CISC271
 Fall 2006
 Homework for week 2
 in preparation for quiz 1

This homework will give you some practice with using Matlab, programming Matlab functions, and root finding algorithms.

1. Consider the following Matlab code for a function that implements the bisection algorithm for finding the zeroes of a function.
```
function x = bisectDR(fun,a,b);
% bisect Use bisection to find a root of the scalar equation f(x) = 0
%
% Synopsis: x = bisectDR(fun,a,b)
%
%
% Input: fun = (string) name of function for which roots are sought
% a,b = xleft = a, xright = b
%
if a > b
    temp = a
    a = b
    b = temp
end
fa = feval(fun,a); fb = feval(fun,b);
if sign(fa) == sign(fb)
    error(sprintf( 'error signs of f(a) and f(b) are the same'))
end
it = 0; % Count the number of iterations
while abs(b-a) > eps*abs(b)
```

```
    it = it + 1;
    x = a + 0.5*(b-a);
    fx = feval(fun,x);
    if fx == 0
        break
end
if sign(fa) == sign(fx)
        a = x; fa = fx;
else
    b = x; fb = fx;
end
end
%Print the number of iterations and final values for a and b
it
a
b
```

The function f 1 below has zeros that are the square root of 2 .

```
function f = f1(x)
f = x^2 - 2;
```

To try this out yourselves copy the bisection algorithm to a file called "bisectDR.m", and copy f1 to a separate file called "f1.m". Now run the bisection algorithm from the command line by typing: " $\mathrm{r}=$ bisectDR('f1', 1,2)".
To make sure that Matlab knows where to find your file use the path command, "help path" will explain how this works. For example if the directory you are using is called /Users/myname/Programming/MyMatlab/ then type
"path(path,' /Users/myname/Programming/MyMatlab/')". If you want Matlab to remember this directry, type "savepath".
This should give you an estimate of the sqrt(2) accurate to within eps in 52 iterations. You can see this explicitly if you type "format hex" and then run " $r=$ bisectDR('f1', 1,2)". If you examine the hex values the bits used by a and b you see that there is only a one bit difference between the two values. Now try " $\mathrm{r}=\operatorname{bisectDR}\left(\right.$ ' f 1 ', $1,10^{10}$)".
Do you get the same answer? How many iterations were used? Can you explain this phenomenon?
2. We saw three algorithms for root finding bisection, secant and Newton's algorithm. Consider the function $x^{2}-2 x-3$. Each of the algorithms can be viewed as having a principle step that can be characterized as:
newvalue $=$ function of one or two previous values.
Assume that bisect and secant are given starting values 1,5 and Newton's method is given the starting value 1. Using hand calculations what is the first new value for each algorithm.
3. The secant method has more or less the same advantages and disadvantages as Newton's algorithm for finding a root of a function f with one exception. We don't need to know the first derivative of f.
Implement the secant method in Matlab.
Now compare the performance of your secant method with that of the bisection method in terms of the number of iterations used. Do this by determining solutions to the following functions. One way to organize your results is to fill the following table.

function	method	iterations	solution
$e^{x}+2^{-x}+2 \cos x-6=0,[1,2]$	bisection		
	secant		
$\ln (x-1)+\cos (x-1)=0,[1.3,2]$	bisection		
	secant		
$e^{x}-3 x^{2}=0,[0,1]$	bisection		
	secant		
	bisection		
	secant		

The values $[a, b]$ given with each function are given to initialize the algorithms. It would be prudent to limit the number of iterations to 100 in the event that the algorithm does not converge to a root.
4. What are the advantages of combining the secant and biesction methods to obtain a hybrid method.

