CISC271
 Fall 2006
 Homework for week 12
 in preparation for quiz 5 Solutions

The following questions are from Recktenwald chapter 9.
Questions 1, 7, 8

9-1 I used Matlab more or less as a calculator to perfom the calculations as follows:

```
\(\mathrm{x}=\left[\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right]\)
\(y=\left[\begin{array}{llll}1 & 2 & 2 & 3\end{array}\right]\)
sx \(=\operatorname{sum}(x)\)
sy \(=\operatorname{sum}(y)\)
sxy \(=\operatorname{sum}(x . * y)\)
sxs \(=\operatorname{sum}(x . \wedge 2)\)
alpha \(=(s x * s y-4 * s x y) /(s x \wedge 2-4 * s x s)=0.4000\)
beta \(=(s x * s x y-s x s * s y) /\left(s x^{\wedge} 2-4 * s x s\right)=0.8000\)
```

Observe that this yields the same solution as the normal equations.

```
o = [1 1 1 1 1 1 [ [
A = [x, o'];
A =
    1
    2 1
    4 1
    5 1
```

```
        A'*A\A'* *''
ans =
    0.4000
    0.8000
```

9-7 Recall that for fitting a polynomial curve to minimize the least square error we set some derivatives to zero and solve for the polynomial coefficients. The general form for this derivative is:

$$
\frac{\partial}{\partial a_{k}}\left(\sum_{i=1}^{m}\left[y_{i}-\sum_{j=0}^{n} a_{j} x_{i}^{j}\right]^{2}\right)=2 \sum_{i=1}^{m}\left(\sum_{j=0}^{n} a_{j} x_{i}^{j}-y_{i}\right)\left(x_{i}\right)^{k}
$$

Where the data points are indexed $1 \ldots m$ and the polynomial coefficients from $0 . . n$. Our goal is to set the equation to zero and solve for the a_{i} values for $i=0 \ldots n$. Furthermore letting:

$$
g_{i k}=\sum_{i=1}^{m}\left(x_{i}\right)^{j+k} \text { and } p_{k}=\sum_{i=1}^{m} y_{i}\left(x_{i}\right)^{k}
$$

we can write the equations we solve as:

$$
\sum_{j=0}^{n} a_{j} g_{j k}=p_{k} .
$$

In each of the questions we solve a special case of the previous equation.
a) $y=c x$. Here we have a polynomial of degree 1 , where the a_{0} coefficient is equal to zero. We just need to solve the equation

$$
a_{1} g_{11}=p_{1}
$$

for a_{1} or in this case it is called c.
We get $c=\frac{p_{1}}{g_{11}}$.
The matlab one liner is:
$\gg c=\operatorname{sum}(y . * x) / \operatorname{sum}(x . \wedge 2)$
b) $y=c x^{2}$ Using the same reasoning as above we get $c=\frac{p_{2}}{g_{22}}$. The corresponding matlab one liner is:
$\gg c=\operatorname{sum}\left(\mathrm{y} . * \mathrm{x} .{ }^{\wedge} 2\right) / \operatorname{sum}\left(\mathrm{x} .{ }^{\wedge} 4\right)$
c) $y=x^{c}$. Take the natural \log of both sides of the equation to get $\ln y=c \ln x$. Now change variables so that $v=\ln y$ and $u=\ln x$, leaving us with $v=c u$. This is a problem we solved in part a). Putting it all together we get the matlab one liner:
$\gg c=\operatorname{sum}(\log (y) . * \log (x)) / \operatorname{sum}(\log (x) . \wedge 2)$

9-8 Here's my m-file.

```
function c = expfitDR(x,y)
ly = log(y);
ctemp = linefit(x,ly);
c(1) = exp(ctemp(2));
c(2) = ctemp(1);
```

I plotted the curve I got with the given data. It seems to fit exactly! Here is the plot.

