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Introduction 

In computer science, the concepts of algorithm and information are fundamental. So the 

measurement of information or algorithms is crucial in sense of describing. In 1965 

Andrey Nikolaevich Kolmogorov [O'Connor, and Robertson, 1999], a Russian 

mathematician, established the algorithmic theory of randomness via a measure of 

complexity, now referred to Kolmogorov complexity. According to Kolmogorov, the 

complexity of an object is the length of the shortest computer program that can reproduce 

the object. All algorithms can be expressed in programming language based on Turing 

machine models equally succinctly, up to a fixed additive constant term. The remarkable 

usefulness and inherent rightness of the theory of Kolmogorov complexity or so called 

Descriptive complexity, stems from this independence of the description method.  

The idea of Kolmogorov complexity first appeard in the 1960’s in papers by 

Kolmogorov, Solomonoff and Chaitin. As specified by Schöning and Randall, an 

algorithm can exhibit very different complexity behavior in the worst case and in the 

average case. The Kolmogorov complexity is defined a probability distribution under 

which worst-case and average-case running time (for all algorithm simultaneously) are 

the same (up to constant factors). Quick sort algorithm has been widely taken as an 

example to show the applicability of Kolmogorov complexity since the algorithm takes 

O(n logn) time in average but Ω(n2) time at worst case. Later, the Kolmogorov 

complexity was connected with Information Theory and proved to be closely related to 

Claude Shannon's entropy rate of an information source. The theory base of Kolmogorov 

complexity has also be extended to data compression and communication for the sake of 

true information measure.  
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Kolmogorov Complexity Theory 

We will briefly take a look at Kolmogorov Complexity definition and some main related 

results at this section. For details, please refer to [Cover and Thomas, 1991] and 

[Schöning and Pruim 1998]. 

 

Definition: The Kolmogorov Complexity Ku(x) of a string x with respect to a universal 

computer U is defined as:  

Ku(x) =      min  l(p), 
                p : U(p) = x 

the minimum length over all programs that print x and halt. Thus Ku(x) is the shortest 

description length of x over all descriptions interpreted by computer U. (Note Turing 

machine is regarded as universal computer in computer science.) 

The concept of Kolmogorov Complexity asks for the minimal unambiguous 

description of a sequence. It can be used to prove complexity lower bounds. [Schöning 

and Pruim 1998] has two examples of using this technique. And indeed, as mentioned, 

the proofs obtained in this way are much more “elegant”, or at least shorter, than the 

original proofs. In a few cases, the lower bounds were first achieved by means of 

Kolmogorov Complexity. Another quite important definition is the conditional 

Kolmogorov complexity which is based on the knowledge of the length of x, denoted as 

l(x).  

Ku(x| l(x)) =      min         l(p), 
                         p : U(p, l(x)) = x 
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This is the shortest description length if the computer U has the length of x made 

available to it. Quite a few different results have been shown for conditional Kolmogorov 

complexity too. 

 We look at some basic and interesting properties of Kolmogorov complexity and 

then consider some examples. The proofs of the theorems are eliminated because of the 

purpose of this report. However, for your interests, please refer to [Cover and Thomas, 

1991] for complete proofs. 

 Both the lower and upper bounds of Kolmogorov complexity of a given sequence 

have been derived early. There are some choices of both bounds from different aspects. 

The followings are all established theorems for bounds. 

 

Universality of Kolmogorov complexity: If U is a universal computer, then for any other 

computer A: Ku(x) ≤ KA(x) + cA, for all string x ∈ {0, 1}*, where the constant cA does 

not depend on x.  

Conditional complexity is less than the length of sequence: Ku(x| l(x)) ≤ l(x)+ c. 

Upper bound on Kolmogorov complexity: Ku(x) ≤ Ku(x| l(x)) + 2log (l(x)) + c.  

Lower bound on Kolmogorov complexity:  The number of strings x with complexity  

Ku(x) ≤ k satisfies: |{ x ∈ {0, 1}*: Ku(x) ≤ k } | < 2k. 

The Kolmogorov complexity of a binary string x is bounded by:  

K(x1x2x3…xn|n) ≤ nH0(1/n∑i xi) + 2log n + c,  

where H0(p) = -p log p – (1-p) log (1-p) is the binary entropy function. 
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The above five theorems are basically considered to be very important facts of 

Kolmogorov complexity. Many other interesting results have been derived applying these 

theorems. We consider some examples of Kolmogorov complexity here to show the 

usability of the theory with its properties. First, we will look at some intuitive ideas 

directly coming from the definition. A sequence of n zeros has a constant Kolmogorov 

complexity, i.e. K(000…0|n) = c, since if we assume n is known, the a short program can 

directly print out n zeros. The same case can be applied toπ, where the first n bits of 

πcan be calculated using a simple series expression. A somewhat surprising result for 

fractal is that regarding its complex calculations, it is still essentially very simple in terms 

of Kolmogorov complexity which is nearly zero. An integer on the other hand, has higher 

complexity even it looks very straight forward. It is obviously true that the complexity of 

describing an integer will be constant if we know the length of the integer, i.e. K(n|l(n)) = 

c. However, in general, the computer does not know the length of binary representation 

of the integer. So we must inform the computer in some way when the description ends. 

We can bound the description using the upper bound we got so far: K(n) ≤ 2log n + c. 

We can also prove there are an infinite number of integers n such that K(n) > log n. This 

is probably less intuitive than we thought. From above examples, it is not hard to see the 

true measurement of information or algorithm would be rather hard without the 

development of Kolmogorov complexity. With the support of the Kolmogorov 

complexity theory, one can describe information more accurate in computer science. 

Kolmogorov complexity also applied to algorithmically random, incompressible 

sequences, the halting problem, etc. We can not go into details of those examples; instead, 

we briefly look at those problems here just to get some taste. Many literatures have been 
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published on Kolmogorov complexity related questions. One can refer to [Li, and Vitanyi, 

1999] and [Yaniv, 2003] for future reading. The algorithmically random and 

incompressible sequences are defined based on the Kolmogorov complexity properties 

that some sequences hold. We say a sequence x1, x2, x3… xn algorithmically random if 

K(x1x2x3…xn| n) ≥ n. And we can say a string x incompressible if lim K(x1x2x3…xn| n)/n = 

1. The definitions seem very intuitive with respect of Kolmogorov complexity. In fact, if 

every element of the sequence is completely generated in random, we can not predict any 

later elements from current. Indeed, we will need to describe each element separately. 

However, if the Kolmogorov complexity verse n approaching 1 for a string in probability, 

then we can actually interpret this as the proportions of 0’s and 1’s in this string are 

almost equal, which is ½. By this meaning, it is true that we can not compress the string 

since any bit will be a critical contribution to the whole, which also specifies the 

randomness of the string. The next significant application is on the halting problem. 

Using Kolmogorov complexity, we can actually demonstrate that the problem can not be 

solved by an algorithm because of the non-computability of Kolmogorov complexity. It 

is rather a surprising fact of the non-computability. However, practically speaking, one 

may never be able to tell the shortest program since there are infinite many programs for 

a given sequence. We can only estimate the complexity by running more and more 

programs, as we know the bound will converge to the Kolmogorov complexity. Many 

other results can also be found on published literatures related with probability theory and 

information theory. At the following section, we take a look at one of the most important 

results related with the central idea of information theory – Entropy.  
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Kolmogorov Complexity and Entropy 

As mentioned at introduction, the Kolmogorov complexity and entropy of a sequence of 

random variables are highly related. In general, the expected value of the Kolmogorov 

complexity of a random sequence is to its entropy.  

 From information theory founded by Shannon, the true measure of information on 

random variables is entropy. This relationship actually proves the correctness of the 

Kolmogorov complexity as a measurement of information and algorithms. Kolmogorov 

complexity states the shortest description (program) for a random variable. Then 

complexity of the sequence constructed by random variables will approach to the expect 

value of the set of Kolmogorov complexities for each variable, i.e. E[1/nK(Xn|n)] →H(X), 

supported by the law of large numbers in probability. Respectively, the information 

measure of the sequence is indeed entropy. Actually, one can always show the program 

lengths satisfy prefix condition, since if the computer halts on any program, it does not 

look any further for input. The relationship can be shown further with Kraft inequality.  

 The relationship provides us to two ways of complexity measures, which either 

takes after Kolmogorov complexity, involving finding some computer or abstract 

automaton which will produce the pattern of interest, or take after information theory and 

produce something like the entropy, which, while in principle computable, can be very 

hard to calculate reliably for experimental systems. This is actually very powerful 

principle in physics (see [Li, and Vitanyi, 1999] for details). A more interesting idea 

about “Occam’s Razor” as a general principle governing scientific research can be 

derived from Kolmogorov theory as we will see at the next section. 
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Occam’s Razor 

I decide to include this topic mainly because its importance plus the idea really amazed 

me. At 14th century, William of Occam (Ockham in some literatures), a logician, said 

“Nunquam ponenda est pluralitas sine necessitate”, i.e., explanations should not be 

multiplied beyond necessity, which forms the basis of methodological reductionism. Here, 

our argument will be a special case of it. 

 Recent papers have suggested a connection between Occam's Razor and 

Kolmogorov complexity. Many literatures take Laplace’s sun rising problem as an 

example to explain the connection. Laplace considered the probability that the sun will 

rise again tomorrow, given that it has risen every day in recorded history. He solved it 

before Kolmogorov complexity was introduced. However, the problem can be 

reconsidered through Kolmogorov complexity. If we use 1 to represent the sun rise, then 

the probability that the next symbol is a 1 given n 1’s in the sequence so far is:  ∑y 

p(1n1y) ≈ p(1∞) = c > 0. And the probability that the next symbol is 0, which means that 

the sun will not rise: ∑y p(1n0y) ≈ p(1n0) ≈ 2
-log n , since any 1n0… yields a description 

of n with length at least K(n), i.e. about log n + O(log log n). Hence the conditional 

probability of observing a 0 next is: p(0|1n) = p(1n0) / (p(1n0) + p(1∞))≈ 1/(cn+1). The 

result is very similar to 1/(n+1) derived by Laplace. The Kolmogorv complexity solution 

to this question is actually following the Occam’s Razor by weighting possible 

explanations by their complexity. 

 It often happens that the best explanation is much more complicated than the 

simplest possible explanation because it requires fewer assumptions. Albert Einstein 
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wrote in 1933 “Theories should be as simple as possible, but no simpler.” In our case, 

Kolmogorov complexity does provide us an alternative approach to explain things in 

many science fields.  

   

Conclusion 

Kolmogorov complexity is a profound theory for information and algorithm measure. 

The theory is somehow different from others that we have studied in computational 

complexity so far. I feel the theory tries to observe the complexity from a new approach. 

It is worth reading something about Kolmogorov [O'Connor, and Robertson, 1999] to 

understand his original idea, which he developed from mathematical perspective. It is in 

high level of abstraction, but closely related with many things in practice. Vladimir 

V’yugin presents some applications of Kolmogorov complexity in his review [V’yugin, 

1994] mathematically. In computing, I found many ongoing topics related with 

Kolmogorov complexity are on information process ([Levin, 1999] and [Wallace, and 

Dowe, 1999a]). Generally, the application of Kolmogorv complexity is based on 

framework of the Minimum Description Length (MDL) principle and Minimum Message 

Length (MML) principle, which are out the scope of this report, but refer to [Wallace, and 

Dowe, 1999b] for introductions.  

 I strongly believe the Kolmogorov complexity should have more appearances in 

future research topics. Along with information theories, we need to deal with information 

as well as problems coming with it. Like the Shannon’s entropy theory established 

today’s communication system, the closely related Kolmogorov complexity shall also be 

of great potential to be applied to future researches. 
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Dear Dr. Salomaa, 
 
I would like to get some suggestion or feedback from you after you read my report. It 
would be appreciated if you could send your comments to me by e-mail.  
 
E-mail: xiao@cs.queensu.ca 
 
Sincerely, 
 
Henry Xiao 


