Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak the height h_{j} is contributed to by the various constituents. These make different contributions $c_{i j}$ per unit concentration p_{i} with the relation:

$$
h_{j}=\sum_{i=1}^{n} c_{i j} p_{i}
$$

* taken, but somewhat modified, from Curtis F. Gerald, Patrick O. Wheatley Applied Numerical Analysis

A sample returns peak heights: $h=(5.2,61.7,149.2,79.4,89.3)$.
What is concentration p_{i} for each component, where the contributions $c_{i j}$ are given in the following table.

Component

Peak number	$\mathbf{C H}_{4}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$	$\mathbf{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}$
1	0.165	0.202	0.317	0.234	0.182
2	27.7	0.862	0.062	0.073	0.131
3		22.35	13.05	4.420	6.001
4			11.28	0	1.110
5				9.850	1.684

Mas

Mass spectrometry facilities and proteomics lab

Protein Function Discovery Facility $6^{\text {th }}$ Floor Botterell Hall

BCHM 410/810 Lecture 3

A sample returns peak heights:
$h=(5.2,61.7,149.2,79.4,89.3)$
What is concentration p_{i} for each component, where the contributions $c_{i j}$ are given in the following table.

	Component				
Peak number	CH_{4}	$\mathrm{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{4}}$	$\mathrm{C}_{\mathbf{2}} \mathbf{H}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{6}}$	$\mathbf{C}_{\mathbf{3}} \mathbf{H}_{\mathbf{8}}$
		0.202	0.317	0.234	
1	0.165	0.862	0.062	0.073	0.182
2	27.7	22.35	13.05	4.420	6.001
3			11.28	0	1.110
4			9.850	1.684	

We can formulate this problem as a system of linear equations.
$A=0.1650$
27.7000
0.2020
0.8620
22.3500
0
0
0.3170
0.0620
0.2340
0.1820
13.0500
11.2800
0.0730
0.1310
$\begin{array}{lr}0 & 22.3500 \\ 0 & 0 \\ 0 & 0\end{array}$
11.2800
4.4200
0
6.0010
1.1100
$h=(5.2,61.7,149.2,79.4,89.3)^{T}$

Given the linear system $A p=h$, we need to solve for p. We could use Gaussian elimination.

In Matlab this is very easy to do, using the "magic" \backslash (forward slash also know as left division) operator .
$A=\left[\begin{array}{llllll}0.165 & 0.202 & 0.317 & 0.234 & 0.182 ;\end{array}\right.$
27.70 .8620 .0620 .0730 .131 ;
022.3513 .054 .4206 .001 ;
$0011.2801 .110 ; 0009.851 .684]$
$h=\left[\begin{array}{lllll}5.2 & 71.9 & 149.2 & 79.4 & 89.3\end{array}\right]^{\prime}$
$\mathrm{p}=\mathrm{A} \backslash \mathrm{h}$

For the next week or so we will look at various means of solving systems of linear equations.

By the way the concentrations of the components turn out to be:

$$
\mathrm{p}=\begin{array}{ccccc}
\mathrm{CH}_{4} & \mathrm{C}_{2} \mathrm{H}_{4} & \mathrm{C}_{2} \mathrm{H}_{6} & \mathrm{C}_{3} \mathrm{H}_{6} & \mathrm{C}_{3} \mathrm{H}_{8} \\
\hline 2.5373 & 0.1288 & 6.6815 & 8.4449 & 3.6329
\end{array}
$$

