CISC271
 Fall 2005
 Homework for week 5 in preparation for quiz 2 Solutions

This homework will give you some practice with reviewing some basic concepts of linear algebra and Gaussian elimination. It will also introduce using Gaussian elimination and LU decomposition in a computer implementations.

1. Recktenwald Chapter 7. questions 2, 3 and 7.

Note: These are review questions. Solutions will not be posted for the questions from Chapter 7.
2. Recktenwald Chapter 8. questions 21 a) and b) and 23.

Solution:

8-21 a) Here is the inverter I wrote using lutx.

```
function Ainv = InvDR(A)
[L, U, p] = lutx(A);
[n n] = size(A);
I = eye(n);
%permute I according to the permutation vector p.
I = I(p,:);
Ainv = eye(n); %initialize
for col = 1 : n
    y = L\I(:,col);
    Ainv(:,col) = U\y;
end
```

8-21 b) The lu decomposition is $2 n^{3} / 3$ then we do n forward and n backward substitutions using n^{2} flops each. Now add to get $8 n^{3} / 3$ in all.
8-23 Use a 3 by 3 array $X Y$

$$
\left[\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right]
$$

And letting the vector $z=\left[z_{1} z_{2} z_{3}\right]^{T}$ and $a=\left[a_{1} a_{2} a_{3}\right]^{T}$, we have the system $X Y a=z$, and we need to solve for a.
Here is my m-file

```
function a = PlaneDR(p1,p2,p3)
% Given three points with coordinates (x,y,z) return coefficients a
% such that a1 xi + a2 yi + a3 = zi
XY = eye(3);
XY(:,1) = [p1(1) p2(1) p3(1)]
XY(:,2) = [p1(2) p2(2) p3(2)];
XY(:,3) = [lllll}\begin{array}{ll}{1}&{1}\end{array}
z = [p1(3) p2(3) p3(3)]'
a = XY\z
```

I plugged in the given values and obtained $a=[-1,-1,1]^{T}$
For the given points the z-coordinatevalue is 0.5 for the first 3 and 0 for the last one.
3. Moler Chapter 2. questions 2.1, 2.7, 2.8. and 2.11

Note: Question 2.11 is very similar to question 23 from chapter 8 of Recktenwald.

Solution:

2.1 I set things up so that:

$$
\left.\begin{array}{l}
\mathrm{A}= \\
\\
3 \\
12 \\
0
\end{array}\right)
$$

Now solving $A x=b$ I obtained the values apples are 0.29 bananas are 0.05 and cantaloupes are 0.89.
2.7 Here is my determinant m-file called detDR

```
function Det = detDR(A)
%detDR returns determinant of square matrix A using algorithm
% on page 86 Q 2.7 of Moler
% Det = detDR(A)
[n,m] = size(A);
if n ~}=m error('matrix is not square'); end
[L,U,p,sig] = lusigDR(A);
Det = sig*prod(diag(U));
```

2.8 I used tic and toc (Do help tic and/or toc to see how they work.) For luDR an n by n random array n=340 took 9.507497 seconds. For lutx I went up to 500 for 8.942710 seconds. For the built in lu function I tried a 2000 by 2000 matrix and that only took 6.087484 seconds to factor. Here is my luDR function.

```
function [L,U,p] = luDR(A)
%LUDR Triangular factorization, DR version
% [L,U] = luDR(A) produces a unit lower triangular matrix L,
% an upper triangular matrix U,
% so that L*U = A
[m,n] = size (A);
p = [1:n];
if m ~=n error('matrix not square'); end;
for k = 1:n-1
    % Find index of largest element below diagonal in k-th column
[r,m] = max(abs(A(k:n,k)));
m = m+k-1;
% Skip elimination if column is zero
if (A(m,k) ~= 0)
% Swap pivot row
if (m ~}=k
            A([k m],:) = A([m k],:);
            p([k m]) = p([m k]);
end
for i = k+1:n
```

```
            % Compute multipliers
            A(i,k) = A(i,k)/A(k,k);
            % Update the remainder of the matrix
            for j = k+1 : n
                A(i,j) = A(i,j) - A(i,k)*A(k,j);
            end
            end
        end
end
% Separate result
L = tril(A,-1) + eye(n,n);
U = triu(A);
```

2.11 This is similar to 8.21 above, except I use forward and backsub instead of the backslash.

```
function Ainv = InvDR2(A)
```

\%use forward and backward function instead of \backslash
[L, U, p] = lutx (A);
[n n] = size(A);
I = eye(n);
\%permute I according to the permutation vector p .
$\mathrm{I}=\mathrm{I}(\mathrm{p},: \mathrm{s})$;
Ainv = eye(n) ; \%initialize
for col = 1 : n
$y=f o r w a r d(L, I(:, c o l))$;
$\operatorname{Ainv}(:, c o l)=$ backsubs (U, y);
end
\%
function $\mathrm{x}=$ forward(L, x$)$
\% FORWARD. Forward elimination.
\% For lower triangular L, $\mathrm{x}=$ forward (L, b) solves $\mathrm{L} * \mathrm{x}=\mathrm{b}$.
[n,n] = size(L);
$x(1)=x(1) / L(1,1)$;
for $k=2: n$
$j=1: k-1 ;$
$x(k)=(x(k)-L(k, j) * x(j)) / L(k, k) ;$
end

```
% -------------------------------
function x = backsubs(U,x)
% BACKSUBS. Back substitution.
% For upper triangular U, x = backsubs(U,b) solves U*x = b.
[n,n] = size(U);
x(n) = x (n)/U(n,n);
for k = n-1:-1:1
    j = k+1:n;
    x(k) = (x(k) - U(k,j)*x(j))/U(k,k);
end
```

