CISC271
 Fall 2005
 Homework for week 8 in preparation for quiz 3 Solutions

This homework is about piece-wise interpolation.

Recktenwald Chapter 10. questions 29, 31, 32
For question 32 use the Matlab spline with the not-a-knot (default) end condition as well as the so called "fixed slope" end condition, use $y^{\prime}=0$ at the ends. Use help spline to see how to do this.

8-29 Recall we have

$$
\begin{gathered}
P_{i}(x)=a_{i}+b_{i}\left(x-x_{i}\right)+c_{i}\left(x-x_{i}\right)^{2}+d_{i}\left(x-x_{i}\right)^{3} \\
P_{i}^{\prime}(x)=b_{i}+2 c_{i}\left(x-x_{i}\right)+3 d_{i}\left(x-x_{i}\right)^{2}
\end{gathered}
$$

Let $h_{i}=x_{i}-x_{i-1}$. We will use the equations (10.39) (page 539 of Recktenwald) for a_{i}, b_{i}, c_{i}, and d_{i}.

$$
\begin{align*}
a_{i-1} & =y_{i-1} \tag{1}\\
b_{i-1} & =b_{i-1} \tag{2}\\
c_{i-1} & =\frac{3 f\left[x_{i-1}, x_{i}\right]-2 b_{i-1}-b i}{h_{i}} \tag{3}\\
d_{i-1} & =\frac{b_{i-1}-2 f\left[x_{i-1}, x_{i}\right]+b_{i}}{h_{i}^{2}} \tag{4}
\end{align*}
$$

Thus $P_{i}\left(x_{i}\right)=y_{i}=a_{i}$ and $P_{i}^{\prime}\left(x_{i}\right)=b_{i}$. It remains to show that $P_{i-1}\left(x_{i}\right)=a_{i}$ and that $P_{i-1}^{\prime}\left(x_{i}\right)=b_{i}$.

Thus,

$$
\begin{aligned}
P_{i-1}\left(x_{i}\right) & =y_{i-1}+b_{i-1} h_{i}+c_{i-1} h_{i}^{2}+d_{i-1} h_{i}^{3} \\
& =y_{i-1}+b_{i-1} h_{i}+h_{i}\left(3 f\left[x_{i-1}, x_{i}\right]-2 b_{i-1}-b_{i}\right)+h_{i}\left(b_{i-1}-2 f\left[x_{i-1}, x_{i}\right]+b_{i}\right) \\
& =y_{i-1}+h_{i} f\left[x_{i-1}, x_{i}\right] \\
& =y_{i-1}+h_{i}\left(y_{i}-y_{i-1}\right) / h_{i} \\
& =y_{i}
\end{aligned}
$$

And,

$$
\begin{aligned}
P_{i-1}^{\prime}\left(x_{i}\right) & =b_{i-1}+2 c_{i-1} h_{i}+3 d_{i-1} h_{i}^{2} \\
& =b_{i-1}+2\left(3 f\left[x_{i-1}, x_{i}\right]-2 b_{i-1}-b_{i}\right)+3\left(b_{i-1}-2 f\left[x_{i-1}, x_{i}\right]+b_{i}\right) \\
& =b_{i}
\end{aligned}
$$

10-31 No it isn't, because one needs to evaluate the entire system of linear equations to determine any of the coefficients.

10-32 Here are the Matlab instructions that I used.

```
> xx = linspace(0.2,2.2);
> yy = spline(x,y,xx);
> plot(xx,yy,x,y,'o',xx, sqrt(12.5) .* xx .* exp(-sqrt(1.5).*xx))
```

And here is the plot that I obtained.

For the "fixed slope" slope $=0$ end conditions I used yy = spline(x, [0 y 0], xx);

The plot did not look as nice. Here it is:

