CISC271
 Fall 2005
 Homework for week 12
 in preparation for quiz 5 portion of final exam Solutions

The following questions are from Recktenwald chapter 9.
Questions 1, 7, 8

9-1 I used Matlab more or less as a calculator to perfom the calculations as follows:

```
x = [llllll
y = [lllll
sx = sum(x)
sy = sum(y)
sxy = sum(x.*y)
sxs = sum(x.^2)
alpha = (sx*sy - 4*sxy) / (sx^2 - 4*sxs) = 0.4000
beta = (sx*sxy - sxs*sy)/(sx^2 - 4*sxs) = 0.8000
```

Observe that this yields the same solution as the normal equations.

```
o = [1 1 1 1 1 1];
A = [x, o'];
A =
    1
    2 1
    4
    5 1
```

```
    A'*A\A'* *''
ans =
    0.4000
    0.8000
```

9-7 We can use the normal equations to solve each of these individual problems. Observe that the array A is simply a column vector. I will simply give the value of this vector.
a) $A=x$.
b) $A=x s$, where each element of $x s$ is x_{i}^{2}.
c) $A=l x$ where each element of $l x$ is $\ln x_{i}$ and $y=l y$ where each element of $l y$ is $\ln y_{i}$.

9-8 Here's my m-file.

```
function c = expfitDR(x,y)
ly = log(y);
ctemp = linefit(x,ly);
c(1) = exp(ctemp (2));
c(2) = ctemp(1);
```

I plotted the curve I got with the given data. It seems to fit exactly! Here is the plot.

The following questions are from Moler chapter 5 , and have to do with experimenting with the censusgui m-file. See section 5.3 of Moler.
Questions 5.2 and 5.3.
5.2 I actually used the Matlab m-file census (type " help census") as it produces a better snapshot of several polynomials at once. The first image is the original followed by the one with the outlier. The outlier seems to have a more pronounced effect on the higher degree polynomials.

5.3 I got the following snippet from Moler's solution to this problem.
\% Find when population becomes zero.

```
if any(y(x > 2000) < 0)
    r = roots(c);
    r = r(imag(r)==0 & real(r)>0);
    z = 1950+50*r;
    date = datestr(datenum(z,4,1), 22);
    text(z-4,-15,date);
    text(z-1,0,'X','color','r','fontweight','bold')
end
```

Here's the output

