
CISC271
Fall 2005

Homework for week 5
in preparation for quiz 2

Solutions

This homework will give you some practice with reviewing some basic concepts of linear
algebra and Gaussian elimination. It will also introduce using Gaussian elimination and LU
decomposition in a computer implementations.

1. Recktenwald Chapter 7. questions 2, 3 and 7.

Note: These are review questions. Solutions will not be posted for the questions from
Chapter 7.

2. Recktenwald Chapter 8. questions 21 a) and b) and 23.

Solution:

8- 21 a) Here is the inverter I wrote using lutx.

function Ainv = InvDR(A)

[L, U, p] = lutx(A);

[n n] = size(A);

I = eye(n);

%permute I according to the permutation vector p.

I = I(p,:);

Ainv = eye(n); %initialize

for col = 1 : n

y = L\I(:,col);

Ainv(:,col) = U\y;

end

1

8- 21 b) The lu decomposition is 2n3/3 then we do n forward and n backward sub-
stitutions using n2 flops each. Now add to get 8n3/3 in all.

8-23 Use a 3 by 3 array XY x1 y1 1
x2 y2 1
x3 y3 1

And letting the vector z = [z1z2z3]

T and a = [a1a2a3]
T , we have the system

XY a = z, and we need to solve for a.

Here is my m-file

function a = PlaneDR(p1,p2,p3)

% Given three points with coordinates (x,y,z) return coefficients a

% such that a1 xi + a2 yi + a3 = zi

XY = eye(3);

XY(:,1) = [p1(1) p2(1) p3(1)]

XY(:,2) = [p1(2) p2(2) p3(2)];

XY(:,3) = [1 1 1]’

z = [p1(3) p2(3) p3(3)]’

a = XY\z

I plugged in the given values and obtained a = [−1,−1, 1]T

For the given points the z − coordinatevalue is 0.5 for the first 3 and 0 for the
last one.

3. Moler Chapter 2. questions 2.1, 2.7, 2.8. and 2.11

Note: Question 2.11 is very similar to question 23 from chapter 8 of Recktenwald.

Solution:

2.1 I set things up so that:

A =

3 12 1

12 0 2

0 2 3

b =

2.3600

5.2600

2.7700

2

Now solving Ax = b I obtained the values apples are 0.29 bananas are 0.05 and
cantaloupes are 0.89.

2.7 Here is my determinant m-file called detDR

function Det = detDR(A)

%detDR returns determinant of square matrix A using algorithm

% on page 86 Q 2.7 of Moler

% Det = detDR(A)

[n,m] = size(A);

if n ~= m error(’matrix is not square’); end

[L,U,p,sig] = lusigDR(A);

Det = sig*prod(diag(U));

2.8 I used tic and toc (Do help tic and/or toc to see how they work.) For luDR an
n by n random array n=340 took 9.507497 seconds. For lutx I went up to 500 for
8.942710 seconds. For the built in lu function I tried a 2000 by 2000 matrix and
that only took 6.087484 seconds to factor. Here is my luDR function.

function [L,U,p] = luDR(A)

%LUDR Triangular factorization, DR version

% [L,U] = luDR(A) produces a unit lower triangular matrix L,

% an upper triangular matrix U,

% so that L*U = A

[m,n] = size (A);

p = [1:n];

if m ~=n error(’matrix not square’); end;

for k = 1:n-1

% Find index of largest element below diagonal in k-th column

[r,m] = max(abs(A(k:n,k)));

m = m+k-1;

% Skip elimination if column is zero

if (A(m,k) ~= 0)

% Swap pivot row

if (m ~= k)

A([k m],:) = A([m k],:);

p([k m]) = p([m k]);

end

for i = k+1:n

3

% Compute multipliers

A(i,k) = A(i,k)/A(k,k);

% Update the remainder of the matrix

for j = k+1 : n

A(i,j) = A(i,j) - A(i,k)*A(k,j);

end

end

end

end

% Separate result

L = tril(A,-1) + eye(n,n);

U = triu(A);

2.11 This is similar to 8.21 above, except I use forward and backsub instead of the
backslash.

function Ainv = InvDR2(A)

%use forward and backward function instead of \

[L, U, p] = lutx(A);

[n n] = size(A);

I = eye(n);

%permute I according to the permutation vector p.

I = I(p,:);

Ainv = eye(n); %initialize

for col = 1 : n

y = forward(L, I(:,col));

Ainv(:,col) = backsubs(U,y);

end

% ------------------------------

function x = forward(L,x)

% FORWARD. Forward elimination.

% For lower triangular L, x = forward(L,b) solves L*x = b.

[n,n] = size(L);

x(1) = x(1)/L(1,1);

for k = 2:n

j = 1:k-1;

x(k) = (x(k) - L(k,j)*x(j))/L(k,k);

end

4

% ------------------------------

function x = backsubs(U,x)

% BACKSUBS. Back substitution.

% For upper triangular U, x = backsubs(U,b) solves U*x = b.

[n,n] = size(U);

x(n) = x(n)/U(n,n);

for k = n-1:-1:1

j = k+1:n;

x(k) = (x(k) - U(k,j)*x(j))/U(k,k);

end

5

