
CISC271
Fall 2006

Homework for week 4
in preparation for quiz 2

Solutions

This homework will give you some practice with reviewing some basic concepts of linear
algebra and Gaussian elimination.

1. Recktenwald Chapter 7. questions 2, 3 and 7.

Note: These are review questions. Solutions will not be posted for the questions from
Chapter 7.

8-16 Solution:

Here is an m-file that I wrote that does frontward substitution to solve Lx = b when
L is lower triangular . Note that I check to make sure that the matrix is in fact lower
triangular.

function x = lsolveDR(L,b)

% lsolve Lx = b where L is lower triangular

%

%

% Synopsis: x = lsolve(L,b)

%

%

% Input: L,b = coefficient matrix and right hand side vector

%

%

% Output: x = solution vector, if solution exists

[m,n] = size(L);

1

if m~=n, error(’A matrix needs to be square’); end

% Check to see if L is lower triangular

if sum(sum(L ~= tril(L)))> 0 , error(’Matrix not lower triangular’); end

x = zeros(n,1); % preallocate memory for and initialize x

x(1) = b(1)/L(1,1);

for i=2:n

x(i) = (b(i) - L(i,1:i-1)*x(1:i-1))/L(i,i);

end

Here is a sample of using lsolveDR

EDU>> A = rand(3)

A =

0.9501 0.4860 0.4565

0.2311 0.8913 0.0185

0.6068 0.7621 0.8214

EDU>> [L,U] = lu(A)

L =

1.0000 0 0

0.2433 1.0000 0

0.6387 0.5843 1.0000

U =

0.9501 0.4860 0.4565

0 0.7731 -0.0925

0 0 0.5839

EDU>> b = rand(3,1)

b =

0.9218

0.7382

0.1763

EDU>> lsolveDR(A,b)

??? Error using ==> lsolve

2

Matrix not lower triangular

EDU>> lsolveDR(L,b)

ans =

0.9218

0.5140

-0.7128

8-23 Solution: This question asks to find the equation of a plane that passes through
3 points.

Use a 3 by 3 array XY x1 y1 1
x2 y2 1
x3 y3 1

And letting the vector z = [z1z2z3]

T and a = [a1a2a3]
T , we have the system

XY a = z, and we need to solve for a.

Here is my m-file

function a = PlaneDR(p1,p2,p3)

% Given three points with coordinates (x,y,z) return coefficients a

% such that a1 xi + a2 yi + a3 = zi

XY = eye(3);

XY(:,1) = [p1(1) p2(1) p3(1)]

XY(:,2) = [p1(2) p2(2) p3(2)];

XY(:,3) = [1 1 1]’

z = [p1(3) p2(3) p3(3)]’

a = XY \ z

I plugged in the given values and obtained a = [−1,−1, 1]T

For the given points the z − coordinatevalue is 0.5 for the first 3 and 0 for the
last one.

8-28 A paint company is trying to recycle unpopular paint colours by mixing them
together to create better colours. All paints are composed of four pigments
(A,B,C,D). The current paints are composed of pigments (in percent) accord-
ing to the following equations. are p1 = 80A + 16C + 4D, p2 = 80B + 20C,
p3 = 30A + 10B + 60C, p4 = 10A + 10B + 72C + 8D. The better colour say p5

is composed as follows: p5 = 40A + 27B + 31C + 2D. How much of the paints
p1 . . . p4 should be used to make one gallon of p5.

Solution:

We can formulate this as a system of linear equations. Set

3

A =

80 0 30 10

0 80 10 10

16 20 60 72

4 0 0 8

b =

40

27

31

2

and solve the system Ax = b. Using Matlab I obtained the solution x = (0.4, 0.3, 0.25, 0.05)T .
Thus the percentage of each paint used to form p5 is p5 = 0.4p1 +0.3p2 +0.25p3 +
0.05p4

3 Alice buys 3 apples a dozen bananas, and one cantaloupe for $2.36. Bob buys
a dozen apples, and two cantaloupes for $5.26. Carol buys two bananas and 3
cantaloupes for $2.77. How much do single pieces of fruit cost?

Solution: To determine how much fruit costs, I set things up so that:

A =

3 12 1

12 0 2

0 2 3

b =

2.3600

5.2600

2.7700

Now solving Ax = b, I obtained the values apples are 0.29 bananas are 0.05 and
cantaloupes are 0.89.

4 The matrix factorization

LU = P A

can be used to compute the determinant of A. We have det(L)det(U) = det(P)det(A)
Because L is triangular with ones on the diagonal, det(L) = 1. Because U is tri-
angular, det(U) = u11u22 . . . unn. Because P is a permutation, det(P) = +1 if
the number of interchanges is even and -1 if it is odd. So det(A) = ±u11u22 . . . unn

Modify the luPiv function (from Recktenwald) so that it returns four outputs:

Here’s how I modified luPiv

4

function [L,U,pv,sig] = luPivSigDR(A,ptol)

% luPiv LU factorization with partial pivoting

%

% Synopsis: [L,U,pv] = luPivSigDR(A)

% [L,U,pv] = luPivSigDR(A,ptol)

%

% Input: A = coefficient matrix

% ptol = (optional) tolerance for detection of zero pivot

% Default: ptol = 50*eps

%

% Output: L,U = lower triangular matrix, L, and upper triangular

% matrix, U, such that A(pv,:) = L*U

% pv = index vector that records row exchanges used to select

% good pivots. The row permutations performed during

% elimination can be applied to the right hand side vector

% with b(pv). The L and U returned by luPiv are the

% factors of permuted matrix A(pv,:), which is equivalent

% to P*A where P is the permutation matrix created

% by the two statements P = eye(size(A)); P = P(pv,:).

% sig = +1 or -1 if pv is an even or odd permutation

if nargin<3, ptol = 50*eps; end % Default tolerance for zero pivot

[m,n] = size(A);

if m~=n, error(’A matrix needs to be square’); end

pv = (1:n)’;

sig = 1; %DR zero swaps is even parity

for i = 1:n-1 % loop over pivot row

[pivot,p] = max(abs(A(i:n,i))); % value and index of largest pivot

ip = p + i - 1; % p is index in subvector i:n

if ip~=i % ip is true row index of desired pivot

A([i ip],:) = A([ip i],:); % swap the rows

pv([i ip]) = pv([ip i]); % record pivot order

sig = sig * -1; %DR keep track of sig parity

end

pivot = A(i,i);

if abs(pivot)<ptol, error(’zero pivot encountered after row exchange’); end

for k = i+1:n % row k is eliminated next

A(k,i) = A(k,i)/pivot; % compute and store multiplier

A(k,i+1:n) = A(k,i+1:n) - A(k,i)*A(i,i+1:n); % row ops to eliminate A(k,i)

end

end

L = eye(size(A)) + tril(A,-1); % extract L and U

U = triu(A);

5

Here is my determinant m-file called detDR

function Det = detDR(A)

%detDR returns determinant of square matrix A using algorithm

% on page 86 Q 2.7 of Moler

% Det = detDR(A)

[n,m] = size(A);

if n ~= m error(’matrix is not square’); end

[L,U,p,sig] = luPivSigDR(A);

Det = sig*prod(diag(U));

6

