CISC271

Practice Final Exam
Solutions

2005

These questions should give you some idea of the type of question I may ask on the final.

1. I have reproduced the definitions of the MATLAB constants realmin and realmax and eps.

Built-in Variable: realmin The smallest normalized floating point number that is representable. The actual value is system-dependent. On machines that support 64-bit IEEE floating point arithmetic, 'realmin' is approximately $2.2251 \mathrm{e}-308$

- Built-in Variable: realmax The largest floating point number that is representable. The actual value is system-dependent. On machines that support 64-bit IEEE floating point arithmetic, 'realmax' is approximately $1.7977 \mathrm{e}+308$
Built-in Variable: eps The machine precision. More precisely, 'eps' is the largest relative spacing between any two adjacent numbers in the machine's floating point system. This number is obviously system-dependent. On machines that support 64 bit IEEE floating point arithmetic, 'eps' is approximately $2.2204 \mathrm{e}-16$.
(a) Is (realmin + eps) - realmin equal to zero? Explain.

Solution: No, because realmin + eps \neq realmin when using floating point arithmetic.
(b) Is (realmax - eps) - realmax equal to zero? Explain.

Solution: Yes, because realmax-eps $=$ realmax when using floating point arithmetic.
2. The secant method for determining the root of a function can be implemented with the following formula:

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

Explain how this formula may produce results that are completely unusable. (HINT: What happens to the denominator when $f\left(x_{k}\right)$ is approximately equal to $f\left(x_{k-1}\right)$?)
Solution: When we subtract two values that are almost equal and divide we run the risk of overflow.
3. Using the secant algorithm and with initial values $a=4$ and $b=6$ what would be the next value obtained using the secant algorithm for the function:

$$
x^{2}-25=0
$$

Show your work.
Solution: Using the formula above we get: 6 - 11 (2/20)
4. Suppose that you are given the following experimental data which are from a function $\mathrm{f}(\mathrm{x})$:

x_{i}	1	2	3
y_{i}	2	4	2

Using Lagrange's formula find the unique polynomial that passes through all the points.
Solution: the Lagrange polynomials are:

$$
L_{1}(x)=\frac{(x-2)(x-3)}{2}, L_{2}(x)=\frac{(x-1)(x-3)}{-1}, L_{3}(x)=\frac{(x-1)(x-2)}{2}
$$

and the formula is:

$$
P_{2}(x)=2 L_{1}(x)+4 L_{2}(x)+2 L_{3}(x)
$$

5. (4) Consider the following matrix.

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 2 & 2 & 2 \\
1 & 2 & 3 & 3 \\
1 & 2 & 3 & 4
\end{array}\right)
$$

(a) Perform the calculations for Gaussian elimination by hand, to put the matrix B in triangular form. Show all of your work.

Solution:

Subtract row 1 from row 2,3 , and 4 to get

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 1 & 2 & 2 \\
0 & 1 & 2 & 3
\end{array}\right)
$$

Now subtract row 2 from row 3 and 4 to get:

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right)
$$

Finally subtract row 3 from row 4 to get:

$$
B=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

(b) What is the LU decomposition of B.

Solution: $U=B$ above. Since the multipliers were all -1 we have

$$
B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

(c) What would the Matlab be to obtain an LU decomposition of B.
$[\mathrm{L}, \mathrm{U}]=\operatorname{lu}(\mathrm{B})$
(d) Using the L_{∞} matrix norm calculate the condition number of B. The inverse of B is

$$
B^{-1}=\left(\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 1
\end{array}\right)
$$

Recalling that the ∞-norm is the max row sum norm we get

$$
|B|_{\infty}=40
$$

6. Use Simpson's Rule to numerically estimate

$$
\int_{1}^{2.718} \frac{1}{x} d x
$$

The answer correct to 4 decimal places is 0.9999 . What is the relative error of your computation.

Solution: Using a one panel Simpson's rule gives:

$$
1.718 / 6(1 / 1+4 / 1.859+1 / 2.718)=1.0078
$$

The relative error is $\left|\frac{1.0078-0.9999}{0.9999}\right|=0.0079$.
7. Evaluate $I=\int_{0}^{1} x^{2}$ by a four point Guassian Quadrature formula. Just write out the formula, in terms of the points $x_{1}, x_{2}, x_{3}, x_{4}$ and weights $w_{1}, w_{2}, w_{3}, w_{4}$.

Solution: We transform the problem to get an interval of integration [-1 ... 1] , apply the formula and post multiply by the scaling factor.

$$
1 / 2\left(w_{1}\left(x_{1} / 2+1 / 2\right)^{2}+w_{2}\left(x_{2} / 2+1 / 2\right)^{2}+w_{3}\left(x_{3} / 2+1 / 2\right)^{2}+w_{4}\left(x_{4} / 2+1 / 2\right)^{2}\right)
$$

8. This question deals with least-squares approximations. Suppose that you were given many data points (e.g., a hundred) and that polynomials did not fit well. Plotting the data, you suspected that the y_{i} values were exponentially related to the x_{i} values. Show how'to fit data to the function

$$
y=c e^{k x}
$$

that is, estimate values for c and k in the least squares sense.
Solution: We take the natural \log of both sides of the equation giving a linear relationship, that is: $\ln y=\ln c+k x$. Now call linefit and correct for the transformations as follows:

```
ybar = log(y);
[a,b] = linefit(x,ybar);
k = a; c = exp(b);
```

