Mass spectrometry analysis gives a series of peak height readings for various ion masses. For each peak the height h_j is contributed to by the various constituents. These make different contributions c_{ij} per unit concentration p_i with the relation:

$$h_j = \sum_{i=1}^n c_{ij} p_i$$

* taken, but somewhat modified, from Curtis F. Gerald, Patrick O. Wheatley Applied Numerical Analysis

A sample returns peak heights: h = (5.2, 61.7, 149.2, 79.4, 89.3).

What is concentration p_i for each component, where the contributions c_{ij} are given in the following table.

Peak number	Component					
	CH ₄	C ₂ H ₄	C ₂ H ₆	C ₃ H ₆	C ₃ H ₈	
1	0.165	0.202	0.317	0.234	0.182	
2	27.7	0.862	0.062	0.073	0.131	
3		22.35	13.05	4.420	6.001	
4			11.28	0	1.110	
5				9.850	1.684	

A sample returns peak heights: h = (5.2, 61.7, 149.2, 79.4, 89.3)What is concentration p_i for each component, where the contributions c_{ij} are given in the following table.

Peak number	Component					
	CH ₄	C ₂ H ₄	C ₂ H ₆	C ₃ H ₆	C ₃ H ₈	
1	0.165	0.202	0.317	0.234	0.182	
2	27.7	0.862	0.062	0.073	0.131	
3		22.35	13.05	4.420	6.001	
4			11.28	0	1.110	
5				9.850	1.684	

We can formulate this problem as a system of linear equations.

A = 0.16500.2020 0.3170 0.2340 0.1820 27.7000 0.8620 0.0620 0.0730 0.1310 0 22.3500 13.0500 4.4200 6.0010 0 11.2800 1.1100 0 0 0 9.8500 0 0 1.6840

 $h = (5.2, 61.7, 149.2, 79.4, 89.3)^{T}$

Given the linear system Ap = h, we need to solve for p. We could use Gaussian elimination.

In Matlab this is very easy to do, using the "magic" \ (*forward slash* also know as *left division*) operator .

```
A = [ 0.165 0.202 0.317 0.234 0.182 ;
27.7 0.862 0.062 0.073 0.131 ;
0 22.35 13.05 4.420 6.001 ;
0 0 11.28 0 1.110; 0 0 0 9.85 1.684]
h = [5.2 71.9 149.2 79.4 89.3]'
p = A\h
```

For the next week or so we will look at various means of solving systems of linear equations.

By the way the concentrations of the components turn out to be:

	CH ₄	C_2H_4	C ₂ H ₆	C ₃ H ₆	C ₃ H ₈
р =	2.5373	0.1288	6,6815	8,4449	3,6329