g22













â0

â1

â2





 =







ρ0

ρ1

ρ2







which equals







11 6.01 4.6545
6.01 4.6545 4.1150

4.6545 4.1150 3.9161













â0

â1

â2





 =







5.905
2.1839
1.3357







which has the solution






â0

â1

â2





 =







0.998
−1.018
0.225







such that the polynomial least-squares approximation is

P2(x) = 0.998 − 1.018x + 0.225x2.

159

CISC 271 Class 32

The Eigenvalue Problem

Eigenvalues and eigenvectors are useful in describing and analyzing many sys-
tems, both physical and mathematical. For example, the simple spring equa-
tion we looked at previously (to develop discrete least-squares polynomials) was
Hooke’s Law for a mass hanging from a spring:

f(x) = kx

or F = kx

If we have a mass on a (frictionless) flat surface, and there are two or more springs
attached to the mass, then the XY vector of forces is related to the XY vector of
position byK2×2

~F =

[

Fx

Fy

]

= K2×2

[

x
y

]

whereK2×2 is symmetric.

Suppose that~v is an eigenvector ofK2×2. ThenK~v = λ~v, which means that there
is a special relationship between the forces and the positions. In fact, what will
happen is that if we pull the mass in the direction of a position eigenvector and let
go, the mass will oscillate in astraight line; if we pull the mass in any direction
that isnot an eigenvector, it will oscillate in an orbital trajectory!

Eigenvectors are also useful in describing linear systems.Suppose thatZ =
{~z0, ~z1, . . . , ~zn} is a set of linearly independent vectors. This means that if we
add scalar multiples of them together to get a vector~x:

~x = α0~z0 + α1~z1 + · · ·αn~zn

then~x = ~0 if and only if everyαi = 0. Given~x, we can computeαi = ~x · ~zi, and
αi is called the component of~x in the direction~z. We callZ abasisfor the vector
spaceRn+1.

160

This is important because the eigenvectorsV of a nonsingular matrixA form a
special basis. Using the convention that eigenvectors are of unit length, i.e., we
require that‖~vi‖ = 1, we can represent~x as

~x = α0~v0 + α1~v1 + · · ·αn~vn

=
n
∑

i=0

ai~vi

When we perform the multiplicationA~x = ~b we get

A~x = a0A~V0 + a1A~v1 + · · · + anA~vn

=
n
∑

i=0

aiλi~vi

=
n
∑

i=0

λi(ai~vi)

so each of the original termsai~vi is multiplied by the eigenvalueλi. If λi is large,
then the termai~vi greatly increases. If the vector~x is perturbed tô~x by an error~e
of the form

~e =

























ε0

ε1
...
εi
...
εn

























so that̂~x = ~x + ~e, thenA~̂x = ~̂b will have a large error due toλi(âi~vi) and the size
of λi tells us about the stability ofA.

There are many mathematically useful decompositions of a matrix A, and many
of the decompositions are related to eigenvalues and eigenvectors. One, called the
Schur decomposition, states that for any matrixA there is some unitary matrixU
such that

U−1AU = T

whereT is an upper triangular matrix andU is a unitary matrix (U∗U = UU∗ = I
and‖U~x‖2 = ‖~x‖2). This is important because the characteristic equation ofT is

0 = det(T − λI) =
n
∏

i=0

(tii − λi)

161

so the diagonal entries ofT are its eigenvalues.

It is easy to prove that, ifU−1AU = T , andA~vi = λi~vi, thenTU~vi = λiU~vi so if
we could findU then we could recover the eigenvalues (and the eigenvectors) of
A.

Example: For a symmetricA, how stable isA~x = ~b?

Since~x = A−1~b, andA−1 is symmetric, we have

~x =
(

UDUT
)

~b

for orthogonalU, and diagonalD. So,

~x = UD
(

UT~b
)

= UD ~C

= U



















λ0C0

λ1C1

λ2C2
...

λnCn



















If |λn| is huge, then small perturbations inCn mean large perturbations in~x.

LOCATING EIGENVALUES

ForAn×n, define

ri =
i−1
∑

j=0

|aij| +
n
∑

j=i+1

|aij|

Assuming thatA is complex, construct a circle in the complex plane centred at aij

and of radiusri :
Zi = {z ∈ C||z − aii| ≤ ri} .

Then

a.) There is an eigenvalueλ ∈ Zi;

b.) If m circles form a connected setS that is disjoint from all othern − m
circles, thenS containsm eigenvalues (counted by algebraic multiplicity).

162

� �

�
�

���
��
	
� ��� ���

��
	

�

���

��
	
� ���

Figure 30.1: Three complex eigenvalues

This situation is shown in Figure 30.1.

Example

For the matrix

A =







4 1 0
1 0 −1
1 1 −4







the eigenvalues are in

|λ − 4| ≤ 1, |λ| ≤ 2, |λ + 4| ≤ 2

as shown in Figure 30.2.

It can be shown that for a real symmetricA λ ∈ R or bothλ, λ∗ are present.

Therefore, oneλ ∈ [3, 5]. Sinceλ = −2 is not possible from the characteristic
equation, then there is oneλ ∈ [−6,−2) and oneλ ∈ (−2, 2]. (Actual answer:s
λ ' −3.76,−.443, 4.20).

PERTURBATIONS

Theorem (Bauer-Fike):

Let A be such thatP−1AP = D = diag(λ0, ..., λn) and letλ be
an eigenvalue ofA + E. Then

min
0≤i≤n

|λ − λi| ≤ ‖P‖‖P−1‖‖E‖.

163

� �

�
�

���
��
��� ���� ���

��
���

Figure 30.2: Three real eigenvalues

Corollary:

If A is symmetric (Hermitian) then

min
0≤i≤n

|λ − λi| ≤ ‖E‖2.

So, pertubations have little effect.

Example

H3 =







1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5







λ0 = 1.408319
λ1 = 0.1223271
λ2 = 0.002687340

Ĥ3 =







1.000 .5000 .3333
.5000 .3333 .2500
.3333 .2500 .2000







λ0 = 1.408294
λ1 = 0.1223415
λ2 = 0.002664489

Example

A =

[

101 −90
110 −98

]

λ0 = 1
λ1 = 2

A + E =

[

100.999 −90.001
110 −98

]

λ0 = 1298
λ1 = 1.701

164

CISC 271 Class 33

The Power Method

Suppose that the eigenvalues ofA(n+1)×(n+1) are ordered

|λ0| > |λ1| ≥ |λ2| ≥ · · · ≥ |λn|

with one eigenvalue,λ0, dominant.

If A hasn distinct eigenvalues, then any vector~z can be written as

~z =
n
∑

j=0

αj~vj whereαj = ~z · ~vj

Let us examine the iteration~z(i) = A~z(i − 1), whereα0 6= 0 :

~z(1) = A~z(0) =
n
∑

j=0

αjA~vj =
n
∑

j=0

αjλj~vj

~z(2) =
n
∑

j=0

αj(λj)
2~vj

and so

~z(k) =
n
∑

j=0

αj(λj)
k~vj

Multiply the RHS by
(

λ0

λ0

)k
, to find that

~z(k) = (λ0)
k

n
∑

j=0

αj

(

λj

λ0

)k

~vj

Becauseλj/λ0 < 1, limk→∞
(

λj

λ0

)k
= 0 and so for largek,

~z(k) ' (λ0)
k α0~v0

sinceλj

λ0
= 1 for j = 0.

This suggests that it is possible to find the dominant eigenvalue/eigenvector pair
by repeated application ofA :

Ak~z(0) ' (λ0)
k α0~v0

Notes:

165

1. This is valid iff ~z(i) · ~v0 6= 0 Usually, round-off errorhelpsto produce a
non-zero component after a few iterations.

2. To avoid overflow/underflow,~z(i) should be normalized. The easiest norm
is L∞.

3. A good termination condition is that~z(i) and~z(i − 1) are almost scalar
multiples.

ALGORITHM FOR THE POWER METHOD

Select a non-zero z[0..n](0) with ||z[0..n](0)|| inf = 1;
Set mu[-1] = 0; mu[0] = 1;
i = 0;
while |mu[i] - mu[i-1]| greater than or equal to epsilon

i = i + 1;
Y[0..n] = A*z[0..n](i-1);
mu[i] = ||Y[0..n]|| inf;
z[0..n](i) = Y[0..n]/mu[i];

end while;
result: mu[k] ≈ lambda[0]; z[0..n](k) ≈ v[0..n][0];

The largest eigenvalue is associated with the eigenvector that dominates the ma-
trix. How do we find thesmallestone?

Because the eigenvalues ofA−1 are 1
λi

, we can use the inverse power method:

~x(i) = A−1~x(i − 1)

Instead of invertingA, we can observe that

A~x(i) = ~x(i − 1)

is an equivalent computation. This can be done efficiently byfirst computing
A = LU, and just back-substituting:

LU~x(i) = ~x(i − 1)

166

DEFLATION

Let the dominant eigenvalue/eigenvector ofA beλ0 and~v0. Pick ~Y so that~y ·~v0 =
1 (for example,~y is all zero except for 1 element).

It can be show that the matrix

B = A − λ0~v0~y
T

has eigenvalues0, λ1, λ2, ..., λn and eigenvectors~v0, ~w1, ~w2, ..., ~wn where

~vi = (λi − λ0)~wi + λ0(~Y · ~wi)~vi

for i = 1, 2, ..., n.

167

CISC 271 Class 34

QR and SVD

A powerful theoretical result, for which there is a practical algorithm, is called the
QR decomposition:

For any square matrixA, there is an orthogonalQ and an upper-
triangular (right)R such that

A = QR

Calculation is complicated, but there are many good codes available.

The most common method for finding all the eigenvalues is theQR iteration.
Observe that ifA(0) = A, then we can always decompose

A(i) = Q(i)R(i)

Form
A(i + 1) = R(i)Q(i)

Such that

A(i + 1) = QT (i)Q(i)R(i)Q(i)

= QT (i)A(i)Q(i)

soA(i + 1) is similar toA(i) and has the same eigenvalues.

Eventually,A(i) converges to

a.) a diagonal matrix,or

b.) a matrix that is “nearly” diagonal but which has easily calculated eigenval-
ues.

For case a.),A(i) → D and

‖D − A(i)‖ ≤ c · n
max
j=0

∣

∣

∣

∣

∣

λj+1

λj

∣

∣

∣

∣

∣

Note: Inverse iteration (1944) is still best for extractingeigenvectors.

168

SINGULAR VALUE DECOMPOSITION

One of the most useful theorems of20th - century linear algebra is the singular-
value decomposition.

For anyMm×n, there is a unitaryUn×n andVm×m, and a “diagonal”Σm×n such
that

A = V ΣUT

and

Σ =































σ0 · · · 0

0
. . .

σr

0
. . .

... 0
0 · · · 0































where

a.) σi ∈ R

b.) σi > 0

c.) σ0 ≥ σ1 ≥ · · · ≥ σr > 0 and

d.) r is the rank ofA.

Corollary:

If A is real and square (n × n), then{σ2
i } are the eigenvalues of

AT A.

Proof: AT A = UΣT V T V ΣUT = UΣ2UT = UDUT

There are many uses for the Singular Value Decomposition. One depends on its
unusual numerical stability:

A−1 = (V ΣUT)−1 = (UT)−1Σ−1(U)−1 = UΣ−1V T

where

Σ−1 = diag(
1

σ0
,

1

σ1
, ...,

1

σn
)

169

So to solveA~x = ~b, we compute

~x = UΣ−1V T~b

LEAST SQUARES DATA -FITTING

In general, givenm values{(xi, Yi)} that presumably come from some function –
Yi = g(xi), we may want to find the weightswi of n arbitraryφj(x) so that

n
∑

j=0

wjφj(xi) ' Yi

For example, linear least squares:φ0(x) = 1, φ1(x) = x, find w0 + w1xi ' Yi.

This is usually done by minimizing the error due to the weights:

min
~w

E(~w) =







1

m

m
∑

i=0



Yi −
n
∑

j=0

wjφj(xi)





2






1

2

=
1√
m
‖~Y − A~w‖2

whereaij = φj(xi).

Setting the partial derivatives to zero, we seek a solution to

AT A~w = AT ~Y

SVD approach

Using the singular value decomposition, and substitutingA = V ΣUT intoAT A~w =
AT ~Y ,

UΣT ΣUT ~w = UΣT V T ~Y

ΣT ΣUT ~w = ΣT V T ~Y

ΣUT ~w = V T ~Y

UT ~w = Σ−1V T ~Y

~w = UΣ−1V T ~Y

where the first line was premultiplied byU−1 and the second line was premulti-
plied byΣ−1. The solution has a stability of

cond(AT A)2 =
σ2

0

σ2
n

170

QR Solution

The QR method for solution is as follows. FactorA = QR into the normal
equations:

√
mE(~w) = ‖A~w − ~Y ‖2

= ‖QT A~w − QT ~Y ‖2 becauseQ is orthogonal

= ‖QT QR~w − QT ~Y ‖2

= ‖R~w − QT ~Y ‖2

BecauseA is m × n, the specific for ofR is

R =

[

R1

0

]

−→ n × n R1 nonsingular
−→ (m − n) × n

Rewrite

QT ~Y =

[

~z1

~z2

]

where~z1 is a vector of lengthn, and~z2 is a vector of lengthm − n.

Then

√
mE(~w) = ‖A~w − ~Y ‖2

= ‖R~w − ~z‖2

= ‖
[

R1

0

]

~w −
[

~z1

~z2

]

‖2

=
(

‖R1 ~w − ~z1‖2
2 + ‖~z2‖2

2

) 1

2

~z2 is constant, so this is minimized by~w that satisfy

R1 ~w = ~z1

This is the preferred way of solving least-square problems.

171

